
18.7 Intel® Many Integrated Core Architecture

5. Use the Berendsen Thermostat (ntt=1) or Anderson Thermostat (ntt=2) instead of the Langevin Thermostat
(ntt=3). Langevin simulations require very large numbers of random numbers which slows performance
slightly.

6. Do not assume that for small systems the GPU will always be faster. Typically for GB simulations of less
than 150 atoms and PME simulations of less than 9,000 atoms it is not uncommon for the CPU version of
the code to outperform the GPU version on a single node. Typically the performance differential between
GPU and CPU runs will increase as atom count increases. Additionally the larger the non-bond cutoff used
the better the GPU to CPU performance gain will be.

7. When running in parallel across multiple GPUs you should NOT attempt to share nodes and thus intercon-
nects. For example you should avoid running 2 separate MPI jobs on individual nodes (unless both are using
peer to peer). For example if you have 2 nodes, each with a QDR IB card in, 1 M2090 and 1 C2050 you
will likely get very poor performance if you attempt to run a dual GPU job on the 2 M2090’s and a second
dual GPU job on the 2 C2050’s. It is also not advisable to mix GPU models when running in parallel. In
this situation you are advised to physically place both M2090’s in one node and both C2050’s in the other.
You could of course run a dual M2090 job across the two nodes and then 2 single GPU jobs on each of the
C2050’s.

8. When running in parallel you should restrict jobs to a single node and select GPUs that are on the same IOH
controller and thus can communicate via peer to peer. For most 4 GPU nodes gpus 0 and 1 can typically
communicate via peer to peer and gpus 2 and 3 can communicate via peer to peer. The mdout file contains
a section that indicates if peer to peer support is enabled.

9. Avoid using CUDA Toolkit v5.5 or v6.0. At the time of writing the recommended CUDA Toolkit and
compiler is v5.0. This provides maximum performance. A performance regression bug in v5.5 means that it
is about 5 to 8% slower than v5.0.

10. Turn off ECC (Tesla models C2050 and later). ECC can cost you up to 10% in performance. You should
verify that your GPUs are working correctly, and not giving ECC errors for example before attempting this.
You can turn this off on Fermi based cards and later by running the following command for each GPU ID as
root, followed by a reboot:

nvidia-smi -g 0 --ecc-config=0 (repeat with -g x for each GPU ID)

Extensive testing of AMBER on a wide range of hardware has established that ECC has little to no benefit
on the reliability of AMBER simulations. This is part of the reason it is acceptable (see recommended
hardware) to use the GeForce gaming cards for AMBER simulations.

11. Turn on boost clocks if supported. Newer GPUs from NVIDIA, such as the K40, support boost clocks which
allow the clock speed to be increased if there is power and temperature headroom. This must be turned on to
obtain optimum performance with AMBER. If you have a K40 or newer GPU supporting boost clocks then
run the following:

12. sudo nvidia-smi -i 0 -ac 3004,875 which puts device 0 into the highest boost state.

13. To return to normal do: sudo nvidia-smi -rac

14. To enable this setting without being root do: nvidia-smi -acp 0

18.7 Intel® Many Integrated Core Architecture

One of the newest features of PMEMD is support for Intel MIC Products, such as Intel® Xeon PhiTM copro-
cessors. Intel MIC Architecture support in PMEMD includes both native and offload mode in Amber 14. These
versions of the PMEMD engine are considered experimental and there is no guarantee of any performance im-
provement. However, this support should produce results directly comparable to the CPU implementation due to
the floating-point consistency of Intel’s processors. Any differences in tests will be a consequence of floating-point

347

18 pmemd and pmemd.amoeba

rounding differences in hardware. Support for Intel® MIC Architecture in PMEMD is an ongoing project and
therefore frequent updates are likely. Improved performance can be expected in upcoming patches.

Support for the Intel MIC Architecture in Amber 14 offers two modes:
• MIC native mode: allows all the functionality of the PMEMD engine to be run on Intel® Xeon PhiTM

coprocessors in native mode in either serial or parallel (MPI).

