
7/21/05

Antechamber Users’ Manual
Version 1.0

Junmei Wang1 and David A. Case2

1Encysive, Inc., Houston TX, 77030

2The Scripps Research Institute, La Jolla, CA 92037

7/21/05

7/21/05

This manual is copyright (C) 2005, by Junmei Wang and David A. Case. The antechamber
source code is copyright (C) 2005, by Junmei Wang.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 1, or
(at your option) any later version. The GNU General Public License should be in a file called
COPYING; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

We thank Peter Kollman for encouragement and advice during the development of this project.
other acknowledgements here!

7/21/05

Table of Contents i

1. Installation and Getting Started. .. 3

1.1. Installation. .. 3

1.2. Contacting the developers .. 3

2. Antechamber ... 4

2.1. Principal programs ... 5

2.1.1. antechamber .. 5

2.1.2. parmchk ... 7

2.2. A simple example for antechamber ... 7

2.3. Programs called by antechamber ... 10

2.3.1. atomtype .. 10

2.3.2. am1bcc .. 11

2.3.3. bondtype .. 11

2.3.4. prepgen .. 12

2.3.5. espgen ... 12

2.3.6. respgen .. 13

2.4. Miscellaneous programs .. 13

2.4.1. crdgrow ... 13

2.4.2. parmcal .. 14

2.4.3. database ... 14

2.4.4. translate ... 14

3. LEaP ... 16

3.1. Introduction .. 16

3.2. Concepts ... 16

3.2.1. Commands .. 16

3.2.2. Variables .. 17

3.2.3. Objects .. 17

3.2.3.1. NUMBERs ... 17

3.2.3.2. STRINGs .. 17

3.2.3.3. LISTs .. 18

3.2.3.4. PARMSETs (Parameter Sets) .. 18

3.2.3.5. ATOMs ... 18

3.2.3.6. RESIDUEs ... 19

3.2.3.7. UNITs .. 20

3.2.3.8. Complex objects and accessing subobjects .. 20

3.3. Basic instructions for using LEaP with NAB .. 23

3.3.1. Building a Molecule For Molecular Mechanics ... 23

3.3.2. Amino Acid Residues ... 24

3.3.3. Nucleic Acid Residues .. 25

3.3.4. Miscellaneous Residues .. 25

Table of Contents ii

3.4. Commands ... 26

3.4.1. add ... 26

3.4.2. addAtomTypes .. 27

3.4.3. addIons .. 28

3.4.4. addIons2 .. 28

3.4.5. addPath .. 28

3.4.6. addPdbAtomMap .. 29

3.4.7. addPdbResMap ... 29

3.4.8. alias ... 30

3.4.9. bond ... 30

3.4.10. bondByDistance .. 30

3.4.11. check ... 31

3.4.12. combine ... 31

3.4.13. copy ... 32

3.4.14. createAtom .. 32

3.4.15. createParmset .. 33

3.4.16. createResidue .. 33

3.4.17. createUnit .. 33

3.4.18. deleteBond .. 33

3.4.19. desc ... 33

3.4.20. edit ... 35

3.4.21. groupSelectedAtoms ... 35

3.4.22. help .. 35

3.4.23. impose ... 35

3.4.24. list .. 36

3.4.25. loadAmberParams ... 37

3.4.26. loadAmberPrep ... 37

3.4.27. loadOff .. 38

3.4.28. loadMol2 ... 38

3.4.29. loadPdb ... 38

3.4.30. loadPdbUsingSeq .. 39

3.4.31. logFile ... 40

3.4.32. measureGeom ... 40

3.4.33. quit .. 41

3.4.34. remove ... 41

3.4.35. saveAmberParm .. 42

3.4.36. saveOff .. 42

3.4.37. savePdb ... 42

3.4.38. sequence .. 43

3.4.39. set .. 43

3.4.40. solvateCap ... 45

3.4.41. solvateShell ... 46

Table of Contents iii

3.4.42. source .. 46

3.4.43. transform ... 47

3.4.44. translate ... 47

3.4.45. verbosity .. 48

3.4.46. zMatrix .. 48

4. References .. 50

5. Index ... 51

Table of Contents iv

7/21/05 Installation and Getting Started 3

1. Installation and Getting Started.

1.1. Installation.
The antechamber package is available from http://amber.scripps.edu/pub/antecham-

ber/download.html. The first step in setting up the nab package is to unpack the tar file using the
UNIX commands gunzip and tar:

gunzip antechamber-1.0.x.tar.gz

tar xvf antechamber-1.0.x.tar

The path to this new directory (e.g. /usr/local/antechamber-1.0, if you unpacked the
distribution in /usr/local) should be defined as the environment variable $ACHOME. If you
are using sh, zsh or bash as your shell:

export ACHOME=insertyourpathhere/antechamber-1.0

If you are using csh or tcsh as your shell:

setenv ACHOME insertyourpathhere/antechamber-1.0

Now, in the top-level ($ACHOME) directory, you should edit the config.h file, if necessary. If
you have the GNU compiler tools installed, no changes should be necessary. Then

make

will compile things, putting the executable files in $ACHOME/bin. This can be followed by

make test

which will run tests and will report successes or failures.

Now, add the path to the binary executable of nab to your own path and rehash the search
path, e.g.,

set path = ($ACHOME/bin $path)

rehash

1.2. Contacting the developers
Please send suggestions and questions to jwang@encysive.com or case@scripps.edu.

7/21/05

Antechamber Page 4

2. Antechamber
This is a set of tools to generate "prep" input files for organic molecules, which can then be

read into LEaP. The Antechamber suite was written by Junmei Wang, and is designed to be used
in conjunction with the "general AMBER force field (GAFF)" (gaff.dat) [1].

Molecular mechanics are the key component in the armamentarium used by computational
chemists for rational drug design and many other tasks. Force fields are the cornerstone of molec-
ular mechanics. A successful force field for drug design should work well both for biological
macromolecules and the organic molecules. The AMBER force fields have built up a good repu-
tation for its performance in studies of proteins and nucleic acids. However, the fact that AMBER
has had only limited parameters for organic molecules has kept it from being widely used in lig-
and-binding or drug design applications. Antechamber is based on a new, general AMBER force
field (GAFF) that covers most pharmaceutical molecules, and which is as compatible as possible
with the traditional AMBER force fields.

Like the traditional AMBER force fields, GAFF uses a simple harmonic function form for
bonds and angles. Unlike the traditional AMBER force fields, atom types in GAFF are more gen-
eral and cover most of the organic chemical space. In total there are 33 basic atom types and 22
special atom types. The charge methods used in GAFF can be HF/6-31G* RESP or AM1-BCC
[2,3]. All of the force field parameterizations were carried out with HF/6-31G* RESP charges.
However, in most cases, AM1-BCC, which was parameterized to reproduce HF/6-31G* RESP
charges, is recommended in the large-scale calculations because of its efficiency.

The van der Waals parameters are the same as those used by the traditional AMBER force
fields. The equilibrium bond lengths and bond angles came from statistics derived from the Cam-
bridge Structural Database, and ab initio calculations at the MP2/6-31G* level. The force con-
stants for bonds and angles were estimated using empirical models, and the parameters in these
models were trained using the force field parameters in the traditional AMBER force fields. Gen-
eral torsional angle parameters were extensively applied in order to reduce the huge number of
torsional angle parameters to be derived. The force constants and phase angles in the torsional
angle parameters were optimized using our PARMSCAN package [4], with an aim to reproduce
the rotational profiles depicted by high-level ab initio calculations [geometry optimizations at the
MP2/6-31G* level, followed by single point calculations at MP4/6-311G(d,p)].

By design, GAFF is a complete force field (so that missing parameters rarely occur), it cov-
ers almost all the organic chemical space that is made up of C, N, O, S, P, H, F, Cl, Br and I.
Moreover, GAFF is totally compatible to the AMBER macromolecular force fields. We believe
that the combination of GAFF with AMBER macromolecular force fields will provide an useful
molecular mechanical tool for rational drug design, especially in binding free energy calculations
and molecular docking studies.

As an auxiliary module in AMBER software packages, antechamber is devoted to build up
the bridge between the force fields (GAFF and AMBER) and the MM programs, such as sander et
al. With antechamber, one may solve the following problems: (1) identifying bond and atom
types; (2) judging atomic equivalence; (3) generating residue topology files; and (4) finding miss-
ing force field parameters and supplying reasonable suggestions. The combination of GAFF and
antechamber enables one to study most of the organic molecules with AMBER more efficiently.
In the following, the main programs in the antechamber package are introduced.

7/21/05

Antechamber Page 5

2.1. Principal programs
The antechamber program itself is the main program of Antechamber: if your molecule falls

in fairly broad categories, this should be all you need to convert an input pdb file into a "prep
input" file ready for LEaP.

If there are missing parameters after antechamber is finished, you may want to run parmchk
to generate a frcmod template that will assist you in generating the needed parameters.

