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Notes

• Most of the programs included here can be redistributed and/or modified under the terms
of the GNU General Public License; a few components have other open-source licenses.
See the amber12/AmberTools/LICENSE file for details. The programs are distributed in
the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE.

• Some of the force field routines were adapted from similar routines in the MOIL program
package: R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Li, G. Verkhivker, C.
Keasar, J. Zhang and A. Ulitsky, "MOIL: A program for simulations of macromolecules"
Comp. Phys. Commun. 91, 159-189 (1995).

• The "trifix" routine for random pairwise metrization is based on an algorithm designed
by Jay Ponder and was adapted from code in the Tinker package; see M.E. Hodsdon, J.W.
Ponder, and D.P. Cistola, J. Mol. Biol. 264, 585-602 (1996) and http://dasher.wustl.edu/tinker/.

• The "molsurf" routines for computing molecular surface areas were adapted from routines
written by Paul Beroza. The "sasad" routine for computing derivatives of solvent acces-
sible surface areas was kindly provided by S. Sridharan, A. Nicholls and K.A. Sharp. See
J. Computat. Chem. 8, 1038-1044 (1995).

• Some of the “pb_exmol” routines for mapping molecular surface to finite-difference grids
were adapted from routines written by Michael Gilson and Malcolm Davis in UHBD. See
Comp. Phys. Comm. 91, 57-95 (1995).

• The cifparse routines to deal with mmCIF formatted files were written by John West-
brook, and are distributed with permission. See cifparse/README for details.

Recommended Citations:

• When citing AmberTools 13 in the literature, the following citation, along with the cita-
tion of the corresponding program, should be used:

D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R.
Luo, R.C. Walker, W. Zhang, K.M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra,
J. Swails, A.W. Götz, I. Kolossváry, K.F. Wong, F. Paesani, J. Vanicek, R.M. Wolf, J. Liu,
X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G.
Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T.
Luchko, S. Gusarov, A. Kovalenko, and P.A. Kollman (2012), AMBER 13, University of
California, San Francisco.

Cover Illustration

The cover shows a slice through a crystal simulation of a designed peptide; see Aravinda,
S.; Shamala, N.; Das, C.; Sriranjini, A.; Karle, I. L.; Balaram, P. J. Am. Chem. Soc., 2003,
125, 5308–15. 36 unit cells are stacked in a 4 x 3 x 3 arrangement in the triclinic super-system;
each unit cell comprises two decapeptide helices arranged roughly parallel to one another, with
water molecules forming channels perpendicular to the plane of the illustration. Figure by Dave
Cerutti.
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1 Getting started

AmberTools is a set of programs for biomolecular simulation and analysis. They are designed
to work well with each other, and with the “regular” Amber suite of programs. You can perform
many simulation tasks with AmberTools, and you can do more extensive simulations with the
combination of AmberTools and Amber itself.

Most components of AmberTools are released under the GNU General Public License (GPL).
A few components are in the public domain or have other open-source licenses. See the
README file for more information. We hope to add new functionality to AmberTools as ad-
ditional programs become available. If you have suggestions for what might be added, please
contact us.

Everyone should read (or at least skim) Section 1.1. Even if you are an experienced Amber
user, there may be things you have missed, or new features, that will help.

If you are installing this package see Section 1.2. There are also tips and examples on the
Amber Web pages at http://ambermd.org. Although Amber may appear dauntingly complex
at first, it has become easier to use over the past few years, and overall is reasonably straight-
forward once you understand the basic architecture and option choices. In particular, we have
worked hard on the tutorials to make them accessible to new users. Thousands of people have
learned to use Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety
of good books to consult, ranging from introductory descriptions,[1, 2] to standard works on
liquid state simulation methods,[3–5] to multi-author compilations that cover many important
aspects of biomolecular modelling.[6–10] Looking for "paradigm" papers that report simula-
tions similar to ones you may want to undertake is also generally a good idea.

1.1 Information flow in Amber

Understanding where to begin in AmberTools is primarily a problem of managing the flow of
information in this package — see Fig. 1.1. You first need to understand what information is
needed by the simulation programs (sander, pmemd, mdgx or nab). You need to know where
it comes from, and how it gets into the form that the energy programs require. This section is
meant to orient the new user and is not a substitute for the individual program documentation.

Information that all the simulation programs need:

1. Cartesian coordinates for each atom in the system. These usually come from X-ray crys-
tallography, NMR spectroscopy, or model-building. They should be in Protein Data Bank
(PDB) or Tripos “mol2” format. The program LEaP provides a platform for carrying out
many of these modeling tasks, but users may wish to consider other programs as well.

Topology: Connectivity, atom names, atom types, residue names, and charges. This information
comes from the database, which is found in the $AMBERHOME/dat/leap/prep directory, and is

9
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Figure 1.1: Basic information flow in Amber

described in Chapter 2. It contains topology for the standard amino acids as well as N- and C-
terminal charged amino acids, DNA, RNA, and common sugars. The database contains default
internal coordinates for these monomer units, but coordinate information is usually obtained
from PDB files. Topology information for other molecules (not found in the standard database)
is kept in user-generated “residue files”, which are generally created using antechamber.

1. Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the sys-
tem. The standard parameters for several force fields are found in the $AMBERHOME-
/dat/leap/parm directory; see Chapter 2 for more information. These files may be used
“as is” for proteins and nucleic acids, or users may prepare their own files that contain
modifications to the standard force fields.

2. Commands: The user specifies the procedural options and state parameters desired. These
are specified in “driver” programs written in the NAB language.

1.1.1 Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify existing systems.
It is available as the command-line program tleap or the GUI xleap. It combines the
functionality of prep, link, edit and parm from much earlier versions of Amber.

ParmEd provides a simple way to extract information about the parameters defined in a parameter-
topology file. It can also be used to check that the parameter-topology file is valid for
complex systems, and it can also make simple modifications to this file very quickly.
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antechamber is the main program from the Antechamber suite. If your system contains more
than just standard nucleic acids or proteins, this may help you prepare the input for LEaP.

MCPB provides a means to rapidly build, prototype, and validate MM models of metallopro-
teins. It uses the bonded plus electrostatics model to expand existing pairwise additive
force fields.

paramfit iteratively fits individual force field parameters for a given system. This can be useful
when antechamber fails to find parameters, or if existing force fields fail to properly
characterize the system.

1.1.2 Simulation programs

NAB (Nucleic Acid Builder) is a language that can be used to write programs to perform non-
periodic simulations, most often using an implicit solvent force field.

sander (part of Amber) is the basic energy minimizer and molecular dynamics program. This
program relaxes the structure by iteratively moving the atoms down the energy gradient
until a sufficiently low average gradient is obtained. The molecular dynamics portion
generates configurations of the system by integrating Newtonian equations of motion.
MD will sample more configurational space than minimization, and will allow the struc-
ture to cross over small potential energy barriers. Configurations may be saved at regular
intervals during the simulation for later analysis, and basic free energy calculations using
thermodynamic integration may be performed. More elaborate conformational searching
and modeling MD studies can also be carried out using the SANDER module. This al-
lows a variety of constraints to be added to the basic force field, and has been designed
especially for the types of calculations involved in NMR structure refinement.

pmemd (part of Amber) is a version of sander that is optimized for speed and for parallel
scaling. The name stands for “Particle Mesh Ewald Molecular Dynamics,” but this code
can now also carry out generalized Born simulations. The input and output have only a
few changes from sander.

mdgx is a molecular dynamics engine with functionality that mimics some of the features in
sander and pmemd, but featuring simple C code and an atom sorting routine that sim-
plifies the flow of information during force calculations. The principal purpose of mdgx
is to provide a tool for radical redesign of the basic molecular dynamics algorithms and
models.

1.1.3 Analysis programs

ptraj is a general purpose utility for analyzing and processing trajectory or coordinate files
created from MD simulations (or from various other sources), c

cpptraj is a trajectory analysis utility (written in C++) for carrying out superpositions, extrac-
tions of coordinates, calculation of bond/angle/dihedral values, atomic positional fluc-
tuations, correlation functions, analysis of hydrogen bonds, etc. It has almost all the
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functionality of the older ptraj program and generally better performance. New features
in cpptraj include the ability to process multiple prmtop files at once, ability to specify
a separate reference mask during RMSD calculations, support for multiple output trajec-
tory files, native support for compressed (gzip or bzip2) trajectories and prmtop files, and
output of stripped prmtop files.

pbsa is an analysis program for solvent-mediated energetics of biomolecules. It can be used
to perform both electrostatic and non-electrostatic continuum solvation calculations with
input coordinate files from molecular dynamics simulations and other sources. The elec-
trostatic solvation is modeled by the Poisson-Boltzmann equation. Both linear and full
nonlinear numerical solvers are implemented. The nonelectrostatic solvation is modeled
by two separate terms: dispersion and cavity.

MMPBSA.py is a python script that automates energy analysis of snapshots from a molecular
dynamics simulation using ideas generated from continuum solvent models. (There is
also an older perl script, called mm_pbsa.pl, that is a part of Amber.)

amberlite is small set of NAB programs and python scripts that implement a limited set of
MD simulations and mm-pbsa (or mm-gbsa) analysis, aimed primarily at the analysis of
protein-ligand interactions. These tools can be useful in their own right, or as a good
introduction to Amber and a starting point for more complex calculations. Detailed in-
structions are in Chapter 6.

1.2 Installation

We have worked hard in this release to simplify the installation of Amber, and there are some
differences from earlier releases. First, if you have both Amber and AmberTools, both will be
installed and tested with a single command. Second, the configure script automatically checks
for updates, and installs them if you ask it to. A third (minor) change is that the configure script
is now run from the $AMBERHOME directory (not from $AMBERHOME/AmberTools/src,
as in the past.)

The Amber web page (http://ambermd.org) has some specific instructions and hints for
various common operating systems. Look for the “Running Amber on ....” links. Once you
have downloaded the distribution files, do the following:

1. First, extract the files in some location (we use /home/myname as an example here):

cd /home/myname

tar xvfj AmberTools13.tar.bz2 # (Note: extracts in an

# “amber12” directory)

tar xvfj Amber12.tar.bz2 # (only if you have licensed Amber 12!)