• MIC offload mode: offloads a portion of the direct sum calculation in a standard PME simulation to the
Intel® Xeon PhiTM coprocessor for improved performance. We are anticipating in later releases to extend
support to most functionality of PMEMD, which would include offloading to the Intel® Xeon PhiTM copro-
cessor for Thermodynamic Integration (TI), Isotropic Periodic Sum (IPS) and pmemd.amoeba simulations.
Recommended system size to be explored using the MIC offload version of PMEMD is >200,000 atoms in
order to benefit from performance improvements. The MIC offload version of PMEMD requires Intel®’s
MPI library which is included in the Intel® Cluster Studio XE compiler package.

The supported Intel® Xeon PhiTM product family includes the Intel® Xeon PhiTM coprocessor 3100/5100/7100
series. (Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.)

Before attempting to build these versions you should have built and tested the serial and parallel CPU versions of
Amber (pmemd and pmemd.MPI) with the Intel compiler suite and Intel MPI. This will help to ensure that basic is-
sues relating to standard compilation on you hardware and operating system do not lead to confusion with coproces-
sor related compilation problems. It is recommended that you are familiar with building and running simple code
in native/offload mode on an Intel® Xeon PhiTM Coprocessor, which is described in https://software.intel.com/mic-
developer. You should also be familiar with Amber’s compilation procedures.

18.7.1 MIC Native Model

The MIC native version supporting Intel® Xeon PhiTM coprocessors is called pmemd.mic_native (or
pmemd.mic_native.MPI for running simulations in parallel on the coprocessor using MPI) and must be built sepa-
rately from the standard serial and parallel installations.

Building PMEMD serial for Intel® Xeon PhiTM Coprocessors (native mode)

Assuming you have installed Intel® Parallel Studio XE version 2013 or later, you can build pmemd.mic_native
as follows:

cd $AMBERHOME

./configure -mic_native intel

make install

Building PMEMD parallel for Intel® Xeon PhiTM Coprocessors (native mode)

PMEMD parallel for Intel® Xeon PhiTM coprocessors can only be built using the MPI (mpiicc/mpiifort) from
the Intel® Cluster Studio XE product, which is supported in Amber 14 through the use of a new MPI flag
(-intelmpi). Build pmemd.mic_native.MPI as follows:

cd $AMBERHOME

./configure -mic_native -intelmpi intel

make install

It is possible to run across multiple Intel® Xeon® processors and Intel® Xeon Phi™ coprocessors, even on a
cluster, with this implementation. However, it is a functional implementation and not performance optimized at
this time. Detailing how to run this way is beyond the scope of the current manual, however to see how to do this
with MPI applications in general, see

http://software.intel.com/en-us/articles/using-the-intel-mpi-library-on-intel-xeon-phi-coprocessor-systems .

348

18.7 Intel® Many Integrated Core Architecture

Running simulations on Intel® Xeon PhiTM Coprocessors (native mode)

In order to run a simulation on the Intel® Xeon Phi™ coprocessor, it is advised that you read the Intel®
Xeon Phi™ Coprocessor Developer’s Quick Start Guide (http://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-developers-quick-start-guide) in addition to the instructions given here. This guide includes a de-
scription of the Intel® Manycore Platform Software Stack (Intel® MPSS), which enables the wide range of usage
models that Intel® Xeon Phi™ coprocessors support. Running a simulation on the coprocessor in native mode
requires that all files and binaries be visible to the coprocessor. Either mount your file system on the coproces-
sor (requires root access) or explicitly transfer the binaries, libraries and input files to the /tmp directory on the
coprocessor.

Note: Mounting requires the Amber directory plus any additional libraries used in an Amber simulation to be
visible to the coprocessor

Running simulations with a mounted filesystem:

1. To mount a filesystem please follow instructions available in the Intel MPSS readme file. You can also follow
the instructions in http://software.intel.com/sites/default/files/article/373934/system-administration-for-the-
intel-xeon-phi-coprocessor.pdf

2. Mount your AMBERHOME directory, working directory, Intel compiler directory, Intel MPI_HOME direc-
tory (for parallel run), and MKL_HOME directory (if MKL is used) on the coprocessor.