2.1.1. antechamber
This is the most important program in the package. It can perform many file conversions,

and can also assign atomic charges and atom types. As required by the input, antechamber
executes the following programs: divcon, atomtype, am1bcc, bondtype, espgen, respgen and prep-
gen. It may also generate a lot of intermediate files (all in capital letters). If there is a problem
with antechamber, you may want to run the individual programs that are described below.
Antechamber options are given here:

-i input file name

-fi input file format

-o output file name

-fo output file format

-c charge method

-cf charge file name

-nc net molecular charge (int)

-a additional file name

-fa additional file format

-ao additional file operation

crd : only read in coordinate

crg: only read in charge

name : only read in atom name

type : only read in atom type

bond : only read in bond type

-m mulitiplicity (2S+1), default is 1

-rn residue name, if not available in the input file, default is MOL

-rf residue toplogy file name in prep input file, default is molecule.res

-mk divcon keyword, in a pair of quotation marks

-gk gaussian keyword, in a pair of quotation marks

-at atom type, can be gaff, amber, bcc and sybyl, default is gaff

-du check atom name duplications, can be yes(y) or no(n), default is yes

-j atom type and bond type prediction index, default is 4

0 : no assignment

1 : atom type

2 : full bond types

3 : part bond types

4 : atom and full bond type

5 : atom and part bond type

-s status information, can be 0 (brief), 1 (the default) and 2 (verbose)

-pf remove the intermediate files: can be yes (y) and no (n), default is no

-i -o -fi and -fo must appear in command lines and the others are optional

7/21/05

Antechamber Page 6

List of the File Formats

file format type abbre. index | file format type abbre. index

Antechamber ac 1 | Sybyl Mol2 mol2 2

PDB pdb 3 | Modifiled PDB mpdb 4

amber PREP (int) prepi 5 |

Gaussian Z-Matrix gzmat 7 | Gaussian Cartesian gcrt 8

Mopac Internal mopint 9 | Mopac Cartesian mopcrt 10

Gaussian Output gout 11 | Mopac Output mopout 12

Alchemy alc 13 | CSD csd 14

MDL mdl 15 | Hyper hin 16

amber Restart rst 17

--

amber restart file can only be read in as additional file

List of the Charge Methods

charge method abbre. index | charge method abbre. index

--

RESP resp 1 | AM1-BCC bcc 2

CM2 cm2 3 | ESP (Kollman) esp 4

Mulliken mul 5 | Gasteiger gas 6

Read in Charge rc 7 | Write out charge wc 8

--

Examples:

antechamber -i g98.out -fi gout -o sustiva_resp.mol2 -fo mol2 -c resp

antechamber -i g98.out -fi gout -o sustiva_bcc.mol2 -fo mol2 -c bcc -j 5

antechamber -i g98.out -fi gout -o sustiva_gas.mol2 -fo mol2 -c gas

antechamber -i g98.out -fi gout -o sustiva_cm2.mol2 -fo mol2 -c cm2

antechamber -i g98.out -fi gout -o sustiva.ac -fo ac

antechamber -i sustiva.ac -fi ac -o sustiva.mpdb -fo mpdb

antechamber -i sustiva.ac -fi ac -o sustiva.mol2 -fo mol2

antechamber -i sustiva.mol2 -fi mol2 -o sustiva.gzmat -fo gzmat

antechamber -i sustiva.ac -fi ac -o sustiva_gas.ac -fo ac -c gas

antechamber -i mtx.pdb -fi pdb -o mtx.mol2 -fo mol2 -c rc -cf mtx.charge

The -rn line specifies the residue name to be used; thus, it must be one to three characters
long. The -at flag is used to specify whether atom types are to be created for the general AMBER
force field (gaff) or for atom types consistent with parm94.dat and parm99.dat (amber). Atom
types for gaff are all in lower case, and the AMBER atom types are always in upper case. If you
are using antechamber to create a modified residue for use with the standard AMBER
parm94/parm99 force fields, you should set this flag to amber; if you are looking at a more arbi-
trary molecule, set this to gaff, even if you plan to use this as a ligand bound to a macro-
molecule described by the AMBER force fields.

7/21/05

Antechamber Page 7

2.1.2. parmchk
Parmchk reads in an ac file as well as a force field file (gaff.dat in $AMBER-

HOME/dat/leap/parm). It writes out a frcmod file for the missing parameters. For each atom
type, an atom type corresponding file (ATCOR.DAT) lists its replaceable general atom type. Be
careful to those problematic parameters indicated with "ATTN, need revision".

Usage: parmchk -i input file name

-o frcmod file name

-f input file format (prepi, ac ,mol2)

-p ff parmfile

-c atom type correspondening file, default is ATCOR.DAT

Example:

parmchk -i sustiva.prep -f prepi -o frcmod

This command reads in sustiva.prep and finds the missing force field parameters listed in frcmod.

2.2. A simple example for antechamber
The most common use of the antechamber program suite is to prepare input files for LEaP,

starting from a three-dimensional structure, as found in a pdb file. The antechamber suite auto-
mates the process of developing a charge model and assigning atom types, and partially auto-
mates the process of developing parameters for the various combinations of atom types found in
the molecule.

As with any automated procedure, caution should be taken to examine the output. Further-
more, the procedure, although carefully tested, has not been widely used by lots of people, so
users should certainly be on the lookout for unusual or incorrect behavior.

Suppose you have a PDB-format file for your ligand, say thiophenol, which looks like this:

ATOM 1 CG TP 1 -1.959 0.102 0.795

ATOM 2 CD1 TP 1 -1.249 0.602 -0.303

ATOM 3 CD2 TP 1 -2.071 0.865 1.963

ATOM 4 CE1 TP 1 -0.646 1.863 -0.234

ATOM 5 C6 TP 1 -1.472 2.129 2.031

ATOM 6 CZ TP 1 -0.759 2.627 0.934

ATOM 7 HE2 TP 1 -1.558 2.719 2.931

ATOM 8 S15 TP 1 -2.782 0.365 3.060

ATOM 9 H19 TP 1 -3.541 0.979 3.274

ATOM 10 H29 TP 1 -0.787 -0.043 -0.938

ATOM 11 H30 TP 1 0.373 2.045 -0.784

ATOM 12 H31 TP 1 -0.092 3.578 0.781

ATOM 13 H32 TP 1 -2.379 -0.916 0.901

(This file may be found at $AMBERHOME/test/antechamber/tp/tp.pdb). The basic command to
create a "prepin" file for LEaP is just:

antechamber -i tp.pdb -fi pdb -o tp.mol2 -fo mol2 -c bcc

7/21/05

Antechamber Page 8

This command says that the input format is pdb, output format is Sybyl mol2, and the BCC
charge model is to be used. The output file is shown in the box titled tp.mol2. The format of this
file is a common one understood by many programs.

You can now run parmchk to see if all of the needed force field parameters are available:

parmchk -i tp.mol2 -f mol2 -o frcmod

tp.mol2

@<TRIPOS>MOLECULE

TP

13 13 1 0 0

SMALL

bcc

@<TRIPOS>ATOM

1 CG -1.9590 0.1020 0.7950 ca 1 TP -0.1186

2 CD1 -1.2490 0.6020 -0.3030 ca 1 TP -0.1138

3 CD2 -2.0710 0.8650 1.9630 ca 1 TP 0.0162

4 CE1 -0.6460 1.8630 -0.2340 ca 1 TP -0.1370

5 C6 -1.4720 2.1290 2.0310 ca 1 TP -0.1452

6 CZ -0.7590 2.6270 0.9340 ca 1 TP -0.1122

7 HE2 -1.5580 2.7190 2.9310 ha 1 TP 0.1295

8 S15 -2.7820 0.3650 3.0600 sh 1 TP -0.2540

9 H19 -3.5410 0.9790 3.2740 hs 1 TP 0.1908

10 H29 -0.7870 -0.0430 -0.9380 ha 1 TP 0.1345

11 H30 0.3730 2.0450 -0.7840 ha 1 TP 0.1336

12 H31 -0.0920 3.5780 0.7810 ha 1 TP 0.1332

13 H32 -2.3790 -0.9160 0.9010 ha 1 TP 0.1432

@<TRIPOS>BOND

1 1 2 ar

2 1 3 ar

3 1 13 1

4 2 4 ar

5 2 10 1

6 3 5 ar

7 3 8 1

8 4 6 ar

9 4 11 1

10 5 6 ar

11 5 7 1

12 6 12 1

13 8 9 1

@<TRIPOS>SUBSTRUCTURE

1 TP 1 TEMP 0 **** **** 0 ROOT

7/21/05

Antechamber Page 9

This yields the frcmod file:

remark goes here

MASS

BOND

ANGLE

ca-ca-ha 50.000 120.000 same as ca-ca-hc

DIHE

IMPROPER

ca-ca-ca-ha 1.1 180.0 2.0 Using default value

ca-ca-ca-sh 1.1 180.0 2.0 Using default value

NONBON

In this case, there was one missing angle parameter from the gaff.dat file, and it was determined
by analogy to a similar, known, parameter. The missing improper dihedral term was assigned a
default value. (As gaff.dat continues to be developed, there should be fewer and fewer missing
parameters to be estimated by parmchk. The above example is actually drawn from Amber 7; in
Amber 8, all of the needed parameters are in gaff.dat, as can be seen in $AMBER-
HOME/test/antechamber/tp.) In some cases, parmchk may be unable to make a good estimate; it
will then insert a placeholder (with zeros everywhere) into the frcmod file, with the comment
"ATTN: needs revision". After manually editing this to take care of the elements that "need revi-
sion", you are ready to read this residue into LEaP, either as a residue on its own, or as part of a
larger system. The following LEaP input file (leap.in) will just create a system with thiophenol in
it:

source leaprc.gaff

mods = loadAmberParams frcmod

TP = loadMol2 tp.mol2

saveAmberParm TP prmtop prmcrd

quit

You can read this into LEaP as follows:

tleap -s -f leap.in

This will yield a prmtop and prmcrd file. If you want to use this residue in the context of a larger
system, you can insert commands after the loadAmberPrep step to construct the system you want,
using standard LEaP commands.

In this respect, it is worth noting that the atom types in gaff.dat are all lower-case, whereas
the atom types in the standard AMBER force fields are all upper-case. This means that you can
load both gaff.dat and (say) parm99.dat into LEaP at the same time, and there won’t be any con-
flicts. Hence, it is generally expected that you will use one of the AMBER force fields to describe
your protein or nucleic acid, and the gaff.dat parameters to describe your ligand; as mentioned
above, gaff.dat has been designed with this in mind, i.e. to produce molecular mechanics

7/21/05

Antechamber Page 10

descriptions that are generally compatible with the AMBER macromolecular force fields.

The procedure above only works as it stands for neutral molecules. If your molecule is
charged, you need to set the -nc flag in the initial antechamber run. Also note that this procedure
depends heavily upon the initial 3D structure: it must have all hydrogens present, and the charges
computed are those for the conformation you provide, after minimization in the AM1 Hamilto-
nian. In fact, this means that you must have an reasonable all-atom initial model of your
molecule (so that it can be minimized with the AM1 Hamiltonian), and you must specify what its
net charge is. The system should really be a closed-shell molecule, since all of the atom-typing
rules assume this implicitly.

Further examples of using antechamber to create force field parameters can be found in the
$AMBERHOME/test/antechamber directory. Here are some practical tips from Junmei Wang:

(1) For the input molecules, make sure there are no open valences and the sturctures are rea-
sonable.

(2) Failures are most likely produced when antechamber infers an incorrect connectivity. In
such cases, you can revise by hand the connectivity information in "ac" or "mol2" files.
Systematic errors could be corrected by revising the parameters in CONNECT.TPL in
$AMBERHOME/dat/antechamber.

(3) It is a good idea to check the intermediate files in case of a program failure, and you can
run separate programs one by one. Use the "-s 2" flag to antechamber to see details of
what it is doing.