2. Next, set your AMBERHOME environment variable:

export AMBERHOME=/home/myname/amber12 # (for bash, zsh, ksh, etc.)

setenv AMBERHOME /home/myname/amber12 # (for csh, tcsh)
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Be sure to change the “/home/myname” above to whatever directory is appropriate for
your machine, and be sure that you have write permissions in the directory tree you
choose. You should also add $AMBERHOME/bin to your PATH.

3. Next, you may need to install some compilers and other libraries. Details depend on
what OS you have, and what is already installed. Package managers can greatly simplify
this task. For example for Debian-based Linux systems (such as Ubuntu), the following
command should get you what you need:

sudo apt-get install csh flex gfortran g++ xorg-dev \

zlib1g-dev libbz2-dev

Other Linux distributions will have a similar command, but with a package manager
different than apt-get. For example, the following should work for Fedora Core and
similar systems:

sudo yum install gcc flex tcsh zlib-devel bzip2-devel \

libXt-devel libXext-devel libXdmcp-devel

For Macintosh OSX, MacPorts (http://www.macports.org) serves a similar purpose. You
would download and install the port program, then issue commands like this:

sudo port install gcc46

MacPorts is useful because the “Xcode” compilers provided by Apple will not work to
compile Amber, since no Fortran compiler is provided. Amber cross-links Fortran and
C/C++ code, so a “full” GCC installation is necessary.

4. Now, in the AMBERHOME directory, run the configure script:

cd $AMBERHOME

./configure --help

will show you the options. Choose the compiler and flags you want; for most systems,
the following should work:

./configure gnu

Don’t choose any parallel options at this point. (You may need to edit the resulting con-
fig.h file to change any variables that don’t match your compilers and OS. The comments
in the config.h file should help.) This step will also check to see if there are any bugfixes
that have not been applied to your installation, and will apply them (unless you ask it not
to). If the configure step finds missing libraries, go back to Step 3.

5. Then,

make install

will compile the codes. If this step fails, try to read the error messages carefully to identify
the problem.

6. This can be followed by

make test
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which will run tests and will report successes or failures.

Where "possible FAILURE" messages are found, go to the indicated directory under
$AMBERHOME/AmberTools/test or $AMBERHOME/test, and look at the "*.dif" files.
Differences should involve round-off in the final digit printed, or occasional messages that
differ from machine to machine (see below for details). As with compilation, if you have
trouble with individual tests, you may wish to comment out certain lines in the Makefiles
(i.e., $AMBERHOME/AmberTools/test/Makefile or $AMBERHOME/test/Makefile), and/or
go directly to the test subdirectories to examine the inputs and outputs in detail. For con-
venience, all of the failure messages and differences are collected in the $AMBERHOME-
/logs directory; you can quickly see from these if there is anything more than round-off
errors.

Note: If you have untarred the Amber12.tar.bz2 file, then steps 1-6 will install and test
both AmberTools and Amber; otherwise it will just install and test AmberTools. If you
license Amber later, just come back and repeat steps 1-6 again.

7. If you are new to Amber, you should look at the tutorials and this manual and become
familiar with how things work. If and when you wish to compile parallel (MPI) versions
of Amber, do this:

cd $AMBERHOME

./configure -mpi <....other options....> <compiler-choice>

make install

# Note the value below may depend on your MPI implementation

export DO_PARALLEL=”mpirun -np 2”

make test

# Note, some tests, like the replica exchange tests, require more

# than 2 threads, so we suggest that you test with either 4 or 8

# threads as well

export DO_PARALLEL=”mpirun -np 8”

make test

This assumes that you have installed MPI and that mpicc and mpif90 are in your PATH.
Some MPI installations are tuned to particular hardware (such as infiniband), and you
should use those versions if you have such hardware. Most people can use standard
versions of either mpich2 or openmpi. To install one of these, use one of the simple
scripts that we have prepared:

cd $AMBERHOME/AmberTools/src

./configure_mpich2 <compiler-choice> OR

./configure_openmpi <compiler-choice>

Follow the instructions of these scripts, then return to beginning of step 7.

Note: Parallel versions of AmberTools are rather specialized, and many users will skip
this step. Consider the following points before compiling and using the MPI version:

a) The MPI version of nab is called mpinab, by analogy with mpicc or mpif90: mp-
inab is a compiler that will produce an MPI-enabled executable from source code
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written in the NAB language. Before compiling mpinab, be sure that you are fa-
miliar with the serial version of nab and that you really need a parallel version. If
you have shared-memory nodes, the OpenMP version might be a better alternative.
See Section 15.4 for more information. (Note that mpinab is primarily designed to
write driver routines that call MPI versions of the energy functions; it is not set up
to write your own, novel, parallel codes.)

b) The MPI version of MMPBSA.py is called MMPBSA.py.MPI, and requires the pack-
age mpi4py to run. If it is not present in your system Python installation already, it
will be built along with MMPBSA.py.MPI and placed in the $AMBERHOME/bin
directory. If you have problems with MMPBSA.py.MPI, see if you get the same
problems with the serial version, MMPBSA.py, to see if it is an issue with the par-
allel version or MMPBSA.py in general. Because we do not make or maintain the
mpi4py source code, MMPBSA.py.MPI will not be available on platforms on which
mpi4py cannot be built.

8. NAB and Cpptraj can also be compiled using OpenMP:

./configure -openmp <....other options....> <compiler-choice>

make openmp

Note that the OpenMP versions of NAB and Cpptraj have the same name as the single-
threaded version. See Section 15.4 for information on running the OpenMP version of
NAB and section 8.2.6 for information on running the OpenMP version of Cpptraj.

1.3 Combining AmberTools13 with Amber11 or Amber10

It is certainly feasible to combine AmberTools13 with earlier versions of Amber. Here is the
outline of what to do:

1. Unpack AmberTools13.tar.bz2 into a directory tree whose head will be amber12. Point
your AMBERHOME environment to this directory, and install and test as described
above. Don’t do anything to your existing Amber files, which will be in a directory
tree headed by amber11 (or amber10...).

2. Set your PATH variable to have $AMBERHOME/bin ahead of the old amber directories.
For example:

export PATH=”$AMBERHOME/bin:/home/myname/amber11/bin:$PATH” # (bash, zsh, ksh)

setenv PATH “$AMBERHOME/bin:/home/myname/amber11/bin:$PATH” # (csh, tcsh)

In this way, your PATH will see the AmberTools13 codes first, but will also find the earlier
versions of sander, pmemd, and other Amber codes. You will probably want to put one of the
above commands (along with the definition of AMBERHOME) into your startup script (e.g.
~/.bashrc, ~/.zshrc, ~/.cshrc, etc.)
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1.4 Testing the installation

We have installed and tested Amber on a number of platforms, using UNIX, Linux, Microsoft
Windows or Macintosh OSX operating systems. However, owing to time and access limitations,
not all combinations of code, compilers, and operating systems have been tested. Therefore we
recommend running the test suites.

The distribution contains a validation suite that can be used to help verify correctness. The
nature of molecular dynamics, is such that the course of the calculation is very dependent on
the order of arithmetical operations and the machine arithmetic implementation, i.e., the method
used for round-off. Because each step of the calculation depends on the results of the previous
step, the slightest difference will eventually lead to a divergence in trajectories. As an initially
identical dynamics run progresses on two different machines, the trajectories will eventually
become completely uncorrelated. Neither of them are "wrong;" they are just exploring different
regions of phase space. Hence, states at the end of long simulations are not very useful for
verifying correctness. Averages are meaningful, provided that normal statistical fluctuations are
taken into account. "Different machines" in this context means any difference in floating point
hardware, word size, or rounding modes, as well as any differences in compilers or libraries.
Differences in the order of arithmetic operations will affect round-off behavior; (a + b) + c is
not necessarily the same as a + (b + c). Different optimization levels will affect operation order,
and may therefore affect the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures
on the first cycle should be identical. The RMS and MAX gradients reported in sander are
often more precision sensitive than the energies, and may vary by 1 in the last figure on some
machines. In minimization and dynamics calculations, it is not unusual to see small divergences
in behavior after as little as 100-200 cycles.

1.5 Applying Updates

For most users, simply running the configure script and responding ‘yes’ to the update request
will automatically download and apply all patches. This section describes the main updating
script responsible for managing updates. We suggest that you at least skim the first section on
the basic usage—particularly the note about the --version flag for if/when you ask for help
on the mailing list.

1.5.1 Basic Usage

Updates to AmberTools and Amber are downloaded, applied, and managed automatically
using the Python script update_amber (it was patch_amber.py for AmberTools 12). This script
requires Python 2. The configure script in $AMBERHOME automatically uses update_amber to
search for available updates to AmberTools 13 (and Amber 12 when present) unless explic-
itly disabled with the --no-updates flag (it must be the first option to configure). If any are
available, you will be asked if you want them downloaded and applied. This script resides in
$AMBERHOME and can be executed from anywhere (it will verify that AMBERHOME is set properly),
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but if moved from AMBERHOME, it will not work. There are 3 main operating modes, or actions,
that you can perform with them:

• $AMBERHOME/update_amber --check-updates : This option will query the Amber
website for any updates that have been posted for AmberTools13 or Amber12 that have
not been applied to your installation. If you think you have found a bug, this is helpful to
try first before emailing with problems since your bug may have already been fixed.

• $AMBERHOME/update_amber --version : This option will return which patches have
been applied to the current tree so far. When emailing the Amber list with problems, it
is important to have the output of this command, since that lets us know exactly which
updates have been applied.

• $AMBERHOME/update_amber --update : This option will go to the Amber website,
download all updates that have not been applied to your installation, and apply them
to the source code. Note that you will have to recompile any affected code

for the changes to take effect!

• $AMBERHOME/update_amber --upgrade : This option is used to do a major version
upgrade (e.g., upgrading from AmberTools 12 to AmberTools 13, for instance). This
upgrade is done in-place and is irreversible. The --check-updates flag will also check
if there is an available upgrade.

1.5.2 Advanced options

update_amber has additional functionality as well that allows more intimate control over the
patching process. For a full list of options, use the --full-help command-line option. These
are considered advanced options.