3. Add the following environment variables to a file (source_knc.sh in this example), which will be sourced on
execution of pmemd.mic_native:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$INTEL_COMPILER_HOME/ lib/mic/

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: $MKL_HOME/lib/mic/

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: $MPI_HOME/mic/lib/

export PATH=$PATH:$MPI_HOME/mic/bin

4. Run a simulation from your working directory on the host (CPU) with a mounted filesystem:

ssh mic0 “source source_knc.sh; \

$AMBERHOME/bin/pmemd.mic_native -O -i mdin -o mdout -p prmtop -c inpcrd”

Running simulations without a mounted filesystem:

1. Upload Intel® Xeon Phi™ coprocessor version of the Intel compiler library to the coprocessor:

scp -r $INTEL_COMPILER_HOME/lib/mic/* mic0:/tmp/

2. Similarly, upload coprocessor versions of the MPI and MKL libraries:

scp -r $INTEL_MPI_HOME/mic/lib/* mic0:/tmp/

scp -r $INTEL_MPI_HOME/lib/mic/* mic0:/tmp/

3. Upload the coprocessor version of PMEMD (pmemd.mic_native or pmemd.mic_native.MPI) and your work-
ing directory (containing the input fies for simulation) to mic0:

scp -r $AMBERHOME/bin/pmemd.mic_native mic0:/tmp/

scp -r working_directory/* mic0:/tmp/

4. Change the permission of the libraries and binaries so that they are executable on the coprocessor:

chmod 777 -R /tmp/*

5. Finally run the simulation from host:

ssh mic0 “Export LD_LIBRARY_PATH=/tmp/; cd /tmp; \

./pmemd.mic_native -O -i mdin -o mdout -p prmtop -c inpcrd“

349

18 pmemd and pmemd.amoeba

18.7.2 MIC Offload Mode

The MIC offload version supporting Intel® Xeon PhiTM coprocessors is called pmemd.mic_offload.MPI and
must be built separately from the standard parallel installation. MIC offload is not available in serial.

Building PMEMD for Intel® Xeon PhiTM Coprocessors (offload mode)

Assuming you have installed Intel® Parallel Studio XE version 2013 or later, you can build
pmemd.mic_offload.MPI as follows:

cd $AMBERHOME

./configure -mic_offload intel

make install

There is no need to specify the –intelmpi flag as this is the default behavior of the configure script.

Testing PMEMD for Intel® Xeon PhiTM Coprocessors (offload mode)

You can run the test suite using the MIC coprocessor with:

make test.mic_offload

The majority of these tests should pass. However, given the parallel nature of the MIC coprocessor, meaning the
order of operation is not well defined, it is not uncommon for there to be several “possible FAILURES”. You
should inspect the .diff file created in the $AMBERHOME/logs/test_amber_mic_offload/ directory to manually
verify any “possible FAILURES”. Differences that occur on only a few lines and are minor in nature can be safely
ignored. Any large differences, or if you are unsure, should be posted to the Amber mailing list for comment.

Running simulations on Intel® Xeon PhiTM Coprocessors (offload mode)

Unlike MIC native mode, once PMEMD has been configured with the –mic_offload flag and compiled, no
additional steps are required to run pmemd.mic_offload.MPI. Work is automatically offloaded to the Intel MIC
Architecture.

Execute the following command on the host to run a simulation in MIC offload mode:

mpirun -np 8 $AMBERHOME/bin/pmemd.mic_offload.MPI -O

Note: Choose the number of MPI processes to suit the specifications of the host CPU, i.e. 8 MPI processes for
an Intel Xeon E5-2680 8 core processor, in order to achieve optimum performance. In version 2 support for MIC
offload in PMEMD, the amount of offloaded work to the coprocessor increases and settles to a stable value after
running multiple time steps governed by the Amber load balancer. Thus, it is recommended that the simulation
should run for at least 200 time steps to benefit from the coprocessor.