(4) Please visit www.amber.ucsf.edu/antechamber.html to obtain the latest information about
antechamber development and to download the latest GAFF parameters. Please report
program failures to Junmei Wang at <jwang@encysive.com>.

2.3. Programs called by antechamber
The following programs are automatically called by antechamber when needed. Generally,

you should not need to run them yourself, unless problems arise and/or you want to fine-tune
what antechamber does.

2.3.1. atomtype
Atomtype reads in an ac file and assigns the atom types. You may find the default definition

files in $AMBERHOME/dat/antechamber: ATOMTYPE_AMBER.DEF (AMBER), ATOM-
TYPE_GFF.DEF (general AMBER force field). AT OMTYPE_GFF.DEF is the default definition
file.

Usage: atomtype -i input file name

-o output file name (ac)

-f input file format(ac (the default) or mol2)

-p amber or gaff or bcc or gas, it is supressed by "-d" option

-d atom type defination file, optional

Example:

atomtype -i sustiva_resp.ac -o sustiva_resp_at.ac -f ac -p amber

This command assigns atom types for sustiva_resp.ac with amber atom type definitions. The

7/21/05

Antechamber Page 11

output file name is sustiva_resp_at.ac

2.3.2. am1bcc
Am1bcc first reads in an ac or mol2 file with or without assigned AM1-BCC atom types and

bond types. Then the bcc parameter file (the default, BCCPARM.DAT is in $AMBER-
HOME/dat/antechamber) is read in. An ac file with AM1-BCC charges [2,3] is written out. Be
sure the charges in the input ac file are AM1-Mulliken charges.

Usage: am1bcc -i input file name in ac format

-o output file name

-f output file format(pdb or ac, optional, default is ac)

-p bcc parm file name (optional))

-j atom and bond type judge option, default is 0)

0: No judgement

1: Atom type

2: Full bond type

3: Partial bond type

4: Atom and full bond type

5: Atom and partial bond type

Example:

am1bcc -i comp1.ac -o comp1_bcc.ac -f ac -j 4

This command reads in comp1.ac, assigns both atom types and bond types and finally performs
bond charge correction to get AM1-BCC charges. The ’-j’ option of 4, which is the default,
means that both the atom and bond type information in the input file is ignored and a full atom
and bond type assignments are performed. The ’-j’ option of 3 and 5 implies that bond type infor-
mation (single bond, double bond, triple bond and aromatic bond) is read in and only a bond type
adjustment is performed. If the input file is in mol2 format that contains the basic bond type infor-
mation, option of 5 is highly recommended. comp1_bcc.ac is an ac file with the final AM1-BCC
charges.

2.3.3. bondtype
bondtype is a program to assign the atom types and bond types according to the AM1-BCC

definitions (BCCTYPE.DEF in $AMBERHOME/dat/antechamber). This program can read an ac
file or mol2 file; the output file is an ac file with predicted atom types and bond types. You can
choose to determine to assign atom types or bond types or both. If there is some problem with the
assignment of bond types, you will get some warnings and for each problematic bond, a "!!!" is
appended at the end of the line. In initial tests, the current version works for most organic
molecules (>95% overall and >90% for charged molecules).

Usage: bondtype -i input file name

-o output file name

-f input file format (ac or mol2)

-j judge bond type level option, default is part

full full judgement

part partial judgement, only do reassignment according

to known bond type information in the input file

7/21/05

Antechamber Page 12

Example:

#! /bin/csh -fv

set mols = /bin/ls*. ac
foreach mol ($mols)

set mol_dir = $mol:r

antechamber -i $mol_dir.ac -fi ac -fo ac -o $mol_dir.ac -c mul

bondtype -i $mol_dir.ac -f ac -o $mol_dir.dat -j full

am1bcc -i $mol_dir.dat -o $mol_dir bcc.ac -f ac -j 0

end

exit(0)

The above script finds all the files with the extension of "ac", calculates the Mulliken charges
using antechamber, and predicts the atom and bond types with bondtype. Finally, AM1-BCC
charges are generated by running am1bcc to do the bond charge correction.

2.3.4. prepgen
Prepgen generates the prep input file from an ac file. By default, the program generates a

mainchain itself. However, you may also specify the mainchain atom in the mainchain file. From
this file, you can also specify which atoms will be deleted, and whether to do charge correction or
not. In order to generate the amino-acid-like residue (this kind of residue has one head atom and
one tail atom to be connected to other residues), you need a mainchain file. Sample mainchain
files are in $AMBERHOME/dat/antechamber.

Usage: prepgen -i input file name(ac)

-o output file name

-f output file format (car or int, default: int)

-m mainchain file name

-rn residue name (default: MOL)

-rf residue file name (default: molecule.res)

-f -m -rn -rf are optional

Examples:

prepgen -i sustiva_resp_at.ac -o sustiva_int.prep -f int -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_car.prep -f car -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_int_main.prep -f int -rn SUS

-rf SUS.res -m mainchain_sus.dat

prepgen -i ala_cm2_at.ac -o ala_cm2_int_main.prep -f int -rn ALA -rf ala.res

-m mainchain_ala.dat

The above commands generate different kinds of prep input files with and without specifying a
mainchain file.

2.3.5. espgen
Espgen reads in a gaussian (92,94,98,03) output file and extracts the ESP information. An

esp file for the resp program is generated.

7/21/05

Antechamber Page 13

Usage: espgen -i input file name

-o output file name

Example:

espgen -i sustiva_g98.out -o sustiva.esp

The above command reads in sustiva_g98.out and writes out sustiva.esp, which can be used by
the resp program. Note that this program replaces shell scripts formerly found on the AMBER
web site that perform equivalent tasks.

2.3.6. respgen
Respgen generates the input files for two-stage resp fitting. The current version only sup-

ports single molecule fitting. Atom equivalence is recognized automatically.

Usage: respgen -i input file name(ac)

-o output file name

-f output file format (resp1 or resp2)

resp1 - first stage resp fitting

resp2 - second stage resp fitting

Example:

respgen -i sustiva.ac -o sustiva.respin1 -f resp1

respgen -i sustiva.ac -o sustiva.respin2 -f resp2

resp -O -i sustiva.respin1 -o sustiva.respout1 -e sustiva.esp -t qout_stage1

resp -O -i sustiva.respin2 -o sustiva.respout2 -e sustiva.esp -q qout_stage1

-t qout_stage2

antechamber -i sustiva.ac -fi ac -o sustiva_resp.ac -fo ac -c rc

-cf qout_stage2

The above commands first generate the input files (sustiva.respin1 and sustiva.respin2) for resp
fitting, then do two-stage resp fitting and finally use antechamber to read in the resp charges and
write out an ac file − sustiva_resp.ac.

2.4. Miscellaneous programs
The Antechamber suite also contains some utility programs that perform various tasks in

molecular mechanical calculations. They are listed in alphabetical order.

2.4.1. crdgrow
Crdgrow reads an incomplete pdb file (at least three atoms in this file) and a prep input file,

and then generates a complete pdb file. It can be used to do residue mutation. For example, if you
want to change one protein residue to another one, you can just keep the mainchain atoms in a
pdb file and read in the prep input file of the residue to be changed, and crdgrow will generate the
coordinates of the missing atoms.

Usage: crdgrow -i input file name

-o output file name

7/21/05

Antechamber Page 14

-p prepin file name

-f prepin file format: prepi (the default)

Example:

crdgrow -i ref.pdb -o new.pdb -p sustiva_int.prep

This command reads in ref.pdb (only four atoms) and prep input file sustiva_int.prep, then gener-
ates the coordinates of the missing atoms and writes out a pdb file (new.pdb).

2.4.2. parmcal
Parmcal is an interactive program to calculate the bond length and bond angle parameters,

according to the rules outlined in [1].

Please select:

1. calculate the bond length parameter: A-B

2. calculate the bond angle parameter: A-B-C

3. exit

2.4.3. database
Database reads in a multiple sdf or mol2 file and a description file to run a set of commands

for each record sequentially. The commands are defined in the description file.

Usage: database -i database file name

-d definition file name

Example:

database -i sample_database.mol2 -d mol2.def

This command reads in a multiple mol2 database - sample_database.mol2 and a description file
mol2.def to run a set of commands (defined in mol2.def) to generate prep input files and merge
them to a single file called total.prepi. Both files are located in the following directory:
$AMBERHOME/test/antechamber/database/mol2.

2.4.4. translate
Translate performs translation or rotation or least-squared fitting on a file in either pdb, ac or

mol2 format. There are five "command" modes, which are

center Move an atom (specified by -a1) or the geometric center of the molecule to
the cartesian coordinate orgin.

translate Translate the molecule; the X-vector, Y-vector and Z-vector are specified by
-vx, -vy, -vz, respectively.

rotate1 Rotate the molecule by an amount (in degrees, specified by -d) along the axis
defined by two atoms (specified by -a1 and -a2).

rotate2 Rotate the molecule by an amount (in degrees, specified by -d) along the axis
defined by two points (specified by ((-x1, -y1, -z1) and (-x2, -y2, -z2)).

7/21/05

Antechamber Page 15

match Do a least-squares fit, wth the reference molecule being read in with "-r" flag.

Usage:

translate -i input file name (pdb, ac or mol2)

-o output file name

-r reference file name

-f file format

-c command (center, translate, rotate1, rotate2, match)

center: need -a1;

translate: need -vx, -vy and -vz;

rotate1: need -a1, -a2 and -d;

rotate2: need -x1, -y1, -z1, -x2, -y2, -z2 and -d;

match: need -r;

-d degree to be rotated

-vx x vector

-vy y vector

-vz z vector

-a1 id of atom 1 (0 = coordinate center)

-a2 id of atom 2

-x1 coord x for point 1

-y1 coord y for point 1

-z1 coord z for point 1

-x2 coord x for point 2

-y2 coord y for point 2

-z2 coord z for point 2

Examples:

translate -i nad.mol2 -f mol2 -o nad_trans.mol2 -c center -a1 0

translate -i nad.mol2 -f mol2 -o nad_match.mol2 -c match -r nad_ref.mol2

translate -i nad.mol2 -f mol2 -o nad_rotate.mol2 -c rotate2 \

-x1 0.0 -y1 0.0 -z1 0.0 -x2 1.0 -y2 0.0 -z2 0.0 -d 90.0

The first command translates the coordinate center of the molecule to the origin; the second
command performs least-squared fitting using nad_ref.mol2 as the refereneral molecule; the last
command rotates the molecule 90 degrees about the X-axis.