• $AMBERHOME/update_amber --download-patches : Only download patches, do not
apply them

• $AMBERHOME/update_amber --apply-patch=<PATCH> : This will apply a third-party
patch

• $AMBERHOME/update_amber --reverse-patch=<PATCH> : Reverses a third-party patch
file that was applied via the --apply-patch option (see above).

• $AMBERHOME/update_amber --show-applied-patches : Shows details about each
patch that has been applied (including third-party patches)

• $AMBERHOME/update_amber --show-unapplied-patches : Shows details about each
patch that has been downloaded but not yet applied.

• $AMBERHOME/update_amber --remove-unapplied : Deletes all patches that have been
downloaded but not applied. This will force update_amber to download a fresh copy of
that patch.
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• $AMBERHOME/update_amber --update-to AmberTools/#,Amber/# : This command
will apply all patches necessary to bring AmberTools up to a specific version and Amber
up to a specific version. Note, no updates will ever be reversed using this command.
You may specify only an AmberTools version or an Amber version (or both, comma-
delimited). No patches are applied to an omitted branch.

• $AMBERHOME/update_amber --revert-to AmberTools/#,Amber/# : This command
does the same as --update-to described above, except it will only reverse patches, never
apply them.

update_amber will also provide varying amounts of information about each patch based on the
verbosity setting. The verbose level can be set with the --verbose flag and can be any integer
between 0 and 4, inclusive. The default verbosity level changes based on how many updates
must be described. If only a small number of updates need be described, all details are printed
out. The more updates that must be described, the less information is printed. If you manually
set a value on the command-line, it will override the default. These values are described below
(each level prints all information from the levels before plus additional information):

• 0: Print out only the name of the update file (no other information)

• 1: Also prints out the name of the program(s) that are affected

• 2: Also prints out the description of the update written by the author of that update.

• 3: Also prints the name of the person that authored the patch and the date it was created.

• 4: Also prints out the name of every file that is modified by the patch.

1.5.3 Internet Connection Settings

If update_amber ever needs to connect to the internet, it will check to see if http://ambermd.org
can be contacted within 10 seconds. If not, it will report an error and quit. If your connection
speed is particularly slow, you can lengthen this timeout via the --timeout command-line flag
(where the time is given in seconds).

1.5.3.1 Proxies

By default, update_amber will attempt to contact the internet through the same mechanism
as programs like wget and curl. For users that connect to the internet through a proxy server,
you can either set the http_proxy environment variable yourself (in which case you can
ignore the rest of the advice about proxies here), or you can configure update_amber to
connect to the internet through a proxy. To set up update_amber to connect to the internet
through a proxy, use the following command:

$AMBERHOME/update_amber --proxy=<PROXY_ADDRESS>

You can often find your proxy address from your IT department or the preferences in your
favorite (configured) web browser that you use to surf the web. If your proxy is authenticated,
you will also need to set up a user:
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$AMBERHOME/update_amber --proxy-user=<USERNAME>

If you have set up a user name to connect to your proxy, then you will be asked for your proxy
password the first time update_amber attempts to utilize an online resource. (For security, your
password is never stored, and will need to be retyped every time update_amber runs).

You can clear all proxy information using the --delete-proxy command-line flag—this is
really only necessary if you no longer need to connect through any proxy, since each time you
configure a particular proxy user or server it overwrites whatever was set before.

1.5.3.2 Mirrors

If you would like to download Amber patches from another website or even a folder on a
local filesystem, you can use the --amber-updates and --ambertools-updates command-
line flags to specify a particular web address (must start with http://) or a local folder (use an
absolute path). You can use the --reset-remotes command-line flag to erase these settings
and return to the default Amber locations on http://ambermd.org.

If you set up online mirrors and never plan on connecting directly to http://ambermd.org,
you can change the web address that update_amber attempts to connect to when it verifies an
internet connection using the --internet-check command-line option.

1.6 Contacting the developers

Please send suggestions and questions to amber@ambermd.org. You need to be subscribed
to post there; to subscribe, go to http://lists.ambermd.org/mailman/listinfo/amber. You can
unsubscribe from this mailing list on the same site.

1.7 List of programs

AmberTools is comprised of a large number of programs designed to aid you in your com-
putational studies of chemical systems, and the number of released tools grows regularly. This
section provides a list of the main programs included with AmberTools. Each program in-
cluded in the suite is listed here with a very brief description of its main function along with
which chapter in the manual a more thorough description can be found.

AddToBox A program for adding solvent molecules to a crystal cell. See Subsection 14.4.3.

ChBox A program for changing the box dimensions of an Amber restart file. See Subsection
14.4.4.

CheckMD A program for automated checking of an MD simulation. Run the program without
options for usage statement.

MCPB A semi-automated tool for metalloprotein parametrization. See Section 5.6.

MMPBSA.py A program to post-process trajectories to calculate binding free energies accord-
ing to the MM/PBSA approximation. See Chapter 12.
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MTKppConstants Lists the constants used in MTK++. Run the program without arguments to
get the full list.

PropPDB A program for propagating a PDB structure. See Subsection 14.4.2

UnitCell A program for recreating a crystallographic unit cell from a PDB structure. See Sub-
section 14.4.1

acdoctor A tool to diagnose what may be causing antechamber to fail. See Subsection 5.4.1

add_pdb A program to add sections to a topology file that correspond to PDB information. The
input files are given by -i <input_prmtop> and -p <matching_pdb>, with the output prm-
top being given by the flag -o <output_prmtop>. It adds the sections RESIDUE_NUMBER,
RESIDUE_CHAINID, and ATOM_ELEMENT to the topology file, leaving the rest un-
changed. Note that the input_prmtop and matching_pdb must match each other.

am1bcc A program called by antechamber to calculate AM1-BCC charges during ligand parametriza-
tion. It can be used as a standalone program, with the options printed when you enter the
program name with no arguments. See Section 5.3

ambpdb A program to convert an Amber system (prmtop and inpcrd/restart) into a PDB,
MOL2, or PQR file. See Section 14.1

ante-MMPBSA.py A program to create the necessary, self-consistent prmtop files for MMPBSA
with a single starting topology file. See Subsection 12.2.2

antechamber A program for parametrizing ligands and other small molecules. See Chapter 5

atomtype A program called by antechamber to judge the atom types in an input structure. It
can be used as a standalone program. If you provide no arguments, it prints out the usage
statement. See Section 5.3

bondtype A program called by antechamber to judge what types of bonds exist in a given
input structure. It can be used as a standalone program. If you provide no arguments, it
prints out the usage statement. See Section 5.3

calcpka A program that calculates fraction protonation, and Hendersen-Hasselbalch pKas from
constant pH simulations conducted with Amber. If you provide no arguments, it prints
out the usage statement.

capActiveSite A program to cap the active site of a protein using a cutoff. The flag -h prints
the usage message.

chamber A program to convert a CHARMM psf file to an Amber topology (prmtop) file. See
Section 2.11

charmmlipid2amber.x A script that converts a PDB created with the CHARMM-GUI lipid
builder into one recognized by Amber and AmberTools programs. If you provide no
arguments, it prints out the usage statement.
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cpinutil A program to create a constant pH input (CPin) file from a PDB file. If you provide
no arguments, you get the usage statement.

cpptraj A versatile program for trajectory post-processing similar to ptraj. It has some over-
lapping, and some different features. See Chapter 8

elsize A program that estimates the effective electrostatic size of a given input structure. See
Section 14.3

espgen A program called by antechamber to generate ESP files during ligand or small molecule
parametrization. If you provide no arguments, it prints out the usage statement.

frcmod2xml A program that converts an Amber frcmod file to an XML file that can be in-
terpreted by MTK++ (used by MCPB and related programs). Providing no arguments
returns the usage message.

func A program that determines the functional groups in ligands. Providing no arguments
returns the usage message. (Part of the MCPB and related programs)

hcp_getpdb A program that adds necessary sections to a topology (prmtop) file so it can be
used for the HCP GB approximation. See Section 19.6

lmodprmtop A program that adds VDW walls to all atoms for LMOD searches. See Subsec-
tion 19.5.7. Use it as
lmodprmtop <input_prmtop> <output_prmtop>

matextract Part of the symmetry definition programs, used to print matrices dumped to stdin
to stdout. See Subsection 17.5.5

matgen Generate symmetry-transformation matrices. Part of the symmetry definition pro-
grams. See Subsection 17.5.1

matmerge Merges symmetry-transformation matrices into one matrix transformation matrix.
Part of the symmetry definition programs. See Subsection 17.5.3

matmul Multiplies matrices. Part of the symmetry definition programs. See Subsection 17.5.4

mdgx An explicit solvent, PME molecular dynamics engine. See Chapter 13

MdoutAnalyzer.py A script that allows you to rapidly analyze and graph data from sander/p-
memd output files. See Section 14.5

mmE A program that calculates Amber energies and gradients. Part of the MCPB/MTK++
packages. Providing no arguments prints the usage message.

mmpbsa_py_energy A NAB program written to calculate energies for MMPBSA using either
GB or PB solvent models. It can be used as a standalone program that mimics the imin=5
functionality of sander, but it is called automatically inside MMPBSA. See MMPBSA
mdin files as example input files for this program. Providing the –help or -h flags prints
the usage message.
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mmpbsa_py_nabnmode A NAB program written to calculate normal mode entropic contri-
butions for MMPBSA. This can really only be used by MMPBSA.

molsurf A program that calculates a molecular surface area based on input PQR files and a
probe radius. Providing no arguments prints the usage message.

nab Stands for Nucleic Acid Builder. NAB is really a compiler that provides a convenient
molecular programming language loosely based on C. See Chapter 15 and other related
chapters.

ncdump Program to dump all of the data from NetCDF files (mdcrd, mdvel, etc.) in a human-
readable format to stdout. This is built with NetCDF, so consult their documentation for
detailed usage instructions. Basic usage is as follows:
ncdump <netcdf_file>

ncgen A program that generates NetCDF files. This is built with NetCDF, so consult their
documentation for usage details.