Compiler switches for performance:

PMEMD MIC offload version 2 includes optional compiler switches that can be used to improve the
performance of simulations of systems with greater than 200,000 atoms. These are disabled by default but can be
enabled by compiling with:

make AMBERBUILDFLAGS=’ [options] ’

Options
-DOffload_excludes_recip This switch ensures that the offloading MPI ranks are not assigned reciprocal force

calculations allowing for more efficient concurrent execution of the direct sum between the host and the
MIC.

350

18.8 pmemd.amoeba

–Doffload_excludes_bond This switch ensures that the offloading MPI ranks are not assigned bonded (bond,
angles and dihedrals) force calculations allowing for more efficient concurrent execution of the direct sum
between the host and the MIC, similar to the switch described above.

-DFaster_erfc This switch enables a custom lower precision implementation of the erfc function instead of the
standard math “erfc” function call that is used in calculating the direct space force contributions.

The compiler switches described above do not guarantee any performance improvement. It is advised that the user
tests the switches one by one before using them in a production environment.

Adjusting the stack size

For larger simulations (>100,000 atoms) more OMP threads are spawned on a MIC coprocessor to provide better
performance. However, for more OMP threads we need a larger stack size per thread and a larger total stack size
on a MIC coprocessor. The default stack size is 8 KB.

• “-env MIC_OMP_STACKSIZE 4M” increases the OMP thread stack size to 4 MB.

mpirun -env MIC_OMP_STACKSIZE 4M -np 8 $AMBERHOME/bin/pmemd.mic_offload.MPI -O

• For MPSS version 3.2.3 and later the total stack size of a MIC coprocessor is increased by the following
steps:

1. On the host, as root, create the directories etc/ and etc/security in /var/mpss/common:

cd /vars/mpss/common

su

mkdir -p etc/security

2. Next create the file limits.conf (in /var/mpss/common/etc/security) containing the following line of text (with
tab separated values):

“* soft stack unlimited”

3. Create the file /var/mpss/common.filelist containing the following (with space separated values) lines:

dir /etc/security 755 0 0

file /etc/security/limits.conf etc/security/limits.conf 644 0 0

4. Finally, cycle the MPSS daemon to reboot the cards using:

service mpss restart

18.8 pmemd.amoeba

The Amoeba force field is a recently developed polarizable force field with parameters for water, univalent
ions, small organic molecules and proteins.[313, 314, 330–332] Differences from the current amber force fields
include more complex valence terms including anharmonic bond and angle corrections and bond angle and bond
dihedral cross terms, and a two dimensional spline fit for the phi-psi bitorsional energy. The differences in the
nonbond treatment include the use of atomic multipoles up to quadrupole order, induced dipoles using a Tholé
screening model, and the use of the Halgren buffered 7-14 functional form for van der Waals interactions. The
PME implementation used here, as well as a multigrid approach for atomic multipoles, is described in Ref. [320].

Right now, setting up the system is a bit complex: you need to set up the system in Tinker, then run the tinker-
to-amber program to convert to Amber prmtop and coordinate files. Some examples are in $AMBERHOME/src/p-
memd.amoeba/build_amoeba. But keep checking the Amber web page, since we hope to provide a simpler path
soon.

351

	Contents
	Introduction and Installation
	Introduction
	Information flow in Amber
	List of programs

	Installation
	Applying Updates
	Contacting the developers

	Amber force fields
	Molecular mechanics force fields
	Specifying which force field you want in LEaP
	The ff14SB force field
	The ff14ipq protein force field
	The Duan et al. (2003) force field
	The Yang et al. (2003) united-atom force field
	Force fields related to semi-empirical QM
	The GLYCAM force fields for carbohydrates and lipids
	Lipid Force Fields
	Ions
	Solvent models
	CHAMBER
	Obsolete force field files

	The Generalized Born/Surface Area Model
	GB/SA input parameters
	ALPB (Analytical Linearized Poisson-Boltzmann)

	PBSA
	Introduction
	Usage and keywords
	Example inputs and demonstrations of functionalities
	Visualization functions in pbsa
	pbsa in sander and NAB