7/21/05

LEaP Introduction Page 16

3. LEaP

3.1. Introduction
LEaP is a module from the AMBER suite of programs, which can be used to generate force

field files compatible with NAB. Using tleap, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and NAB

This is a simplified version of the LEaP documentation. It does not describe elements that are not
supported by NAB; these include the graphical user interface, commands related to periodic
boundary simulations, and items related to perturbation calculations. A more complete account
can be had in the the Amber Users’ Manual, which is available at
http://amber.scripps.edu.

3.2. Concepts
In order to effectively use LEaP it is necessary to understand the philosophy behind the pro-

gram, especially of concepts of LEaP commands, variables, and objects. In addition to exploring
these concepts, this section also addresses the use of external files and libraries with the program.

3.2.1. Commands
A researcher uses LEaP by entering commands that manipulate objects. An object is just a

basic building block; some examples of objects are ATOMs, RESIDUEs, UNITs, and PARM-
SETs. The commands that are supported within LEaP are described throughout the manual and
are defined in detail in the "Command Reference" section.

The heart of LEaP is a command-line interface that accepts text commands which direct the
program to perform operations on objects. All LEaP commands have one of the following two
forms:

command argument1 argument2 argument3 ...

variable = command argument1 argument2 ...

For example:

edit ALA

trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some
commands return objects which are then associated with a variable using an assignment (=)

7/21/05

LEaP Concepts Page 17

statement. Each command acts upon its arguments, and some of the commands modify their
arguments’ contents. The commands themselves are case- insensitive. That is, in the above
example, edit could have been entered as Edit, eDiT, or any combination of upper and lower
case characters. Similarly, loadPdb could have been entered a number of different ways,
including loadpdb. In this manual, we frequently use a mixed case for commands. We do this
to enhance the differences between commands and as a mnemonic device. Thus, while we write
createAtom, createResidue, and createUnit in the manual, the user can use any case
when entering these commands into the program.

The arguments in the command text may be objects such as NUMBERs, STRINGs, or
LISTs or they may be variables. These two subjects are discussed next.

3.2.2. Variables
A variable is a handle for accessing an object. A variable name can be any alphanumeric

string whose first character is an alphabetic character. (Alphanumeric means that the characters
of the name may be letters, numbers, or special symbols such as "*". The following special sym-
bols should not be used in variable names: dollar sign, comma, period, pound sign, equal sign,
space, semicolon, double quote, or list open or close characters { and }. LEaP commands should
not be used as variable names. Variable names are case-sensitive: "ARG" and "arg" are different
variables. Variables are associated with objects using an assignment statement not unlike regular
computer languages such as FORTRAN or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }

In the above examples, both mole and MOLE are variable names, whose contents are the same
(6.02E23). Despite the fact that both mole and MOLE have the same contents, they are not the
same variable. This is due to the fact that variable names are case-sensitive. LEaP maintains a
list of variables that are currently defined and this list can be displayed using the list command.
The contents of a variable can be printed using the desc command.

3.2.3. Objects
The object is the fundamental entity in LEaP. Objects range from the simple objects NUM-

BERS and STRINGS to the complex objects UNITs, RESIDUEs, ATOMs. Complex objects have
properties that can be altered using the set command and some complex objects can contain
other objects. For example, RESIDUEs are complex objects that can contain ATOMs and have
the properties: residue name, connect atoms, and residue type.

3.2.3.1. NUMBERs
NUMBERs are simple objects and they are identical to double precision variables in FOR-

TRAN and double in C.

3.2.3.2. STRINGs
STRINGS are simple objects that are identical to character arrays in C and similar to char-

acter strings in FORTRAN. STRINGS are represented by sequences of characters which may be
delimited by double quote characters. Example strings are:

7/21/05

LEaP Concepts Page 18

"Hello there"

"String with a "" (quote) character"

"Strings contain letters and numbers:1231232"

3.2.3.3. LISTs
LISTs are made up of sequences of other objects delimited by LIST open and close charac-

ters. The LIST open character is an open curly bracket ({) and the LIST close character is a close
curly bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs
are:

{ 1 2 3 4 }

{ 1.2 "string" }

{ 1 2 3 { 1 2 } { 3 4 } }

LISTs are used by many commands to provide a more flexible way of passing data to the com-
mands. The zMatrix command has two arguments, one of which is a LIST of LISTs where
each subLIST contains between three and eight objects.

3.2.3.4. PARMSETs (Parameter Sets)
PARMSETs are objects that contain bond, angle, torsion, and nonbond parameters for

AMBER force field calculations. They are normally loaded from e.g. parm94.dat and frc-
mod files.

3.2.3.5. ATOMs
AT OMs are complex objects that do not contain any other objects. The ATOM object is

similar to the chemical concept of atoms. Thus, it is a single entity that may be bonded to other
AT OMs and it may be used as a building block for creating molecules. AT OMs have many prop-
erties that can be changed using the set command. These properties are defined below.

name
This is a case-sensitive STRING property and it is the ATOM’s name. The
names for all ATOMs in a RESIDUE should be unique. The name has no rele-
vance to molecular mechanics force field parameters; it is chosen arbitrarily as a
means to identify ATOMs. Ideally, the name should correspond to the PDB stan-
dard, being 3 characters long except for hydrogens, which can have an extra digit
as a 4th character.

type
This is a STRING property. It defines the AMBER force field atom type. It is
important that the character case match the canonical type definition used in the
appropriate "parm.dat" or "frcmod" file. For smooth operation, all atom types
need to have element and hybridization defined by the addAtomTypes com-
mand. The standard AMBER force field atom types are added by the default
"leaprc" file.

charge
The charge property is a NUMBER that represents the ATOM’s electrostatic
point charge to be used in a molecular mechanics force field.

7/21/05

LEaP Concepts Page 19

element
The atomic element provides a simpler description of the atom than the type,
and is used only for LEaP’s internal purposes (typically when force field informa-
tion is not available). The element names correspond to standard nomenclature;
the character "?" is used for special cases.

position
This property is a LIST of NUMBERS. The LIST must contain three values: the
(X, Y, Z) Cartesian coordinates of the ATOM.

3.2.3.6. RESIDUEs
RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of

AT OMs, and are either molecules (e.g. formaldehyde) or are linked together to form molecules
(e.g. amino acid monomers). RESIDUEs have sev eral properties that can be changed using the
set command. (Note that database RESIDUEs are each contained within a UNIT having the
same name; the residue GLY is referred to as GLY.1 when setting properties. When two of these
single-UNIT residues are joined, the result is a single UNIT containing the two RESIDUEs.)

One property of RESIDUEs is connection ATOMs. Connection AT OMs are ATOMs that
are used to make linkages between RESIDUEs. For example, in order to create a protein, the N-
terminus of one amino acid residue must be linked to the C-terminus of the next residue. This
linkage can be made within LEaP by setting the N ATOM to be a connection ATOM at the N-ter-
minus and the C ATOM to be a connection ATOM at the C-terminus. As another example, two
CYX amino acid residues may form a disulfide bridge by crosslinking a connection atom on each
residue.

There are several properties of RESIDUEs that can be modified using the set command.
The properties are described below:

connect0
This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEs’ connect0 AT OM is
usually defined as the UNITs’ head AT OM. (This is how the standard library
UNITs are defined.) For amino acids, the convention is to make the N-terminal
nitrogen the connect0 AT OM.

connect1 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEs’ connect1 AT OM is usu-
ally defined as the UNITs’ tail AT OM. (This is done in the standard library
UNITs.) For amino acids, the convention is to make the C-terminal oxygen the
connect1 AT OM.

connect2 This is an ATOM property which defines an ATOM that can be used in making
links to other RESIDUEs. In amino acids, the convention is that this is the
AT OM to which disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently,
it can have one of the following values: "undefined", "solvent", "pro-
tein", "nucleic", or "saccharide". Some of the LEaP commands
behave in different ways depending on the type of a residue. For example, the
solvate commands require that the solvent residues be of type "solvent". It is
important that the proper character case be used when defining this property.

7/21/05

LEaP Concepts Page 20

name The RESIDUE name is a STRING property. It is important that the proper char-
acter case be used when defining this property.

3.2.3.7. UNITs
UNITs are the most complex objects within LEaP, and the most important. UNITs, when

paired with one or more PARMSETs, contain all of the information required to perform a calcula-
tion using AMBER. UNITs have the following properties which can be changed using the set
command:

head

tail These define the ATOMs within the UNIT that are connected when UNITs are
joined together using the sequence command or when UNITs are joined
together with the PDB or PREP file reading commands. The tail AT OM of one
UNIT is connected to the head AT OM of the next UNIT in any sequence. (Note:
a "TER card" in a PDB file causes a new UNIT to be started.)

box This property can either be null, a NUMBER, or a LIST. The property defines
the bounding box of the UNIT. If it is defined as null then no bounding box is
defined. If the value is a single NUMBER then the bounding box will be defined
to be a cube with each side being NUMBER of angstroms across. If the value is
a LIST then it must be a LIST containing three numbers, the lengths of the three
sides of the bounding box.

cap This property can either be null or a LIST. The property defines the solvent
cap of the UNIT. If it is defined as null then no solvent cap is defined. If the
value is a LIST then it must contain four numbers, the first three define the Carte-
sian coordinates (X, Y, Z) of the origin of the solvent cap in angstroms, the fourth
NUMBER defines the radius of the solvent cap in angstroms.

Examples of setting the above properties are:

set dipeptide head dipeptide.1.N

set dipeptide box { 5.0 10.0 15.0 }

set dipeptide cap { 15.0 10.0 5.0 8.0 }

The first example makes the amide nitrogen in the first RESIDUE within "dipeptide" the head
AT OM. The second example places a rectangular bounding box around the origin with the (X, Y,
Z) dimensions of (5.0, 10.0, 15.0) in angstroms. The third example defines a solvent cap cen-
tered at (15.0, 10.0, 5.0) angstroms with a radius of 8.0 Å. Note: the "set cap" command does
not actually solvate, it just sets an attribute. See the solvateCap command for a more practical
case.

UNITs are complex objects that can contain RESIDUEs and ATOMs. UNITs can be created
using the createUnit command and modified using the set commands. The contents of a
UNIT can be modified using the add and remove commands.

3.2.3.8. Complex objects and accessing subobjects
UNITs and RESIDUEs are complex objects. Among other things, this means that they can

contain other objects. There is a loose hierarchy of complex objects and what they are allowed to
contain. The hierarchy is as follows:

7/21/05

LEaP Concepts Page 21

• UNITs can contain RESIDUEs and ATOMs.