paramfit Improves force field parameters by fitting to quantum data. See Chapter 3.3

parmcal Calculates parameters for given angles and bonds interactively. See Subsection 5.4.2

parmchk2 A program that analyzes an input force field library file (mol2 or amber prep), and
extracts relevant parameters into an frcmod file. See Subsection 5.1.2

parmed.py A program for querying and manipulating prmtop files. See Section 3.2

pbsa A finite difference Poisson-Boltzmann solver. See Chapter 10

pdbSearcher Searches a local PDB database. Part of the MCPB/MTK++ package. Use no
arguments to get the usage message

prep2xml Converts Amber prep file to an XML file format that can be understood by MCP-
B/MTK++. Use no arguments to get the usage message.

prepgen A program used as part of antechamber that generates an Amber prep file. Use no
arguments to print the usage message. See Section 5.3

process_mdout.perl A perl script that parses the mdout files from a molecular dynamics simu-
lation and dumps statistics that can be plotted. It is used extensively in the online tutorials
found on the amber website (http://ambermd.org/tutorials/)

process_minout.perl A perl script just like process_mdout.perl for minimization output files.

protonator A program to add protons to chemical systems. Part of the MCPB/MTK++ pack-
age. Use no arguments to print a usage message.

ptraj A trajectory post-processing tool. See Chapter 9. Most users should use cpptraj instead.

rdparm A program to parse and provide details about a given prmtop file. See Section 9.6
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1.7 List of programs

reduce A program for adding or removing hydrogen atoms to a PDB. See Section 14.2

residuegen A program to automate the generation of an Amber residue template (i.e. Amber
prep file). See Subsection 5.4.3

resp A program typically called by antechamber and R.E.D. tools to perform a Restrained
ElectroStatic Potential calculation for calculating partial atomic charges. Use no argu-
ments to get the usage message

respgen A program called by antechamber to generate RESP input files. See Section 5.3

rism1d A 1D-RISM solver. See Section 11.4

rism3d.snglpnt A 3D-RISM solver for single point calculations. See Section 11.6

sequenceAligner A program for sequence alignment and structural superimposition. Part of
the MCPB/MTK++ package. Use no arguments to get a usage message.

softcore_setup.py A program to aid in softcore TI setup. Use no arguments to get a usage
message.

sqm Semiempirical (or Stand-alone) Quantum Mechanics solver. See Chapter 7

stats A simple statistics program. Part of the MCPB/MTK++ package.

stdLib2Sdf A program to convert a standard XML library file into an SDF library file. Part of
the MCPB/MTK++ package. Use no arguments to get a usage message.

superimposer A program to do structural superimposition. Part of the MCPB/MTK++ pack-
age. Use no arguments to get a usage message directly.

tleap A script that calls teLeap with specific setup command-line arguments. See Chapter 4

transform Applies matrix transformations to a structure. Part of the symmetry definition pro-
grams. See Subsection 17.5.6

tss_init A program to do some matrix stuff. See Section 17.5

tss_main A program to do some matrix stuff. See Section 17.5

tss_next A program to do some matrix stuff. See Section 17.5

ucpp A program to do some source code preprocessing. You should never actually use this
program—it is used in the installation process.

xaLeap A graphical program for creating Amber topology files. This program is called through
the xleap script, so you should never actually invoke this program directly.

xleap A script that calls xaLeap with specific setup command-line arguments. See Chapter 4

xparmed.py A graphical front-end to ParmEd functionality (i.e., parameter file editing and
querying). See Section 3.2
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1 Getting started

Parallel programs (they operate the same as their serial counterparts):

mdgx.MPI MPI version of mdgx

mpinab MPI version of nab

MMPBSA.py.MPI MPI version of MMPBSA
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2 Specifying a force field

Amber is designed to work with several simple types of force fields, although it is most
commonly used with parametrizations developed by Peter Kollman and his co-workers. There
are now several such parametrization, with no obvious “default” value. The “traditional”
parametrization uses fixed partial charges, centered on atoms. The current recommended force
field for proteins and nucleic acids is ff12SB, although ff03.r1 is also commonly used; descrip-
tions are given below. Less extensively used, but very promising, modifications add polarizable
dipoles to atoms, so that the charge description depends upon the environment; such potentials
are called “polarizable” or “non-additive”. Examples are ff02 and ff02EP: the former has atom-
based charges (as in the traditional parametrization), and the latter adds in off-center charges
(or “extra points”), primarily to help describe better the angular dependence of hydrogen bonds.
Major updates to these are under development, but were not ready for the AmberTools13 release
in April, 2013.

An alternative is to use force fields originally developed for the CHARMM codes; this re-
quires a completely different setup procedure, which is described in Section 2.11, below. Force
fields for carbohydrates and lipids are also discussed below.

In order to tell LEaP which force field is being used, the four types of information described
below need to be provided. This is generally accomplished by selecting an appropriate leaprc
file, which loads the information needed for a specific force field (see also section 2.2, below).

1. A listing of the atom types, what elements they correspond to, and their hybridizations.
This information is encoded as a set of LEaP commands, and is normally read from a
leaprc file.

2. Residue descriptions (or “residue topologies”) that describe the chemical nature of amino
acids, nucleotides, and so on. These files specify the connectivities, atom types, charges,
and other information. These files have a “prep” format (a now-obsolete part of Amber)
and the extension “.in”. Standard libraries of residue descriptions are in the $AMBER-
HOME/dat/leap/prep directory. The antechamber program may be used to generate prep
files for other organic molecules.

3. Parameter files give force constants, equilibrium bond lengths and angles, Lennard-Jones
parameters, and the like. Standard files have a “.dat” extension, and are found in $AM-
BERHOME/dat/leap/parm.

4. Extensions or changes to the parameters can be included in frcmod files. The expec-
tation is that the user will load a large, “standard” parameter file, and, if required, a
smaller frcmod file that describes any needed supplementary parameters or adjustments
to the standard parameters. The frcmod files for changing the default water model (which
is TIP3P) into other water models are in files like $AMBERHOME/dat/leap/parm/frc-
mod.tip4p. The parmchk2 program (part of antechamber) can also generate frcmod files.
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2 Specifying a force field

2.1 Specifying which force field you want in LEaP

Various combinations of the above files make sense, and we have moved to an “ff” (force
field) nomenclature to identify these; examples would then be ff94 (which was the default in
Amber 5 and 6), ff99, etc. The most straightforward way to specify which force field you want
is to use one of the leaprc files in $AMBERHOME/dat/leap/cmd. The syntax is

xleap -s -f <filename>

Here, the -s flag tells LEaP to ignore any leaprc file it might find, and the -f flag tells it to start
with commands for some other file. Here are the combinations we support and recommend:

File name Topology Parameters
leaprc.ff12SB Cornell et al., 1994 see Sec. 2.2
leaprc.ff03.r1 Duan et al. 2003 parm99.dat+frcmod.ff03
leaprc.ff03ua Yang et al. 2003 parm99.dat+frcmod.ff03+frcmod.ff03ua
leaprc.ff02 reduced charges parm99.dat+frcmod.ff02pol.r1
leaprc.gaff none gaff.dat

leaprc.GLYCAM_06h Woods et al. GLYCAM_06h.dat
leaprc.GLYCAM_06EPb " GLYCAM_06EPb.dat

leaprc.lipid11 Skjevik et al., 2012 lipid11.dat (see reference [11])
leaprc.lipid12 “ lipid12.dat (see reference [12])

Notes:

1. There is no default leaprc file. If you make a link from one of the files above to a file
named leaprc, then that will become the default. For example:

cd $AMBERHOME/dat/leap/cmd

ln -s leaprc.ff12SB leaprc

will provide a good default for many users; after this you could just invoke tleap or
xleap without any arguments, and it would automatically load the ff12SB force field. A
file named leaprc in the working directory overrides any other such files that might be
present in the search path.

2. Most of the choices in the above table are for additive (non-polarizable) simulations; you
should use saveAmberParm to save the prmtop file, and keep the default ipol=0 in sander
or pmemd.

3. The ff02 entries in the above table are for non-additive (polarizable) force fields. Use
saveAmberParmPol to save the prmtop file, and set ipol=1 in the sander input file. Note
that POL3 is a polarizable water model, so you need to use saveAmberParmPol for it as
well.

4. There is also a leaprc.gaff file, which sets you up for the GAFF (“general” Amber) force
field. This is primarily for use with Antechamber (see Chapter 5), and does not load any
topology files.
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2.2 The ff12SB force field

ff99SB ff10 ff12SB
proteins = ff99 +

backbone torsion
modifications

no change from
ff99SB

= ff99SB + new
backbone and

sidechain torsions
DNA = ff99 = ff99 +

“Barcelona”
backbone torsion

modifications

no change from
ff10

RNA = ff99 = ff99 +
“Barcelona”

backbone
changes + “OL3”

changes for χ

no change from
ff10

Table 2.1: Changes in recent fixed-charge forcefields for proteins and nucleic acids

5. There are some leaprc files for older force fields in the $AMBERHOME/dat/leap/cmd/oldff
directory. We no longer recommend these combinations, but we recognize that there may
be reasons to use them, especially for comparisons to older simulations. See Section
2.12.

6. Nucleic acid residues in ff12SB use the new (version 3) PDB nomenclature: “DC” is used
for deoxy-cytosine, and “C” for cytosine in RNA, etc. Earlier force fields (which are not
recommended!) use “RC” for the RNA version. If you want a single, nucleoside, use
“CN”, etc. For a single nucleotide, use the following command in LEaP:

cnuc = sequence { OHE C3 }

and analogs for other bases. Note that this will construct a protonated 5’ phosphate group,
which may not be what you want.

7. The General Amber Force Field (gaff) is discussed in Chap. 5.

2.2 The ff12SB force field

leaprc.ff12SB This will load the files listed below

parm10.dat ff10 force field parameters

frcmod.ff12SB ff12SB modifications to parm10.dat

amino12.lib topologies and charges for amino acids

amino12nt.lib same, for N-terminal amino acids

amino12ct.lib same, for C-terminal amino acids

nucleic12.lib topologies and charges for nucleic acids

The most current fixed-charge Amber force fields are labelled ff12SB; these have evolved from
other recent Amber force fields as described in Table 2.1. The following paragraphs give more
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2 Specifying a force field

details on the history and development of these parameters. Note that the the ff99SB and ff10
parameter sets (which are documented in Section 2.12 below) are no longer recommended for
general use. Note also that ff12SB calculations must be carried out with Amber12 if using the
GB7, GB8, or GBSA implicit solvent models.