	Reference Interaction Site Model
	Introduction
	Practical Considerations
	Work Flow
	rism1d
	3D-RISM in NAB
	rism3d.snglpnt
	3D-RISM in sander

	Empirical Valence Bond
	Introduction
	General usage description
	Biased sampling
	Quantization of nuclear degrees of freedom
	Distributed Gaussian EVB
	EVB input variables and interdependencies

	sqm: Semi-empirical quantum chemistry
	Available Hamiltonians
	Dispersion and hydrogen bond correction
	Usage

	QM/MM calculations=2=3=
	Built-in semiempirical NDDO methods and SCC-DFTB
	Interface for ab initio and DFT methods
	Adaptive solvent QM/MM simulations
	Adaptive buffered force-mixing QM/MM
	SEBOMD: SemiEmpirical Born-Oppenheimer Molecular Dynamics

	paramfit
	Usage
	The Job Control File
	Multiple molecule fits
	Fitting Forces
	Examples

	System preparation
	Preparing PDB Files
	Cleaning up Protein PDB Files for AMBER
	Residue naming conventions
	Chains, Residue Numbering, Missing Residues
	pdb4amber
	reduce

	LEaP
	Introduction
	Concepts
	Running LEaP
	Basic instructions for using LEaP to build molecules
	Commands
	Building oligosaccharides, lipids and glycoproteins

	Reading and modifying Amber parameter files
	Understanding Amber parameter files
	ParmEd

	Antechamber and GAFF
	Principal programs
	A simple example for antechamber
	Using the components.cif file from the PDB
	Programs called by antechamber
	Miscellaneous programs
	New Development of Antechamber And GAFF
	Metal Center Parameter Builder (MCPB)

	Setting up crystal simulations
	UnitCell
	PropPDB
	AddToBox
	ChBox

	Using the AMOEBA Force Field with AMBER
	Installing TINKER
	Preparing the system with TINKER

	Running simulations
	sander
	Introduction
	File usage
	Example input files
	Namelist Input Syntax
	Overview of the information in the input file
	General minimization and dynamics parameters
	Potential function parameters
	Varying conditions
	File redirection commands
	Getting debugging information
	multisander (and multipmemd)
	Programmer's Corner: The sander API

	pmemd and pmemd.amoeba
	Introduction
	Functionality
	PMEMD-specific namelist variables
	Slightly changed functionality
	Parallel performance tuning and hints
	GPU Accelerated PMEMD
	Intel® Many Integrated Core Architecture
	pmemd.amoeba

	Atom and Residue Selections
	Amber Masks
	"Atom Expressions" in NAB Applications
	GROUP Specification

	Sampling configuration space
	Self-Guided Langevin dynamics
	Accelerated Molecular Dynamics
	Targeted MD
	Multiply-Targeted MD (MTMD)
	Nudged elastic band calculations
	Low-MODe (LMOD) methods

	Free energies
	Thermodynamic integration=2=3=
	Absolute Free Energies using EMIL
	Linear Interaction Energies
	Umbrella sampling
	Replica Exchange Molecular Dynamics (REMD)
	Adaptively biased MD, steered MD, and umbrella sampling with REMD
	Steered Molecular Dynamics (SMD) and the Jarzynski Relationship

	Constant pH calculations
	Background
	Preparing a system for constant pH
	Running at constant pH
	Analyzing constant pH simulations
	Extending constant pH to additional titratable groups
	Constant pH MD Replica Exchange
	cphstats

	NMR, X-ray, and cryo-EM/ET refinement
	Distance, angle and torsional restraints
	NOESY volume restraints
	Chemical shift restraints
	Pseudocontact shift restraints
	Direct dipolar coupling restraints
	Residual CSA or pseudo-CSA restraints
	Preparing restraint files for Sander
	Getting summaries of NMR violations
	Time-averaged restraints
	Multiple copies refinement using LES
	Some sample input files
	X-ray Crystallography Refinement using SANDER
	EMAP restraints for rigid and flexible fitting into EM maps

	LES
	Preparing to use LES with Amber
	Using the ADDLES program
	More information on the ADDLES commands and options
	Using the new topology/coordinate files with SANDER
	Using LES with the Generalized Born solvation model
	Case studies: Examples of application of LES