• RESIDUEs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. How-
ev er, the convention that has evolved within LEaP is to have UNITs directly contain RESIDUEs
which directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot "." notation. An exam-
ple would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUEs
each of which contain several ATOMs. If the UNIT is referenced (named) by the variable
dipeptide, then the RESIDUE named ALA can be accessed in two ways. The user may type
one of the following commands to display the contents of the RESIDUE:

desc dipeptide.ALA

desc dipeptide.1

The first translates to "some RESIDUE named ALA within the UNIT named dipeptide". The
second form translates as "the RESIDUE with sequence number 1 within the UNIT named
dipeptide". The second form is more useful because every subobject within an object is guar-
anteed to have a unique sequence number. If the first form is used and there is more than one
RESIDUE with the name ALA, then an arbitrary residue with the name ALA is returned. To access
AT OMs within RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA

desc dipeptide.1.3

Assuming that the ATOM with the name CA has a sequence number 3, then both of the above
commands will print a description of the $alpha$−carbon of RESIDUE dipeptide.ALA or
dipeptide.1. The reader should keep in mind that dipeptide.1.CA is the ATOM, an
object, contained within the RESIDUE named ALA within the variable dipeptide. This means
that dipeptide.1.CA can be used as an argument to any command that requires an ATOM as
an argument. However dipeptide.1.CA is not a variable and cannot be used on the left hand
side of an assignment statement.

In order to further illustrate the concepts of UNITs, RESIDUEs, and ATOMs, we can exam-
ine the log file from a LEaP session. Part of this log file is printed below.

> loadOff all_amino94.lib

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> desc GLY.1

RESIDUE name: GLY

RESIDUE sequence number: 1

RESIDUE PDB sequence number: 0

Type: protein

Connection atoms:

7/21/05

LEaP Concepts Page 22

Connect atom 0: A<N 1>

Connect atom 1: A<C 6>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA2 4>

A<HA3 5>

A<C 6>

A<O 7>

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are prefaced by ">" and the LEaP program output has no such
character preface. The first command,

> loadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY

allows us to examine the contents of the amino acid UNIT, GLY. The UNIT contains one
RESIDUE which is named GLY and this RESIDUE is the first residue in the UNIT (R<GLY 1>).
In fact, it is also the only RESIDUE in the UNIT. The head and tail AT OMs of the UNIT are
defined as the N- and C-termini, respectively. The box and cap UNIT properties are defined as
"null". If these latter two properties had values other than "null", the information would have
been included in the output of the desc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in the GLY UNIT. This RESIDUE is named GLY and its
residue type is that of a protein. The connect0 AT OM (N) is the same as the UNITs’ head
AT OM and the connect1 AT OM (C) is the same as the UNITs’ tail AT OM. There are seven
AT OM objects contained within the RESIDUE GLY in the UNIT GLY.

7/21/05

LEaP Concepts Page 23

Finally, let us look at one of the ATOMs in the GLY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the residue. The AMBER force
field atom type for CA is CT. The type of element, atomic point charge, and Cartesian coordi-
nates for this ATOM hav e been defined along with its bonding attributes. Other force field
parameters, such as the van der Waals well depth, are obtained from PARMSETs.

3.3. Basic instructions for using LEaP with NAB
This section gives an overview of how LEaP is most commonly used. Detailed descriptions

of all the commands are given in the following section

3.3.1. Building a Molecule For Molecular Mechanics
In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be com-

pleted.

(1) Any needed UNIT or PARMSET objects must be loaded;

(2) The molecule must be constructed within LEaP;

(3) The user must output topology and coordinate files from LEaP to use in AMBER.

The most typical command sequence is the following:

source leaprc.ff94 load a force field

x = loadPdb trypsin.pdb load in a structure

.... add in cross-links, solvate, etc.

set default OldPrmtopFormat on NAB uses an older version format

saveAmberParm x prmtop prmcrd save files for sander or gibbs

There are a number of variants of this:

(1) Although loadPdb is by far the most common way to enter a structure, one might use
loadOff, or loadAmberPrep, or use the zmat command to build a molecule from a z-
matrix. See the Commands section below for desciptions of these options. For case
where you do not have a starting structure (in the form of a pdb file) LEaP can be used to
build the molecule; you will find, however, that this is not always as easy as it might be.
Many experienced Amber users turn to other (commerical and non-commerical) programs
to create their initial structures.

(2) Be very attentive to any errors produced in the loadPdb step; these generally mean that
LEaP has mis-read the file. A general rule of thumb is to keep editing your input pdb file
until LEaP stops complaining. It is often convenient to use the addPdbAtomMap or
addPdbResMap commands to make systematic changes from the names in your pdb files
to those in the Amber topology files; see the leaprc files for examples of this.

(3) The saveAmberParm command cited above is appropriate for calculations that do not
compute free energies; for the latter you will need to use saveAmberParmPert. For polar-
izable force fields, you will need to add Pol to the above commands (see the Commands
section, below.)

7/21/05

LEaP Using LEap with AMBER Page 24

3.3.2. Amino Acid Residues
The accompanying table shows the amino acid UNITs and their aliases are defined in the

LEaP libraries.

For each of the amino acids found in the LEaP libraries, there has been created an n-termi-
nal and a c-terminal analog. The n-terminal amino acid UNIT/RESIDUE names and aliases are
prefaced by the letter N (e.g. NALA) and the c-terminal amino acids by the letter C (e.g.
CALA}. If the user models a peptide or protein within LEaP, they may choose one of three ways
to represent the terminal amino acids. The user may use 1) standard amino acids, 2) protecting
groups (ACE/NME), or 3) the charged c- and n-terminal amino acid UNITs/RESIDUEs. If the
standard amino acids are used for the terminal residues, then these residues will have incomplete
valences. These three options are illustrated below:

{ ALA VAL SER PHE }

{ ACE ALA VAL SER PHE NME }

{ NALA VAL SER CPHE }

Group or residue Residue Name, Alias
Acetyl beginning group ACE
Amine ending group NHE
N-methylamine ending group NME
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Aspartic acid--protonated ASH
Cysteine CYS
Cystine, S--S crosslink CYX
Glutamic acid GLU
Glutamic acid--protonated GLH
Glutamine GLN
Glycine GLY
Histidine, delta H HID
Histidine, epsilon H HIE
Histidine, protonated HIP
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

7/21/05

LEaP Using LEap with AMBER Page 25

The default for loading from PDB files is to use n- and c-terminal residues; this is established by
the addPdbResMap command in the default leaprc files. To force incomplete valences with
the standard residues, one would have to define a sequence (" x = { ALA VAL SER PHE
}") and use loadPdbUsingSeq, or use clearPdbResMap to completely remove the map-
ping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at
the delta or epsilon position. For this reason, the histidine UNIT/RESIDUE name is either HIP,
HID, or HIE (but not HIS). The default "leaprc" file assigns the name HIS to HID. Thus, if a
PDB file is read that contains the residue HIS, the residue will be assigned to the HID UNIT
object. This feature can be changed within one’s own "leaprc" file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the sim-
ilar residue which participates in disulfide bridges, cystine (CYX). The user will have to explic-
itly define, using the bond command, the disulfide bond for a pair of cystines, as this information
is not read from the PDB file. In addition, the user will need to load the PDB file using the
loadPdbUsingSeq command, substituting CYX for CYS in the sequence wherever a disulfide
bond will be created.

3.3.3. Nucleic Acid Residues
The following are defined for the 1994 force field.

Group or residue Residue Name, Alias
Adenine DA,RA
Thymine DT
Uracil RU
Cytosine DC,RC
Guanine DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with
the default leaprc file, ambiguous residues are assumed to be deoxy. Residue names like "DA"
can be followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also the
default established by addPdbResMap, even if the "5" or "3" are not added in the PDB file. The
"5" and "3" residues are "capped" by a hydrogen; the plain and "3" residues include a "leading"
phosphate group. Neutral residues capped by hydrogens are end in "N," such as "DAN."

3.3.4. Miscellaneous Residues

7/21/05

LEaP Using LEap with AMBER Page 26

Miscellaneous Residue unit/residue name
TIP3P water molecule TP3
TIP4P water model TP4
TIP5P water model TP5
SPC/E water model SPC
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl- or IM
Large cation IB

"IB" represents a solvated monovalent cation (say, sodium) for use in vacuum simulations. The
cation UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in
the file "solvents.lib". The leaprc files assign the variables WAT and HOH to the TP3 UNIT
found in the OFF library file. Thus, if a PDB file is read and that file contains either the residue
name HOH or WAT , the TP3 UNIT will be substituted. See Chapter 3 for a discussion of how to
use other water models.

A periodic box of 216 TIP3P waters (WATBOX216) is provided in the file "solvents.lib".
The box measures 18.774 angstroms on a side. This box of waters has been equilibrated by a
Monte Carlo simulation. It is the UNIT that should be used to solvate systems with TIP3P water
molecules within LEaP. It has been provided by W. L. Jorgensen. Boxes are also available for
chloroform, methanol, and N-methylacetamide; these are described in Chapter 2.

3.4. Commands
The following is a description of the commands that can be accessed using the command

line interface in tleap, or through the command line editor in xleap. Whenever an argument in a
command line definition is enclosed in brackets ([arg]), then that argument is optional. When
examples are shown, the command line is prefaced by "> ", and the program output is shown
without this character preface.

Some commands that are almost never used have been removed from this description to
save space. You can use the "help" facility to obtain information about these commands; most
only make sense if you understand what the program is doing behind the scenes.

3.4.1. add
add a b

UNIT/RESIDUE/ATOM a,b

Add the object b to the object a. This command is used to place ATOMs within
RESIDUEs, and RESIDUEs within UNITs. This command will work only if b is not
contained by any other object.

7/21/05

LEaP Commands Page 27

The following example illustrates both the add command and the way the tip3p water
molecule is created for the LEaP distribution tape.

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> o = createAtom O OW -0.834

>

> set h1 element H

> set h2 element H

> set o element O

>

> r = createResidue TIP3

> add r h1

> add r h2

> add r o

>

> bond h1 o

> bond h2 o

> bond h1 h2

>

> TIP3 = createUnit TIP3

>

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.O

>

> zMatrix TIP3 {

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

>

> saveOff TIP3 water.lib

Saving TIP3.