2.2.1 Proteins

As shown in the Table, ff12SB is a continuing evolution of the ff99SB force field, primarily
developed in the Simmerling group at Stony Brook University.[13] Several groups had noticed
that the older ff94 and ff99 parameter sets did not provide a good energy balance between
helical and extended regions of peptide and protein backbones. Another problem is that many
of the ff94 variants had incorrect treatment of glycine backbone parameters. ff99SB improved
this behavior, presenting a careful reparametrization of the backbone torsion terms in ff99 and
achieves much better balance of four basic secondary structure elements (PP II, β , αL, and
αR). A detailed explanation of the parametrization as well as an extensive comparison with
many other variants of fixed-charge Amber force fields is given in the reference above. Briefly,
dihedral term parameters were obtained through fitting the energies of multiple conformations
of glycine and alanine tetrapeptides to high-level ab initio QM calculations. We have shown
that this force field provides much improved proportions of helical versus extended structures.
In addition, it corrected the glycine sampling and should also perform well for β -turn structures,
two things which were especially problematic with most previous Amber force field variants.

Since 2006, a number of limitations of the ff99SB parameter sets became evident, and a
new round of parameter optimization was undertaken. The changes mainly involve torsional
parameters for the backbone and side chains. For backbones, ff99SB has been demonstrated to
understabilize helical conformations of transiently folded peptides. Therefore, a principal goal
of ff12SB was to predict accurate secondary structure propensities. Of candidate force fields
adjusting the φ ′ and ψ ′ parameters to enhance α/ppII stability, modification of only φ ′ most
accurately reproduced the delicate balance of secondary structure indicated by experiments.
We extensively tested three candidate force fields in a diverse range of systems modifying this
torsional term. The one that best reproduces secondary structure, order parameters, and vicinal
scalar couplings is distributed here.

The side chain dihedral parameters of ff99SB were the same as those of ff94. Residues such
as isoleucine, leucine, aspartate, and asparagine (cf. ff99SBildn) sample conformations different
from those indicated by experiments. We therefore refined the dihedral corrections of the amino
acid side chains by fitting energy profiles to match ab initio quantum data. A key objective in the
ff12SB fitting was to develop parameters that are robust with variation of the local environment,
including backbone conformation, of which the training set possesses a limited number, and
solvent, notably absent from the training. Since side-chain preferences reproducibly vary with
backbone conformation, we employed multiple backbone conformations of each amino acid
to partially account for energy backbone-dependence. We also did not preferentially solve our
corrections for certain side chain conformers that happen to be stable at a particular backbone
conformation of a dipeptide in vacuo.

Where particularly strong non-bonded interactions occur, minor deficiencies in non-bonded
models may manifest as significant, structurally-dependent energy errors. This is especially
true since Amber charges are not particularly in vacuo charges. Strong non-bonded interactions
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2.2 The ff12SB force field

may also induce strain, exposing errors in bond length or angle representation far away from the
ground state. Since the goal is to fit robust parameters describing local dihedral torsion effects
that are appropriate as other structural features may change, we removed from our training any
structures where atoms not in a bond, angle, or torsion with each other were particularly close.
We also restrained all backbone dihedrals, including hydrogens, to further avoid overly strong
vacuum non-bonded interactions.

Together with new corrections for the backbone and the four amino acids addressed in
ff99SBildn, this work offers updated side chain dihedral corrections for lysine, arginine, glu-
tamate, glutamine, methionine, serine, threonine, valine, tryptophan, cysteine, phenylalanine,
tyrosine, and histidine. ff12SB enhances reproduction of experimentally indicated geometries
over ff99SB.

2.2.2 Nucleic acids

As with proteins, many features of the current force fields, including partial atomic charges,
Lennard-Jones parameters, and most bond and angle terms, date back to force fields developed
in the 1990’s, and overviews of this work are available.[14, 15] The next breakthrough’s in
the Amber nucleic acid force field development came from observations from relatively longer
simulations on the 50-100 ns time scale in the early 2000’s.[16, 17] These found systematic
over-population of γ = trans backbone geometries in simulations of nucleic acids. High level
QM calculations were performed on models of sugars and phosphates, specifically a sugar-
phosphate model[18] and a sugar-phosphate-sugar model,[19] which ultimately led to the ff99-
bsc0 parameterization.[18] For simulation of canonical DNA and RNA structures, the ff99-bsc0
parameterization has proven rather successful. For non-canonical structures, particular those
with loops or bulges, or χ flips, some anomalies have been noted. Particularly with RNA,
incorrect loop geometries, backbone sub-state populations and sugar pucker populations were
observed in longer simulations. In addition to not being able to always maintain south puck-
ers where found in RNA structures, multiple groups noticed a tendency for the RNA backbone
to shift putting χ into the high-anti region which leads to an opening of the duplex structure
into a ladder-like configuration. Again, QM methods at various levels were employed to im-
prove the χ distribution using relevant model systems. The most tested χ modifications are the
“OL” modifications used in ff12SB.[20, 21] An alternative available with Amber is the Yildirim
χ modifications (and also related modifications called TOR which alter ε/ζ as well)[22–24],
and a systematic assessment and validation of these newer χ modifications is underway on a
large series of RNA tetraloop structures. Note that small changes to a particular dihedral may
lead to alteration in properties of related dihedrals, essentially they may have unintended con-
sequences. For example, the ff99-bsc0 modifications tend to lock RNA sugar puckers mainly
in the north, even with nucleotides in particular sequence contexts that prefer southern confor-
mations. Moreover, the χ modifications tend to further destabilize γ = trans. This suggests
that to reliably improve the nucleic acid dihedrals, a more systematic approach across many
dihedrals with simultaneous fitting may be more appropriate. Moreover, no longer do we fully
support the idea that parameters are transferable between DNA and RNA, or between purines
and pyrimidines. For example, the ff99-OL modifications (with or without ff99-bsc0) improve
the modeling of RNA, but lead to issues with DNA, most notably with quadruplex structures.
Therefore recent work has focused on separate χ modifications for DNA.[25]
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2 Specifying a force field

2.3 The AMOEBA potentials

The amoeba force field for proteins, ions, organic solvents and water, developed by Pon-
der and Ren [26–30], is available in sander and pmemd.amoeba. This force field is spec-
ified by setting iamoeba to 1 in the input file. Right now, setting up the system is a bit
complex: you need to set up the system in Tinker, then run the tinker-to-amber program to
convert to Amber prmtop and coordinate files. Some examples are in $AMBERHOME/sr-
c/pmemd.amoeba/build_amoeba. But keep checking the Amber web page, since we hope to
provide a simpler path soon.

2.4 The Duan et al. (2003) force field

frcmod.ff03 For proteins: changes to parm99.dat, primarily in the

phi and psi torsions.

all_amino03.in Charges and atom types for proteins

all_aminont03.in For N-terminal amino acids

all_aminoct03.in For C-terminal amino acids

The ff03 force field [31, 32] is a modified version of ff99 (described below). The main changes
are that charges are now derived from quantum calculations that use a continuum dielectric to
mimic solvent polarization, and that the φ and ψ backbone torsions for proteins are modified,
with the effect of decreasing the preference for helical configurations. The changes are just for
proteins; nucleic acid parameters are the same as in ff99.

The original model used the old (ff94) charge scheme for N- and C-terminal amino acids.
This was what was distributed with Amber 9, and can still be activated by using oldff/leaprc.ff03.
More recently, new libraries for the terminal amino acids have been constructed, using the same
charge scheme as for the rest of the force field. This newer version (which is recommended for
all new simulations) is accessed by using leaprc.ff03.r1.

2.5 The Yang et al. (2003) united-atom force field

frcmod.ff03ua For proteins: changes to parm99.dat, primarily in the

introduction of new united-atom carbon types and new

side chain torsions.

uni_amino03.in Amino acid input for building database

uni_aminont03.in NH3+ amino acid input for building database.

uni_aminoct03.in COO- amino acid input for building database.

The ff03ua force field [33] is the united-atom counterpart of ff03. This force field uses the same
charging scheme as ff03. In this force field, the aliphatic hydrogen atoms on all amino acid
side-chains are united to their corresponding carbon atoms. The aliphatic hydrogen atoms on
all alpha carbon atoms are still represented explicitly to minimize the impact of the united-atom
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2.6 Force fields related to semi-empirical QM

approximation on protein backbone conformations. In addition, aromatic hydrogens are also
explicitly represented. Van der Waals parameters of the united carbon atoms are refitted based
on solvation free energy calculations. Due to the use of an all-atom protein backbone, the φ

and ψ backbone torsions from ff03 are left unchanged. The sidechain torsions involving united
carbon atoms are all refitted. In this parameter set, nucleic acid parameters are still in all atom
and kept the same as in ff99.

2.6 Force fields related to semi-empirical QM

ParmAM1 and parmPM3 are classical force field parameter sets that reproduce the
geometry of proteins minimized at the semi-empirical AM1 or PM3 level, respectively.[34]
These new force fields provide an inexpensive, yet reliable, method to arrive at geometries that
are more consistent with a semi-empirical treatment of protein structure. These force fields are
meant only to reproduce AM1 and PM3 geometries (warts and all) and were not tested for use
in other instances (e.g., in classical MD simulations, etc.) Since the minimization of a protein
structure at the semi-empirical level can become cost-prohibitive, a “preminimization” with an
appropriately parametrized classical treatment will facilitate future analysis using AM1 or
PM3 Hamiltonians.

2.7 The GLYCAM force fields for carbohydrates and lipids

GLYCAM06 is a consistent and transferable parameter set for modeling carbohydrates,[35]
lipids,[36] and glycoconjugates.[37, 38] The core philosophy of the force field development
process is that parameters should be: (1) be transferable to all carbohydrate ring formations and
sizes, (2) be self-contained and therefore readily transferable to many quadratic force fields,
(3) not require specific atom types for α- and β -anomers, (4) be readily extendible to carbo-
hydrate derivatives and other biomolecules, (5) be applicable to monosaccharides and complex
oligosaccharides, and (6) be rigorously assessed in terms of the relative accuracy of its compo-
nent terms.

