van der Waals Parameters in Amber

There are two common formulations of the van der Waals equation:

$$E_{V\!DW}\!\!=\!4\,\epsilon\!\left[\!\left(\!\frac{\sigma}{r}\right)^{\!12}\!-\!\!\left(\!\frac{\sigma}{r}\right)^{\!6}\right]\quad\text{and}\quad E_{V\!DW}\!\!=\!4\,\epsilon\!\left[\!\frac{1}{4}\!\left(\!\frac{r_0}{r}\right)^{\!12}\!-\!\frac{1}{2}\!\left(\!\frac{r_0}{r}\right)^{\!6}\right]$$

Both describe the non-bonded interaction between two particles at distance r as the sum of an attractive r^6 and a repulsive r^{12} term. Two parameters are needed, the well depth ε and a characteristic distance r_0 or σ (the two formulations are identical for $r_0 = \sqrt[6]{2}\sigma$). In the Amber forcefield, the later format is used, because of the easy physical interpretation of r_0 as the energetically most favorable distance of two atoms.

In the parameter files, every atom type is given a radius and well depth parameter, e.g.

where the first number is the atomic radius in Angstrom and the second the well depth in kcal/mol. These values are then (at the time a *prmtop* file is written) combined to provide parameters for all pairs of atom types in the system:

$$r_{ij} = r_i + r_j$$
 and $\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j}$

These atom pair parameters are then used to calculate the ACOEFF and BCOEFF values in the *prmtop* file:

$$ACOEFF = \epsilon r_0^{12}; BCOEFF = 2 \epsilon r_0^6$$

E.g. for OH-CT non-bonded contacts, this gives:

The A and B coefficients are then used in sander's internal version of the VDW equation:

$$E_{VDW} = \frac{ACOEFF}{(r/\mathring{A})^{12}} - \frac{BCOEFF}{(r/\mathring{A})^{6}}$$