Building topology.

Building atom parameters.

3.4.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type

STRING element

STRING hybrid

Define element and hybridization for force field atom types. This command for the stan-
dard force fields can be seen in the default leaprc files. The STRINGs are most safely
rendered using quotation marks. If atom types are not defined, confusing messages about
hybridization can result when loading PDB files.

7/21/05

LEaP Commands Page 28

3.4.3. addIons
addIons unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Adds counterions in a shell around unit using a Coulombic potential on a grid. If
numIon1 is 0, then the unit is neutralized. In this case, numIon1 must be opposite in
charge to unit and numIon2 cannot be specified. If solvent is present, it is ignored in the
charge and steric calculations, and if an ion has a steric conflict with a solvent molecule,
the ion is moved to the center of said molecule, and the latter is deleted. (To avoid this
behavior, either solvate _after_ addions, or use addIons2.) Ions must be monoatomic.
This procedure is not guaranteed to globally minimize the electrostatic energy. When
neutralizing regular-backbone nucleic acids, the first cations will generally be placed
between phosphates, leaving the final two ions to be placed somewhere around the middle
of the molecule.The default grid resolution is 1 Å, extending from an inner radius of (
maxIonVdwRadius + maxSoluteAtomVdwRadius) to an outer radius 4 Å beyond. A
distance-dependent dielectric is used for speed.

3.4.4. addIons2
addIons2 unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Same as addIons, except solvent and solute are treated the same.

3.4.5. addPath
addPath path

STRING path

Add the directory in path to the list of directories that are searched for files specified by
other commmands. The following example illustrates this command.

> addPath /disk/howard

/disk/howard added to file search path.

After the above command is entered, the program will search for a file in this directory if
a file is specified in a command. Thus, if a user has a library named
"/disk/howard/rings.lib" and the user wants to load that library, one only needs to enter
load rings.lib and not load /disk/howard/rings.lib.

7/21/05

LEaP Commands Page 29

3.4.6. addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms
within residue UNITs when the atom name in the PDB file does not match an atom in the
residue. This enables PDB files to be read in without extensive editing of atom names.
Typically, this command is placed in the LEaP start-up file, "leaprc", so that assignments
are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist
contains two entries to add to the Name Map. Each entry has the form:

{ string string }

where the first string is the name within the PDB file, and the second string is the name in
the residue UNIT.

3.4.7. addPdbResMap
addPdbResMap list

LIST list

The Name Map is used to map RESIDUE names read from PDB files to variable names
within LEaP. Typically, this command is placed in the LEaP start-up file, "leaprc", so that
assignments are made at the beginning of the session. The LIST is a LIST of LISTs.
Each sublist contains two or three entries to add to the Name Map. Each entry has the
form:

{ double string string }

where double can be 0 or 1, the first string is the name within the PDB file, and the sec-
ond string is the variable name to which the first string will be mapped. To illustrate, the
following is part of the Name Map that exists when LEaP is started from the "leaprc" file
included in the distribution tape:

ADE --> DADE

: :

0 ALA --> NALA

0 ARG --> NARG

: :

1 ALA --> CALA

1 ARG --> CARG

: :

1 VAL --> CVAL

Thus, the residue ALA will be mapped to NALA if it is the N-terminal residue and CALA
if it is found at the C-terminus. The above Name Map was produced using the following
(edited) command line:

7/21/05

LEaP Commands Page 30

> addPdbResMap {

> { 0 ALA NALA } { 1 ALA CALA }

> { 0 ARG NARG } { 1 ARG CARG }

: :

> { 0 VAL NVAL } { 1 VAL CVAL }

>

: :

> { ADE DADE }

: :

> }

3.4.8. alias
alias [string1 [string2]]

STRING string1

STRING string2

This command will add or remove an entry to the Alias Table or list entries in the Alias
Table. If both strings are present, then string1 becomes the alias to string2, the original
command. If only one string is used as an argument, then this string is removed from the
Alias Table. If no arguments are given with the command, the current aliases stored in
the Alias Table will be listed.

The proposed alias is first checked for conflict with the LEaP commands and it is rejected
if a conflict is found. A proposed alias will replace an existing alias with a warning being
issued. The alias can stand for more than a single word, but also as an entire string so the
user can quickly repeat entire lines of input.

3.4.9. bond
bond atom1 atom2 [order]

ATOM atom1

ATOM atom2

STRING order

Create a bond between atom1 and atom2. Both of these ATOMs must be contained by the
same UNIT. By default, the bond will be a single bond. By specifying "-", "=", "#", or ":"
as the optional argument, order, the user can specify a single, double, triple, or aromatic
bond, respectively. Example:

bond trx.32.SG trx.35.SG

3.4.10. bondByDistance
bondByDistance container [maxBond]

CONT container

NUMBER maxBond

7/21/05

LEaP Commands Page 31

Create single bonds between all ATOMs in container that are within maxBond angstroms
of each other. If maxBond is not specified then a default distance will be used. This
command is especially useful in building molecules. Example:

bondByDistance alkylChain

3.4.11. check
check unit [parms]

UNIT unit

PARMSET parms

This command can be used to check the UNIT for internal inconsistencies that could
cause problems when performing calculations. This is a very useful command that
should be used before a UNIT is saved with saveAmberParm or its variants. Currently it
checks for the following possible problems:

• long bonds

• short bonds

• non-integral total charge of the UNIT.

• missing force field atom types

• close contacts (< 1.5 Å) between nonbonded ATOMs.

The user may collect any missing molecular mechanics parameters in a PARMSET for
subsequent editing. In the following example, the alanine UNIT found in the amino acid
library has been examined by the check command:

> check ALA

Checking ’ALA’....

Checking parameters for unit ’ALA’.

Checking for bond parameters.

Checking for angle parameters.

Unit is OK.

3.4.12. combine
variable = combine list

object variable

LIST list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is
placed in variable. This command is similar to the sequence command except it does not
link the ATOMs of the UNITs together. In the following example, the input and output
should be compared with the example given for the sequence command.

> tripeptide = combine { ALA GLY PRO }

Sequence: ALA

7/21/05

LEaP Commands Page 32

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.4.13. copy
newvariable = copy variable

object newvariable

object variable

Creates an exact duplicate of the object variable. Since newvariable is not pointing to the
same object as variable, changing the contents of one object will not alter the other
object. Example:

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not sol-
vated. Had the user instead entered

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated since they would both point to
the same object.

3.4.14. createAtom
variable = createAtom name type charge

ATOM variable

STRING name

STRING type

NUMBER charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type,
and electrostatic point charge. (See the add command for an example of the createAtom
command.)

7/21/05

LEaP Commands Page 33

3.4.15. createParmset
variable = createParmset name

PARMSET variable

STRING name

Return a new and empty PARMSET with the name "name".

> newparms = createParmset pertParms

3.4.16. createResidue
variable = createResidue name

RESIDUE variable

STRING name

Return a new and empty RESIDUE with the name "name". (See the add command for an
example of the createResidue command.)

3.4.17. createUnit
variable = createUnit name

UNIT variable

STRING name

Return a new and empty UNIT with the name "name". (See the add command for an
example of the createUnit command.)

3.4.18. deleteBond
deleteBond atom1 atom2

ATOM atom1

ATOM atom2

Delete the bond between the ATOMs atom1 and atom2. If no bond exists, an error will be
displayed.

3.4.19. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the
amino acid library has been examined by the desc command:

> desc ALA

UNIT name: ALA

7/21/05

LEaP Commands Page 34

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<ALA 1>.A<C 9>

Contents:

R<ALA 1>

Now, the desc command is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

Next, we illustrate the desc command by examining the ATOM N of the first residue (1)
of the alanine UNIT:

> desc ALA.1.N

ATOM

Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will
give the same output as the previous example:

> desc ALA.1.1

7/21/05

LEaP Commands Page 35

3.4.20. edit
edit unit

UNIT unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The user can
view and edit the contents of the UNIT using the mouse. The command causes a copy of
the object to be edited. If the object that the user wants to edit is "null", then the edit
command assumes that the user wants to edit a new UNIT with a single RESIDUE within
it. PARMSETs can also be edited. In tleap this command prints an error message.

3.4.21. groupSelectedAtoms
groupSelectedAtoms unit name

UNIT unit

STRING name

Create a group within unit with the name, "name", using all of the ATOMs within the
UNIT that are selected. If the group has already been defined then overwrite the old
group. The desc command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like "TRP@sideChain" returns a LIST, so any commands that require
LIST ’s can take advantage of this notation. After assignment, one can access groups
using the "@" notation. Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the "sideChain" group. (see
the select command for a more detailed example.)

3.4.22. help
help [string]

STRING string

This command prints a description of the command in string. If the STRING is not given
then a list of help topics is provided.

3.4.23. impose
impose unit seqlist internals

UNIT unit

LIST seqlist

7/21/05

LEaP Commands Page 36

LIST internals

The impose command allows the user to impose internal coordinates on the UNIT. The
list of RESIDUEs to impose the internal coordinates upon is in seqlist. The internal coor-
dinates to impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the
seqlist argument and attempts to apply each of the internal coordinates within internals.
The seqlist argument is a LIST of NUMBERS that represent sequence numbers or ranges
of sequence numbers. Ranges of sequence numbers are represented by two element
LISTs that contain the first and last sequence number in the range. The user can specify
sequence number ranges that are larger than what is found in the UNIT. For example, the
range { 1 999 } represents all RESIDUEs in a 200 RESIDUE UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM
names which are of type STRING followed by the value of the internal coordinate. An
example of the impose command would be:

impose peptide { 1 2 3 } {

{ N CA C N -40.0 }

{ C N CA C -60.0 }

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT pep-
tide to assume an alpha helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } {

{ CA CB 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within
the UNIT peptide a bond length of 5.0 angstroms between the alpha and beta carbons.
RESIDUEs without an ATOM named CB (like glycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle
changes, and torsion angle changes. If the conformational change involves a torsion
angle, then all dihedrals around the central pair of atoms are rotated. The entire list of
internals are applied to each RESIDUE.

3.4.24. list
List all of the variables currently defined. To illustrate, the following (edited) output
shows the variables defined when LEaP is started from the leaprc file included in the dis-
tribution tape:

> list

A

ACE ALA

ARG ASN

: :

VAL W

WAT Y

7/21/05

LEaP Commands Page 37

3.4.25. loadAmberParams
variable = loadAmberParams filename

PARMSET variable

STRING filename

Load an AMBER format parameter set file and place it in variable. All interactions
defined in the parameter set will be contained within variable. This command causes the
loaded parameter set to be included in LEaP ’s list of parameter sets that are searched
when parameters are required. General proper and improper torsion parameters are mod-
ified during the command execution with the LEaP general type "?" replacing the
AMBER general type "X".