When combining GLYCAM06 with AMBER parameters for other biomolecules, parameter
orthogonality is ensured by assigning unique atom types for GLYCAM. These are presented in
the AMBER12 manual. In order to facilitate combing GLYCAM06 with other AMBER param-
eter sets for other biomolecules, a variation on the GLYCAM atom types has been introduced
in which the new name consists of an uppercase letter followed by second character, either a
number or lowercase letter. For example the GLYCAM “CG” atom type has been changed to
“Cg”; “HO” is now represented as “Ho”, and so forth.

As soon as new parameters are generated, or alterations are made to existing parameters, a
new version of GLYCAM is released. Updated versions that introduce new functionality are
denoted using a letter suffix (i.e. GLYCAM06a, 06b, etc.). Each release is accompanied with
an associated text file that summarizes the new functionality or alteration. For example, a par-
ticularly important update, released in GLYCAM06e, altered the endo-anomeric torsion term
(Cg-Os-Cg-Os) in order to more accurately reproduce the populations arising from ring flips

31



2 Specifying a force field

(4C1 to 1C4 etc.). This particular case suggested the need to be able to independently character-
ize the exo- and endo-anomeric effect, which was achieved by assigning different atom types
(Oa and Oe) to represent the endo-anomeric and exo-anomeric oxygen atoms, respectively.

In another important update (GLYCAM06g), a small van der Waals term was applied to all
hydroxyl hydrogen atoms (Ho) to address a rare, but catastrophic, situation that can arise during
MD simulations. In certain carbohydrate (and potentially other) configurations, a hydroxyl
proton may be structurally constrained to being very close to a carboxylate moiety. During
an MD simulation of such a system, an oscillatory motion can begin between the hydroxyl
proton and the negative charge site, leading ultimately to failure of the simulation as the proton
collapses onto the negatively charged moiety. The small van der Waals term (Ho, R* = 0.2000
Å, ε = 0.0300 kcal/mol) is just large enough to add sufficient repulsion to prevent this behavior,
while not being large enough to perturb properties such as hydrogen bond lengths.

The GLYCAM force field family, especially, GLYCAM06, has been extensively employed
in simulations of biomolecules by the larger scientific community.[39–42] The updated
GLYCAM parameters and documentation are available for download at the GLYCAM-Web
site (www.glycam.org). Also available on the website are tools for simplifying the generation
of structure and topology files for performing simulations of oligosaccharides, glycoconjugates
and glycoproteins. GLYCAM-Web has been integrated into several glycomics databases, such
as the Consortium for Functional Glycomics (www.functionalglycomics.org).

GLYCAM06 force field

GLYCAM_06h.dat Parameters for oligosaccharides (Check

www.glycam.org for more recent versions)

GLYCAM_06h.prep Structures and charges for glycosyl residues

GLYCAM_lipids_06h.prep Structures and charges for sample lipid

residues (Check www.glycam.org for

additional residues)

leaprc.GLYCAM_06h LEaP configuration file for GLYCAM-06

GLYCAM_amino_06h.lib Glycoprotein library for centrally-

positioned residues

GLYCAM_aminoct_06h.lib Glycoprotein library for C-terminal residues

GLYCAM_aminont_06h.lib Glycoprotein library for N-terminal residues

GLYCAM06EP force field using lone pairs (extra points)

GLYCAM_06EPb.dat Parameters for oligosaccharides

GLYCAM_06EPb.prep Structures and charges for glycosyl residues

leaprc.GLYCAM_06EPb LEaP configuration file for GLYCAM-06EP

GLYCAM Force Field Parameters Download Page

http://www.glycam.org/params

GLYCAM_06h.prep contains prep entries for all carbohydrate residues and GLYCAM_lipids_06h.prep
contains prep entries for lipid residues. GLYCAM_06EPb.prep contains prep entries for all car-
bohydrate residues available for modeling with extra points.
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Version Release Date Contributors Change Summary

h 20 Oct., 2010 MBT, BLF

*Changed atom type naming to be orthogonal
to other force fields. Added HO van der Waals
parameters. Set protein-related parameter
values to their parm99 counterparts. Updated
N-sulfation parameters.

g 20 Oct., 2010 HERE MBT
* 1,4-scaling terms added to parameter file.
Angle and torsion updates for pyranose rings,
N-sulfate, phosphate and sialic acid.

f 3 Feb., 2009 MBT * Corrected a typo in O-Acetyl term

e 28 May, 2008 MBT
* Updated glycosidic linkage terms to optimize
ring puckering in pyranoses

d 12 May, 2008 SPK, MBT, ABY Terms for thiol glycosidic linkages

c 21 Feb., 2008 MBT, ABY
* Additional (published) terms for lipid
simulations[36]

b 10 Jan., 2008 MBT, ABY
Alkanes, alkenes, amide and amino groups for
lipid simulations[36]

a 24 Apr., 2005 ABY Sulfates & phosphates for carbohydrates

Table 2.2: Version change summary for the GLYCAM-06 force field. *Previously released pa-
rameters were changed. See full release notes at glycam.org/params. SPK: Sameer
P. Kawatkar. MBT: Matthew B. Tessier. ABY: Austin B. Yongye. BLF: B. Lachele
Foley.

For linking glycans to proteins, libraries containing modified amino acid residues (Ser, Thr,
Hyp, and Asn) must be loaded. GLYCAM_amino_06h.lib GLYCAM_aminont_06h.lib and
GLYCAM_aminoct_06h.lib contain entries for centrally located, N-terminal and C-terminal
amino acids, respectively. Amino acid libraries designed for linking carbohydrates modeled
with extra points are not currently available.

2.7.1 File versioning

Beginning on 15 September, 2011, a new versioning system was implemented for Glycam
parameters. Files produced before that date will not necessarily conform to the new system. In
the new system, all files containing parameters are versioned. Since they are provided merely
as a convenience, the “leaprc” files, will not be versioned. Users should check their contents
and modify them with recent parameters as appropriate.

The new versioning system employs letters and numbers. If a parameter set contains new
functionality (e.g., the addition of new parameters) or fundamental changes (e.g., atom type
name reassignments), a letter will be appended to its name. If the new version contains cor-
rections (e.g., for typographical errors), its name will be appended with a number. See gly-
cam.org/params for more documentation and examples.

Researchers are also encouraged to read the version change documentation available on the
GLYCAM Parameters download page under “Documents.” In this document, the changes spe-
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cific to each version release are detailed. The changes are also summarized here in Table 2.2.

2.7.2 Atom type name changes in the current versions

Beginning with the current versions, Glycam atom type names will adopt a standard designed
to keep them from overlapping with other force fields. In most cases, Glycam’s type names will
consist of two characters, one upper-case followed by one lower-case. Because of this, leaprc
files, lib files and prep files from previous versions will be incompatible with the current version.

Note that some type names will not change, despite being present in the Glycam force field
files. This will be the case where the interface to some other force field is needed, for example
when linking to amino acid residues. In these cases, Glycam will use the type name appropriate
to the external force field. Parameters will be introduced only to the extent necessary to provide
a link. Since the associated parameters will also include Glycam types, they should only affect
the intersections between the two force fields.

2.7.3 General information regarding parameter development

In GLYCAM-06,[35] the torsion terms have now been entirely developed by fitting to quan-
tum mechanical data (B3LYP/6-31++G(2d,2p)//HF/6-31G(d)) for small-molecules. This has
converted GLYCAM-06 into an additive force field that is extensible to diverse molecular
classes including, for example, lipids and glycolipids. The parameters are self-contained, such
that it is not necessary to load any AMBER parameter files when modeling carbohydrates or
lipids. To maintain orthogonality with AMBER parameters for proteins, notably those involv-
ing the CT atom type, tetrahedral carbon atoms in GLYCAM are called Cg (C-GLYCAM,
CG in previous releases). Thus, GLYCAM and AMBER may be combined for modeling
carbohydrate-protein complexes and glycoproteins. More information on atom type names is
available in 2.7.2 . Because the GLYCAM-06 torsion terms were derived by fitting to data for
small, often highly symmetric molecules, asymmetric phase shifts were not required in the pa-
rameters. This has the significant advantage that it allows one set of torsion terms to be used
for both α- and β -carbohydrate anomers regardless of monosaccharide ring size or conforma-
tion. A molecular development suite of more than 75 molecules was employed, with a test suite
that included carbohydrates and numerous smaller molecular fragments. The GLYCAM-06
force field has been validated against quantum mechanical and experimental properties, includ-
ing: gas-phase conformational energies, hydrogen bond energies, and vibrational frequencies;
solution-phase rotamer populations (from NMR data); and solid-phase vibrational frequencies
and crystallographic unit cell dimensions.

2.7.4 Scaling of electrostatic and nonbonded interactions

As in previous versions of GLYCAM,[43] the parameters were derived for use without scal-
ing 1-4 non-bonded and electrostatic interactions. Thus, in sander, pmemd, and so on, the
simulation parameters scnb and scee should typically be set to unity. We have shown that this is
essential in order to properly treat internal hydrogen bonds, particularly those associated with
the hydroxymethyl group, and to correctly reproduce the rotamer populations for the C5-C6
bond.[44] Beginning with Amber 11, it is now possible to employ mixed scaling of the scnb
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2.7 The GLYCAM force fields for carbohydrates and lipids

and scee parameters. Anyone wishing to simulate systems containing both carbohydrates and
proteins should use the new mixed scaling capability. To do this, any scaling factors that differ
from the default must be included in the parameter file. Beginning with the GLYCAM_06g
parameter file shipped with Amber 11, these factors are already included. Anyone wishing to
employ earlier parameter sets must modify the files.