	Quantum dynamics
	Path-Integral Molecular Dynamics
	Centroid Molecular Dynamics (CMD)
	Ring Polymer Molecular Dynamics (RPMD)
	Linearized semiclassical initial value representation
	Reactive Dynamics
	Isotope effects

	mdgx
	Input and Output
	Installation
	Special Algorithmic Features of mdgx
	Customizable Virtual Site Support in mdgx
	Restrained Electrostatic Potential Fitting in mdgx
	Bonded Term Fitting in mdgx
	Thermodynamic Integration
	Future Directions and Goals of the mdgx Project

	Analysis of simulations
	mdout_analyzer.py and ambpdb
	ambpdb

	cpptraj
	Running cpptraj
	General Concepts
	Data Sets and Data Files
	Data File Options
	Coordinates as a Data Set (COORDS Data Sets)
	General Commands
	Topology File Commands
	Trajectory File Commands
	Actions that Modify Topology/Coordinates
	Action Commands
	Matrix and Vector Actions
	Data Set Analysis Commands
	Coordinate Analysis Commands
	Matrix and Vector Analysis
	Matrix/Vector Analysis Examples

	MMPBSA.py
	Introduction
	Preparing for an MM/PB(GB)SA calculation
	Running MMPBSA.py
	Python API

	MM_PBSA
	General instructions
	Input explanations
	Auxiliary programs used by MM_PBSA
	APBS as an alternate PB solver in Sander

	FEW
	Installation
	Overview of workflow steps and minimal input
	Common setup of molecular dynamics simulations
	Workflow for automated MM-PBSA & MM-GBSA calculations (WAMM)
	Linear interaction energy workflow (LIEW)
	Thermodynamic integration workflow (TIW)

	XtalAnalyze
	XtalAnalyze.sh
	XtalPlot.sh
	md2map.sh

	SAXS
	Introduction and theory
	Usage

	NAB and AmberLite
	NAB: Introduction
	Background
	Methods for structure creation
	Compiling nab Programs
	Parallel Execution
	First Examples
	Molecules, Residues and Atoms
	Creating Molecules
	Residues and Residue Libraries
	Atom Names and Atom Expressions
	Looping over atoms in molecules
	Points, Transformations and Frames
	Creating Watson Crick duplexes

	NAB: Language Reference
	Language Elements
	Higher-level constructs
	Statements
	Structures
	Functions
	Points and Vectors
	String Functions
	Math Functions
	System Functions
	I/O Functions
	Molecule Creation Functions
	Creating Biopoloymers
	Fiber Diffraction Duplexes in NAB
	Reduced Representation DNA Modeling Functions
	Molecule I/O Functions
	Other Molecular Functions
	Debugging Functions
	Time and date routines
	Computational resource consumption functions

	NAB: Rigid-Body Transformations
	Transformation Matrix Functions
	Frame Functions
	Functions for working with Atomic Coordinates
	Symmetry Functions
	Symmetry server programs

	NAB: Distance Geometry
	Metric Matrix Distance Geometry
	Creating and manipulating bounds, embedding structures
	Distance geometry templates
	Bounds databases

	NAB: Molecular mechanics and dynamics
	Basic molecular mechanics routines
	NetCDF read/write routines
	Typical calling sequences
	Second derivatives and normal modes
	Low-MODe (LMOD) optimization methods
	Using the Hierarchical Charge Partitioning (HCP) method

	NAB: Sample programs
	Duplex Creation Functions
	nab and Distance Geometry
	Building Larger Structures
	Wrapping DNA Around a Path
	Other examples

	amberlite: Some AmberTools-Based Utilities
	Introduction
	Coordinates and Parameter-Topology Files
	pytleap: Creating Coordinates and Parameter- Topology Files
	Energy Checking Tool: ffgbsa
	Energy Minimizer: minab
	Molecular Dynamics "Lite": mdnab
	MM(GB)(PB)/SA Analysis Tool: pymdpbsa
	Examples and Test Cases

	Bibliography
	Index