> parm91 = loadAmberParams parm91X.dat

> saveOff parm91 parm91.lib

Saving parm91.

3.4.26. loadAmberPrep
loadAmberPrep filename [prefix]

STRING filename

STRING prefix

This command loads an AMBER PREP input file. For each residue that is loaded, a new
UNIT is constructed that contains a single RESIDUE and a variable is created with the
same name as the name of the residue within the PREP file. If the optional argument pre-
fix is provided it will be prefixed to each variable name; this feature is used to prefix
UATOM residues, which have the same names as AATOM residues with the string "U" to
distinguish them. Let us imagine that the following AMBER PREP input file exists:

0 0 2

Crown Fragment A

cra.res

CRA INT 0

CORRECT NOMIT DU BEG

0.0

1 DUMM DU M 0 0 0 0. 0. 0.

2 DUMM DU M 0 0 0 1.000 0. 0.

3 DUMM DU M 0 0 0 1.000 90. 0.

4 C1 CT M 0 0 0 1.540 112. 169.

5 H1A HC E 0 0 0 1.098 109.47 -110.0

6 H1B HC E 0 0 0 1.098 109.47 110.0

7 O2 OS M 0 0 0 1.430 112. -72.

8 C3 CT M 0 0 0 1.430 112. 169.

9 H3A HC E 0 0 0 1.098 109.47 -49.0

10 H3B HC E 0 0 0 1.098 109.47 49.0

CHARGE

7/21/05

LEaP Commands Page 38

0.2442 -0.0207 -0.0207 -0.4057 0.2442

-0.0207 -0.0207

DONE

STOP

This fragment can be loaded into LEaP using the following command:

> loadAmberPrep cra.in

Loaded UNIT: CRA

3.4.27. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs and
PARMSETs within the library will be loaded. The objects are loaded into LEaP under the
variable names the objects had when they were saved. Variables already in existence that
have the same names as the objects being loaded will be overwritten. Any PARMSETs
loaded using this command are included in LEaP ’s library of PARMSETs that is
searched whenever parameters are required (The old AMBER format is used for PARM-
SETs rather than the OFF format in the default configuration). Example command line:

> loadOff parm91.lib

Loading library: parm91.lib

Loading: PARAMETERS

3.4.28. loadMol2
variable = loadMol2 filename

STRING filename

object variable

Load a Sybyl MOL2 format file in a UNIT. This command is very much like loadOff,
except that it only creates a single UNIT.

3.4.29. loadPdb
variable = loadPdb filename

STRING filename

object variable

Load a Protein Databank format file with the file name filename. The sequence numbers
of the RESIDUEs will be determined from the order of residues within the PDB file
AT OM records. This function will search the variables currently defined within LEaP for

7/21/05

LEaP Commands Page 39

variable names that map to residue names within the ATOM records of the PDB file. If a
matching variable name is found then the contents of the variable are added to the UNIT
that will contain the structure being loaded from the PDB file. Adding the contents of the
matching UNIT into the UNIT being constructed means that the contents of the matching
UNIT are copied into the UNIT being built and that a bond is created between the con-
nect0 ATOM of the matching UNIT and the connect1 ATOM of the UNIT being built.
The UNITs are combined in the same way UNITs are combined using the sequence com-
mand. As atoms are read from the ATOM records their coordinates are written into the
correspondingly named ATOMs within the UNIT being built. If the entire residue is read
and it is found that ATOM coordinates are missing, then external coordinates are built
from the internal coordinates that were defined in the matching UNIT. This allows LEaP
to build coordinates for hydrogens and lone-pairs which are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.

Mapped residue THR, term: 0, seq. number: 0 to: NTHR.

Residue THR, term: M, seq. number: 1 was not

found in name map.

Residue CYS, term: M, seq. number: 2 was not

found in name map.

Residue CYS, term: M, seq. number: 3 was not

found in name map.

Residue PRO, term: M, seq. number: 4 was not

found in name map.

: : :

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.

Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

: : :

Joining ASP - TYR

Joining TYR - ALA

Joining ALA - CASN

The above edited listing shows the use of this command to load a PDB file for the protein
crambin. Several disulphide bonds are present in the protein and these bonds are indi-
cated in the PDB file. The loadPdb command, however, cannot read this information
from the PDB file. It is necessary for the user to explicitly define disulphide bonds using
the bond command.

3.4.30. loadPdbUsingSeq
loadPdbUsingSeq filename unitlist

7/21/05

LEaP Commands Page 40

STRING filename

LIST unitlist

This command reads a Protein Data Bank format file from the file named filename. This
command is identical to loadPdb except it does not use the residue names within the PDB
file. Instead the sequence is defined by the user in unitlist. For more details see loadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }

> pept = loadPdbUsingSeq pept.pdb peptSeq

In the above example, a variable is first defined as a LIST of united atom RESIDUEs. A
PDB file is then loaded, in this sequence order, from the file "pept.pdb".

3.4.31. logFile
logFile filename

STRING filename

This command opens the file with the file name filename as a log file. User input and all
output is written to the log file. Output is written to the log file as if the verbosity level
were set to 2. An example of this command is:

> logfile /disk/howard/leapTrpSolvate.log

3.4.32. measureGeom
measureGeom atom1 atom2 [atom3 [atom4]]

ATOM atom1

ATOM atom2

ATOM atom3

ATOM atom4

Measure the distance, angle, or torsion between two, three, or four ATOMs, respectively.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in
order to find the identity of the ATOMs. Next, the measureGeom command is used to
determine a distance, simple angle, and a dihedral angle. As shown in the example, the
AT OMs may be identified using atom names or numbers.

> desc ALA.ALA

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

7/21/05

LEaP Commands Page 41

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA.5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

3.4.33. quit
Quit the LEaP program.

3.4.34. remove
remove a b

CONT a

CONT b

Remove the object b from the object a. If b is not contained by a then an error message
will be displayed. This command is used to remove ATOMs from RESIDUEs, and
RESIDUEs from UNITs. If the object represented by b is not referenced by some variable
name then it will be destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents:

R<ALA 1>

R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

7/21/05

LEaP Commands Page 42

3.4.35. saveAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Save the AMBER/NAB topology and coordinate files for the UNIT into the files named
topologyfilename and coordinatefilename respectively. This command will cause LEaP to
search its list of PARMSETs for parameters defining all of the interactions between the
AT OMs within the UNIT. This command produces topology files and coordinate files that
are identical in format to those produced by AMBER PARM and can be read into
AMBER and NAB for calculations. The output of this operation can be used for mini-
mizations, dynamics, and thermodynamic perturbation calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT
ALA are generated:

> saveamberparm ALA ala.top ala.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

3.4.36. saveOff
saveOff object filename

object object

STRING filename

The saveOff command allows the user to save UNITs and PARMSETs to a file named
filename. The file is written using the Object File Format (off) and can accommodate an
unlimited number of uniquely named objects. The names by which the objects are stored
are the variable names specified in the argument of this command. If the file filename
already exists then the new objects will be added to the file. If there are objects within
the file with the same names as objects being saved then the old objects will be overwrit-
ten. The argument object can be a single UNIT, a single PARMSET, or a LIST of mixed
UNITs and PARMSETs. (See the add command for an example of the saveOff com-
mand.)

3.4.37. savePdb
savePdb unit filename

UNIT unit

STRING filename

7/21/05

LEaP Commands Page 43

Write UNIT to the file filename as a PDB format file. In the following example, the PDB
file from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

3.4.38. sequence
variable = sequence list

UNIT variable

LIST list

The sequence command is used to create a new UNIT by combining the contents of a
LIST of UNITs. The first argument is a LIST of UNITs. A new UNIT is constructed by
taking each UNIT in the sequence in turn and copying its contents into the UNIT being
constructed. As each new UNIT is copied, a bond is created between the tail ATOM of
the UNIT being constructed and the head ATOM of the UNIT being copied, if both con-
nect ATOMs are defined. If only one is defined, a warning is generated and no bond is
created. If neither connection ATOM is defined then no bond is created. As each
RESIDUE is copied into the UNIT being constructed it is assigned a sequence number
which represents the order the RESIDUEs are added. Sequence numbers are assigned to
the RESIDUEs so as to maintain the same order as was in the UNIT before it was copied
into the UNIT being constructed. This command builds reasonable starting coordinates
for all ATOMs within the UNIT; it does this by assigning internal coordinates to the link-
ages between the RESIDUEs and building the external coordinates from the internal
coordinates from the linkages and the internal coordinates that were defined for the indi-
vidual UNITs in the sequence.

> tripeptide = sequence { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.4.39. set
set default variable value

STRING variable

STRING value

7/21/05

LEaP Commands Page 44

or
set container parameter object

CONT container

STRING parameter

object object

This command sets the values of some global parameters (when the first argument is
"default") or sets various parameters associated with container. The following parameters
can be set within LEaP:

For "default" parameters

OldPrmtopFormat
If set to "on", the saveAmberParm command will write a prmtop file in the
format used in Amber6 and before; if set to "off" (the default), it will use
the new format.

Dielectric If set to "distance" (the default), electrostatic calculations in LEaP will use
a distance-dependent dielectric; if set to "constant", and constant dielectric
will be used.

PdbWriteCharges
If set to "on", atomic charges will be placed in the "B-factor" field of pdb
files saved with the savePdb command; if set to "off" (the default), no such
charges will be written.

For ATOMs:

name A unique STRING descriptor used to identify ATOMs.

type This is a STRING property that defines the AMBER force field atom type.

charge The charge property is a NUMBER that represents the ATOM’s electro-
static point charge to be used in a molecular mechanics force field.

position This property is a LIST of NUMBERS containing three values: the (X, Y,
Z) Cartesian coordinates of the ATOM.

pertName The STRING is a unique identifier for an ATOM in its final state during a
Free Energy Perturbation calculation.

pertType The STRING is the AMBER force field atom type of a perturbed ATOM.

pertCharge This NUMBER represents the final electrostatic point charge on an ATOM
during a Free Energy Perturbation.