2.7.5 Development of partial atomic charges

As in previous versions of GLYCAM, the atomic partial charges were determined using the
RESP formalism, with a weighting factor of 0.01,[35, 45] from a wavefunction computed at
the HF/6-31G(d) level. To reduce artifactual fluctuations in the charges on aliphatic hydrogen
atoms, and on the adjacent saturated carbon atoms, charges on aliphatic hydrogens (types HC,
H1, H2, and H3) were set to zero while the partial charges were fit to the remaining atoms.[46]
It should be noted that aliphatic hydrogen atoms typically carry partial charges that fluctuate
around zero when they are included in the RESP fitting, particularly when averaged over con-
formational ensembles.[35, 47] In order to account for the effects of charge variation associated
with exocyclic bond rotation, particularly associated with hydroxyl and hydroxylmethyl groups,
partial atomic charges for each sugar were determined by averaging RESP charges obtained
from 100 conformations selected evenly from 10-50 ns solvated MD simulations of the methyl
glycoside of each monosaccharide, thus yielding an ensemble averaged charge set.[35, 47]

2.7.6 Carbohydrate parameters for use with the TIP5P water model

In order to extend GLYCAM to simulations employing the TIP-5P water model, an addi-
tional set of carbohydrate parameters, GLYCAM-06EP, has been derived in which lone pairs
(or extra points, EPs) have been incorporated on the oxygen atoms.[48] The optimal O-EP dis-
tance was located by obtaining the best fit to the HF/6-31g(d) electrostatic potential. In general,
the best fit to the quantum potential coincided with a negligible charge on the oxygen nuclear
position. The optimal O-EP distance for an sp3 oxygen atom was found to be 0.70 Å; for an
sp2 oxygen atom a shorter length of 0.3 Åwas optimal. When applied to water, this approach to
locating the lone pair positions and assigning the partial charges yielded a model that was es-
sentially indistinguishable from TIP-5P. Therefore, we believe this model is well suited for use
with TIP-5P.[48] The new files are named 06EP (originally 04EP), as they have been corrected
for numerous typographical errors and updated to match current naming and residue structure
conventions.

2.7.7 Carbohydrate Naming Convention in GLYCAM

In order to incorporate carbohydrates in a standardized way into modeling programs, as well
as to provide a standard for X-ray and NMR protein database files (pdb), we have developed a
three-letter code nomenclature. The restriction to three letters is based on standards imposed on
protein data bank (PDB) files by the RCSB PDB Advisory Committee (www.rcsb.org/pdb/pdbac.html),
and for the practical reason that all modeling and experimental software has been developed to
read three-letter codes, primarily for use with protein and nucleic acids.
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Carbohydrate Pyranose Furanose
α/β , D/L α/β , D/L

Arabinose yes yes
Lyxose yes yes
Ribose yes yes
Xylose yes yes
Allose yes
Altrose yes

Galactose yes a
Glucose yes a
Gulose yes
Idose a

Mannose yes
Talose yes

Fructose yes yes
Psicose yes yes
Sorbose yes yes
Tagatose yes yes
Fucose yes

Quinovose yes
Rhamnose yes

Galacturonic Acid yes
Glucuronic Acid yes

Iduronic Acid yes
N-Acetylgalactosamine yes
N-Acetylglucosamine yes
N-Acetylmannosamine yes

Neu5Ac yes, b yes,b
KDN a,b a,b
KDO a,b a,b

Table 2.3: Current Status of Monosaccharide Availability in GLYCAM. (a) Currently under de-
velopment. (b) Only one enantiomer and ring form known.
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Carbohydratea One letter codeb Common Abbreviation
1 D-Arabinose A Ara
2 D-Lyxose D Lyx
3 D-Ribose R Rib
4 D-Xylose X Xyl
5 D-Allose N All
6 D-Altrose E Alt
7 D-Galactose L Gal
8 D-Glucose G Glc
9 D-Gulose K Gul

10 D-Idose I Ido
11 D-Mannose M Man
12 D-Talose T Tal
13 D-Fructose C Fru
14 D-Psicose P Psi
15 D-Sorbose Bd Sor
16 D-Tagatose J Tag
17 D-Fucose (6-deoxy D-galactose) F Fuc
18 D-Quinovose (6-deoxy D-glucose) Q Qui
19 D-Rhamnose (6-deoxy D-mannose) H Rha
20 D-Galacturonic Acid Od GalA
21 D-Glucuronic Acid Zd GlcA
22 D-Iduronic Acid Ud IdoA
23 D-N-Acetylgalactosamine Vd GalNac
24 D-N-Acetylglucosamine Yd GlcNAc
25 D-N-Acetylmannosamine Wd ManNAc
26 N-Acetyl-neuraminic Acid Sd NeuNAc, Neu5Ac

KDN KNc,d KDN
KDO KOc,d KDO

N-Glycolyl-neuraminic Acid SGc,d NeuNGc, Neu5Gc

Table 2.4: The one-letter codes that form the core of the GLYCAM residue names for monosac-
charides aUsers requiring prep files for residues not currently available may con-
tact the Woods group (www.glycam.org) to request generation of structures and
ensemble averaged charges. bLowercase letters indicate L-sugars, thus L-Fucose
would be “f”, see Table 2.7 . cLess common residues that cannot be assigned a
single letter code are accommodated at the expense of some information content.
dNomenclature involving these residues will likely change in future releases.[49]
Please visit www.glycam.org for the most updated information.
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α−D-Glcp β−D-Galp α−D-Arap β−D-Xylp
Linkage Position Residue Name Residue Name Residue Name Residue Name

Terminalb 0GAb 0LB 0AA 0XB
1-c 1GAc 1LB 1AA 1XB
2- 2GA 2LB 2AA 2XB
3- 3GA 3LB 3AA 3XB
4- 4GA 4LB 4AA 4XB
6- 6GA 6LB

2,3- ZGAd ZLB ZAA ZXB
2,4- YGA YLB YAA YXB
2,6- XGA XLB
3,4- WGA WLB WAA WXB
3,6- VGA VLB
4,6- UGA ULB

2,3,4- TGA TLB TAA TXB
2,3,6- SGA SLB
2,4,6- RGA RLB
3,4,6- QGA QLB

2,3,4,6- PGA PLB

Table 2.5: Specification of linkage position and anomeric configuration in D-hexo- and D-
pentopyranoses in three-letter codes based on the GLYCAM one-letter code aIn pyra-
noses A signifies α-configuration; B = β . bPreviously called GA, the zero prefix in-
dicates that there are no oxygen atoms available for bond formation, i.e., that the
residue is for chain termination. cIntroduced to facilitate the formation of a 1–1´
linkage as in α-D-Glc-1-1´-α-D-Glc {1GA 0GA}. dFor linkages involving more than
one position, it is necessary to avoid employing prefix letters that would lead to a
three-letter code that was already employed for amino acids, such as ALA.

α-D-Glc f β -D-Man f α-D-Ara f β -D-Xyl f
Linkage position Residue name Residue name Residue name Residue name

Terminal 0GD 0MU 0AD 0XU
1- 1GD 1MU 1AD 1XU
2- 2GD 2MU 2AD 2XU
3- 3GD 3MU 3AD 3XU
· · · · · · · · · · · · · · ·
etc. etc. etc. etc. etc.

Table 2.6: Specification of linkage position and anomeric configuration in D-hexo- and D-
pentofuranoses in three-letter codes based on the GLYCAM one-letter code. In fura-
noses D (down) signifies α; U (up) = β .
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α-L-Glcp β -L-Manp α-L-Arap β -L-Xylp
Linkage position Residue name Residue name Residue name Residue name

Terminal 0gA 0mB 0aA 0xB
1- 1gA 1mB 1aA 1xB
2- 2gA 2mB 2aA 2xB
3- 3gA 3mB 3aA 3xB
· · · · · · · · · · · · · · ·
etc. etc. etc. etc. etc.

Table 2.7: Specification of linkage position and anomeric configuration in L-hexo- and L-
pentofuranoses in three-letter codes.

As a basis for a three-letter PDB code for monosaccharides, we have introduced a one-letter
code for monosaccharides (Table 2.4).[49] Where possible, the letter is taken from the first letter
of the monosaccharide name. Given the endless variety in monosaccharide derivatives, the lim-
itation of 26 letters ensures that no one-letter (or three-letter) code can be all encompassing. We
have therefore allocated single letters firstly to all 5- and 6-carbon, non-derivatized monosac-
charides. Subsequently, letters have been assigned on the order of frequency of occurrence or
biological significance.

Using three letters (Tables 2.5 to 2.7), the present GLYCAM residue names encode the fol-
lowing content: carbohydrate residue name (Glc, Gal, etc.), ring form (pyranosyl or furanosyl),
anomeric configuration (α or β , enantiomeric form (D or L) and occupied linkage positions
(2-, 2,3-, 2,4,6-, etc.). Incorporation of linkage position is a particularly useful addition, since,
unlike amino acids, the linkage cannot otherwise be inferred from the monosaccharide name.
Further, the three-letter codes were chosen to be orthogonal to those currently employed for
amino acids.

2.8 Lipid Force Fields

Biological processes in the human body are dependent on highly specific molecular interac-
tions. The vast majority of the interactions take place in compartments within the cell, and an
understanding of the behavior of the membranes that compartmentalize and enclose the cell is
therefore critical for rationalizing these processes. Biological membranes are complex struc-
tures formed mostly by lipids and proteins. For this reason lipid bilayers have received a lot
of attention both computationally and experimentally for many years.[50, 51] The vital role of
cell membranes is underlined by the estimation that over half of all proteins interact with mem-
branes, either transiently or permanently.[52] Further, G protein-coupled receptors embedded
in the membrane account for 50−60% of present day drug targets, and membrane proteins as
a whole make up around 70%.[53] Even so, only around 1300 unique resolved structures of
membrane bound proteins, out of a total of 80,000 searchable entries, exist in the Protein Data
Bank reflecting the difficulties in studying membrane-associated proteins experimentally, mak-
ing them prime targets for simulation.

Given the wide use of the Amber protein and nucleic acid force fields and the ubiquity of
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lipids, it is somewhat surprising that historically there have been only limited efforts to develop
Amber-compatible lipid force fields. Prior to 2012, the only force field parameters for lipids
distributed with AmberTools were part of the Glycam force field.[36] Traditionally, lipid simu-
lations with Amber have either employed the Charmm parameters, via support for the Charmm
force fields through the Chamber package[54] or attempted to adapt the General Amber Force
Field (GAFF) with limited success.