For RESIDUEs:

connect0 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEsS connect0 ATOM is
usually defined as the UNIT’s head ATOM.

connect1 This is an ATOM property which defines an ATOM that is used in making
links to other RESIDUEs. In UNITs containing single RESIDUEs, the
RESIDUEsS connect1 ATOM is usually defined as the UNIT’s tail ATOM.

7/21/05

LEaP Commands Page 45

connect2 This is an ATOM property which defines an ATOM that can be used in
making links to other RESIDUEs. In amino acids, the convention is that
this is the ATOM to which disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Cur-
rently, it can have one of the following values: "undefined", "solvent",
"protein", "nucleic", or "saccharide".

name This STRING property is the RESIDUE name.

For UNITs:

head Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

tail Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

box The property defines the bounding box of the UNIT. If it is defined as null
then no bounding box is defined. If the value is a single NUMBER then
the bounding box will be defined to be a cube with each side being NUM-
BER of angstroms across. If the value is a LIST then it must be a LIST
containing three numbers, the lengths of the three sides of the bounding
box.

cap The property defines the solvent cap of the UNIT. If it is defined as null
then no solvent cap is defined. If the value is a LIST then it must contain
four numbers, the first three define the Cartesian coordinates (X, Y, Z) of
the origin of the solvent cap in angstroms, the fourth NUMBER defines the
radius of the solvent cap in angstroms.

3.4.40. solvateCap
solvateCap solute solvent position radius [closeness]

UNIT solute

UNIT solvent

object position

NUMBER radius

NUMBER closeness

The solvateCap command creates a solvent cap around the solute UNIT. The solute
UNIT is modified by the addition of solvent RESIDUEs. The solvent box will be
repeated in all three spatial directions to create a large solvent sphere with a radius of
radius angstroms.

The position argument defines where the center of the solvent cap is to be placed. If posi-
tion is a RESIDUE, ATOM, or a LIST of UNITs, RESIDUEs, or ATOMs, then the geo-
metric center of the ATOMs within the object will be used as the center of the solvent cap
sphere. If position is a LIST containing three NUMBERS, then the position argument
will be treated as a vector that defines the position of the solvent cap sphere center.

7/21/05

LEaP Commands Page 46

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM
to the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL’s dis-
tances multiplied by the closeness argument.

This command modifies the solute UNIT in several ways. First, the UNIT is modified by
the addition of solvent RESIDUEs copied from the solvent UNIT. Secondly, the cap
parameter of the UNIT solute is modified to reflect the fact that a solvent cap has been
created around the solute.

>> mol = loadpdb my.pdb

>> solvateCap mol WATBOX216 mol.2.CA 8.0 2.0

Added 3 residues.

3.4.41. solvateShell
solvateShell solute solvent thickness [closeness]

UNIT solute

UNIT solvent

NUMBER thickness

NUMBER closeness

The solvateShell command adds a solvent shell to the solute UNIT. The resulting
solute/solvent UNIT will be irregular in shape since it will reflect the contours of the
solute. The solute UNIT is modified by the addition of solvent RESIDUEs. The solvent
box will be repeated in three directions to create a large solvent box that can contain the
entire solute and a shell thickness angstroms thick. The solvent RESIDUEs are then
added to the solute UNIT if they lie within the shell defined by thickness and do not over-
lap with the solute ATOMs. The optional closeness parameter can be used to control how
close solvent ATOMs can come to solute ATOMs. The default value of the closeness
argument is 1.0. Please see the solvateBox command for more details on the closeness
parameter.

>> mol = loadpdb my.pdb

>> solvateShell mol WATBOX216 8.0

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 23.512 28.339 28.066

Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

3.4.42. source
source filename

STRING filename

7/21/05

LEaP Commands Page 47

This command executes commands within a text file. To display the commands as they
are read, see the verbosity command.

3.4.43. transform
transform atoms, matrix

CONT atoms

LIST matrix

Transform all of the ATOMs within atoms by the (3 × 3) or (4 × 4) matrix represented
by the nine or sixteen NUMBERS in the LIST of LISTs matrix. The general matrix
looks like:

r11 r12 r13 -tx

r21 r22 r23 -ty

r31 r32 r33 -tz

0 0 0 1

The matrix elements represent the intended symmetry operation. For example, a reflec-
tion in the (x, y) plane would be produced by the matrix:

1 0 0

0 1 0

0 0 -1

This reflection could be combined with a six angstrom translation along the x-axis by
using the following matrix.

1 0 0 6

0 1 0 0

0 0 -1 0

0 0 0 1

In the following example, wrB is transformed by an inversion operation:

transform wrpB {

{ -1 0 0 }

{ 0 -1 0 }

{ 0 0 -1 }

}

3.4.44. translate
translate atoms direction

CONT atoms

LIST direction

Translate all of the ATOMs within atoms by the vector defined by the three NUMBERS

7/21/05

LEaP Commands Page 48

in the LIST direction.

Example:

translate wrpB { 0 0 -24.53333 }

3.4.45. verbosity
verbosity level

NUMBER level

This command sets the level of output that LEaP provides the user. A value of 0 is the
default, providing the minimum of messages. A value of 1 will produce more output, and
a value of 2 will produce all of the output of level 1 and display the text of the script lines
executed with the source command. The following line is an example of this command:

> verbosity 2

Verbosity level: 2

3.4.46. zMatrix
zMatrix object zmatrix

CONT object

LIST matrix

The zMatrix command is quite complicated. It is used to define the external coordinates
of ATOMs within object using internal coordinates. The second parameter of the zMatrix
command is a LIST of LISTs; each sub-list has several arguments:

{ a1 a2 bond12 }

This entry defines the coordinate of a1 by placing it bond12 angstroms along the x-axis
from ATOM a2. If AT OM a2 does not have coordinates defined then ATOM a2 is placed
at the origin.

{ a1 a2 a3 bond12 angle123 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2 making an angle of angle123 degrees between a1, a2 and a3. The angle is measured in
a right hand sense and in the x-y plane. AT OMs a2 and a3 must have coordinates
defined.

{ a1 a2 a3 a4 bond12 angle123 torsion1234 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, creating an angle of angle123 degrees between a1, a2, and a3, and making a torsion
angle of torsion1234 between a1, a2, a3, and a4.

7/21/05

LEaP Commands Page 49

{ a1 a2 a3 a4 bond12 angle123 angle124 orientation }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, making angles angle123 between ATOMs a1, a2, and a3, and angle124 between
AT OMs a1, a2, and a4. The argument orientation defines whether the ATOM a1 is above
or below a plane defined by the ATOMs a2, a3, and a4. If orientation is positive then a1
will be placed in such a way so that the inner product of (a3-a2) cross (a4-a2) with
(a1-a2) is positive. Otherwise a1 will be placed on the other side of the plane. This
allows the coordinates of a molecule like fluoro-chloro-bromo-methane to be defined
without having to resort to dummy atoms.

The first arguments within the zMatrix entries (a1, a2, a3, a4) are either ATOMs or
STRINGS containing names of ATOMs within object. The subsequent arguments are all
NUMBERS. Any ATOM can be placed at the a1 position, even those that have coordi-
nates defined. This feature can be used to provide an endless supply of dummy atoms, if
they are required. A predefined dummy atom with the name "*" (a single asterisk, no
quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order,
as long as they maintain the requirement that all atoms a2, a3, and a4 must have external
coordinates defined, except for entries that define the coordinate of an ATOM using only
a bond length. (See the add command for an example of the zMatrix command.)

7/21/05

7/21/05 References 50

4. References
1. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollamn & D.A. Case. Development and test-

ing of a general Amber force field. J. Comput. Chem. 25, 1157-1174 (2004).

2. A. Jakalian, B.L. Bush, D.B. Jack & C.I. Bayly. Fast, Efficient Generation of High-Qual-
ity Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 21, 132-146
(2000).

3. A. Jakalian, D.B. Jack & C.I. Bayly. Fast, Efficient Generation of High-Quality Atomic
Charges. AM1-BCC Model:. J. Comput. Chem. 23, 1623-1641 (2002). I. Parameteri-
zation and Validation,

4. J. Wang & P.A. Kollman. Automatic Parameterization of Force Field by Systematic
Search and Genetic Algorithms. J. Comput. Chem. 22, 1219-1228 (2001).

7/21/05

7/21/05 Index 51

5. Index
A

add 26
addAtomTypes 27
addIons 28
addIons2 28
addPath 28
addPdbAtomMap 29
addPdbResMap 29
alias 30

B

bond 30
bondByDistance 30

C

check 31
combine 31
copy 32
createAtom 32
createParmset 33
createResidue 33
createUnit 33

D

deleteBond 33
desc 33

E

edit 35

G

groupSelectedAtoms 35

H

help 35

I

impose 35

L

list 36
loadAmberParams 37
loadAmberPrep 37
loadMol2 38
loadOff 38
loadPdb 38
loadPdbUsingSeq 39
logFile 40

M

measureGeom 40

Q

quit 41

R

remove 41

S

saveAmberParm 42
saveOff 42
savePdb 42
sequence 43
set 43
solvateCap 45
solvateShell 46
source 46

T

transform 47
translate 47

7/21/05

7/21/05 Index 52

V

verbosity 48

Z

zMatrix 48

7/21/05

	Installation and Getting Started.
	Installation.
	Contacting the developers

	Antechamber
	Principal programs
	antechamber
	parmchk

	A simple example for antechamber
	Programs called by antechamber
	atomtype
	am1bcc
	bondtype
	prepgen
	espgen
	respgen

	Miscellaneous programs
	crdgrow
	parmcal
	database
	translate

	LEaP
	Introduction
	Concepts
	Commands
	Variables
	Objects

	Basic instructions for using LEaP with NAB
	Building a Molecule For Molecular Mechanics
	Amino Acid Residues
	Nucleic Acid Residues
	Miscellaneous Residues

	Commands
	add
	addAtomTypes
	addIons
	addIons2
	addPath
	addPdbAtomMap
	addPdbResMap
	alias
	bond
	bondByDistance
	check
	combine
	copy
	createAtom
	createParmset
	createResidue
	createUnit
	deleteBond
	desc
	edit
	groupSelectedAtoms
	help
	impose
	list
	loadAmberParams
	loadAmberPrep
	loadOff
	loadMol2
	loadPdb
	loadPdbUsingSeq
	logFile
	measureGeom
	quit
	remove
	saveAmberParm
	saveOff
	savePdb
	sequence
	set
	solvateCap
	solvateShell
	source
	transform
	translate
	verbosity
	zMatrix

	References
	Index