Recent efforts have greatly expanded support for simulation of lipids with Amber. These
include the development of a modular framework for lipid simulations and initial parameter-
ization within the LIPID11 force field[11] as well as a careful refinement of the non-bonded
parameters and associated torsion terms within the GAFF force field for specific application
to lipids.[55] The latter, GAFFLipid, is the first lipid parameter set based on the Amber force
field equation to support simulation of lipid bilayers in the tensionless NPT ensemble while the
former, LIPID11, provides the first modular framework for constructing lipid simulations that
is analogous to the Amber amino and nucleic acid force fields. Together these developments
have made simulation of phospholipids with AMBER substantially easier.

Current work is focusing on combining the best aspects of these two lipid parameter sets
to produce a modular lipid force field that is compatible with the existing Amber pairwise
additive force fields. Termed LIPID12, this force field supports tensionless NPT simulations of
lipid bilayers, greater fidelity with experimentally measured properties such as area per lipid,
order parameters and electron density profiles. Unfortunately at the time of the AmberTools
13 release LIPID12 was still undergoing minor changes and so it has not been included at
release. It is currently slated for release in mid-2013 and will be made available as an update to
AmberTools 13.

2.8.1 An Amber Lipid Force Field Tutorial

The Amber Molecular Dynamics web site provides a variety of tutorials for computational
chemistry simulations. In 2012, a tutorial titled “An Amber Lipid Force Field Tutorial” was
released. This tutorial explores the molecular dynamics of phospholipids in the Amber software
suite using a lipid force field. For more information, see the Amber Molecular Dynamics web
site (http://ambermd.org/) and the Amber Tutorials (http://ambermd.org/tutorials/) page.

2.8.2 LIPID11: A modular lipid force field

Relevant files

leaprc.lipid11 loads the files below

lipid11.lib atoms, charges, and topologies for LIPID11 residues

lipid11.dat LIPID11 force field parameters

Usage

source leaprc.lipid11

LIPID11 is a modular force field for the simulation of phospholipids and cholesterol designed
to be compatible with the other pairwise additive Amber force fields.[11] Phospholipids are
divided into interchangeable head group and tail group “residues.”
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Description LIPID11 Residue Name
Acyl chain Palmitoyl (16:0) PA

Stearoyl (18:0) ST
Oleoyl (18:1 n-9) OL

Linoleoyl (18:2 n-6) LEO
Linolenoyl (18:3 n-3) LEN

Arachidonoyl (20:4 n-6) AR
Docosahexanoyl (22:6 n-3)) DHA

Head group Phosphatidylcholine PC
Phosphatidylethanolamine PE

Phosphatidylserine PS
Phosphatidic acid (PHO4-) PH-
Phosphatidic acid (PO42-) P2-

R-phosphatidylglycerol PGR
S-phosphatidylglycerol PGS

Phosphatidylinositol PI
Other Cholesterol CHL

Table 2.8: LIPID11 residue names

Currently, there are seven tail group residues and eight head group residues supported, as
well as cholesterol. LEaP supports any combination of lipid residues. The supported LIPID11
residues and their residue names are listed in Table 2.8.

LIPID11 can be used alone or in conjunction with other Amber force fields. The order with
which the various AMBER force fields (FF12 for example) are loaded along with LIPID12
should not matter. For example, to load ff12SB and LIPID11 in LEaP use

source leaprc.ff12SB

source leaprc.lipid11

A properly formatted lipid PDB can then be loaded into LEaP. Each phospholipid molecule in
LIPID11 is made up of three residues. Atoms from each residue must be in contiguous blocks
and ordered as described below in each molecule. A TER card must be appended after all the
atoms for each molecule. Table 2.9 specifies the residue format for the PDB file loaded by LEaP
in order to correctly define linker atoms.

The connectivity (CONECT records) section of the PDB is redundant and should be removed
prior to loading into LEaP. The head group and tail residues are linked together by the LEaP
program after loading the lipid PDB file.

A simple script called charmmlipid2amber.x is available to convert a CHARMM-GUI
(http://www.charmm-gui.org/) membrane builder pdb file to a LIPID11 pdb file ready to be
loaded in LEaP for Amber simulations:

charmmlipid2amber.x input_CHARMM-GUI.pdb output_LIPID11.pdb
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Lipid 1 sn-1 tail residue
head group residue

sn-2 tail residue
TER card

Lipid 2 sn-1 tail residue
head group residue

sn-2 tail residue
TER card

... ...

Table 2.9: LIPID11 PDB format for LEaP

2.8.3 LIPID12

LIPID12 was still undergoing minor changes and thus the force field files are not included in
the release version of AmberTools 13. Support for LIPID12 will be enabled via an update patch
to AmberTools 13 scheduled for release in mid 2013.

Relevant files

leaprc.lipid12 defines atom types and loads the files below

lipid12.lib atoms, charges, and topologies for LIPID12 residues

lipid12.dat LIPID12 force field parameters

Introduction
LIPID12[12] is a new lipid force field that combines the modular framework of LIPID11 as

well as a number of refinements inspired by GAFFlipid along with a redesigned charge fitting
model more appropriate to membrane environments and a refitting of many of the dihedral
parameters to improve fidelity with experimental observables. LIPID12 represents a major
advancement over the previous Amber compatible force fields for lipid simulation and brings
a pluggable, transferrable parameter set appropriate for lipid bilayer simulations in the NPT
ensemble without the need for an artificial constant surface tension term. LIPID12 has been
designed to be fully compatible with the other pairwise-additive Amber force fields.

As in LIPID11, the new parameter set LIPID12 includes parameters for multiple head groups,
tail groups, and cholesterol. Currently supported LIPID12 parameters are listed in Table 2.10.

A comparison of the following combinations of common lipid groups with published ex-
perimental values will be available in the following publication.[12] The lipids include: 1,2-
dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine
(DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine (POPE).

The LIPID12 update will be released through the Amber update and bugfix script. After
release, it can be applied by running the Amber configure script.

LIPID12 can be loaded into LEaP in a similar way to the other Amber force fields. In LEaP,
simply use the following command:

source leaprc.lipid12
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Description LIPID12 Residue Name
Acyl chain Lauroyl (12:0) LA

Myristoyl (14:0) MY
Palmitoyl (16:0) PA
Stearoyl (18:0) ST

Oleoyl (18:1 n-9) OL
Linoleoyl (18:2 n-6) LEO

Linolenoyl (18:3 n-3) LEN
Arachidonoyl (20:4 n-6) AR

Docosahexanoyl (22:6 n-3)) DHA
Head group Phosphatidylcholine PC

Phosphatidylethanolamine PE
Phosphatidylserine PS

Phosphatidic acid (PHO4-) PH-
Phosphatidic acid (PO42-) P2-

R-phosphatidylglycerol PGR
S-phosphatidylglycerol PGS

Phosphatidylinositol PI
Other Cholesterol CHL

Table 2.10: LIPID12 residue names.

LIPID11 formatted PDB files are compatible with the LIPID12 force field. See the LIPID11
section 2.8.2 for the specification for PDB format to load in LEaP.

2.9 Ions

frcmod.ionsjc_tip3p Joung/Cheatham ion parameters for TIP3P water

frcmod.ionsjc_spce same, but for SPC/E water

frcmod.ionsjc_tip4pew same, but for TIP4P/EW water

frcmod.ionsff99_tip3p Older monovalent ion parameters from ff94/ff99

ions08.lib topologies for ions with the new naming scheme

ions94.lib topologies for ions with the old naming scheme

In the past, for alkali ions with TIP3P waters, Amber has provided the values of Aqvist,[56]
adjusted for Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials
as in the original (which were designed for SPC water); these values reproduce the first peak of
the radial distribution for ion-OW and the relative free energies of solvation in water of the var-
ious ions. Note that these values would have to be changed if a water model other than TIP3P
were to be used. Rather arbitrarily, Amber also included chloride parameters from Dang.[57]
These are now known not to work all that well with the Aqvist cation parameters, particularly
for the K/Cl pair. Specifically, at concentrations above 200 mM, KCl will spontaneously crys-
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tallize; this is also seen with NaCl at concentrations above 1 M.[58] These “older” parameters
are now collected in frcmod.ionsff99_tip3p, but are not recommended except to reproduce older
simulations.

Recently, Joung and Cheatham have created a more consistent set of parameters, fitting solva-
tion free energies, radial distribution functions, ion-water interaction energies and crystal lattice
energies and lattice constants for non-polarizable spherical ions.[59, 60] These have been sep-
arately parametrized for each of three popular water models, as indicated above. Please note:
Most leaprc files still load the “old” ion parameters; to use the newer versions, you will need to
load the ions08.lib file as well as the appropriate frcmod file. Even for ff10, which automatically
loads ions08.lib, you will need to choose a frcmod file that matches the water model you are
using.

2.10 Solvent models

solvents.lib library for water, methanol, chloroform, NMA, urea

frcmod.tip4p Parameter changes for TIP4P.

frcmod.tip4pew Parameter changes for TIP4PEW.

frcmod.tip5p Parameter changes for TIP5P.

frcmod.spce Parameter changes for SPC/E.

frcmod.pol3 Parameter changes for POL3.

frcmod.meoh Parameters for methanol.

frcmod.chcl3 Parameters for chloroform.

frcmod.nma Parameters for N-methyacetamide.

frcmod.urea Parameters for urea (or urea-water mixtures).

Amber now provides direct support for several water models. The default water model is
TIP3P.[61] This model will be used for residues with names HOH or WAT. If you want to use
other water models, execute the following leap commands after loading your leaprc file:

WAT = PL3 (residues named WAT in pdb file will be POL3)

loadAmberParams frcmod.pol3 (sets the HW,OW parameters to POL3)

(The above is obviously for the POL3 model.) The solvents.lib file contains TIP3P,[61]
TIP3P/F,[62] TIP4P,[61, 63] TIP4P/Ew,[64, 65] TIP5P,[66] POL3[67] and SPC/E[68] models
for water; these are called TP3, TPF, TP4, T4E, TP5, PL3 and SPC, respectively. By default,
the residue name in the prmtop file will be WAT, regardless of which water model is used. If
you want to change this (for example, to keep track of which water model you are using), you
can change the residue name to whatever you like. For example,

WAT = TP4

set WAT.1 name "TP4"

would make a special label in PDB and prmtop files for TIP4P water. Note that Brookhaven
format files allow at most three characters for the residue label, which is why the residue names
above have to be abbreviated.
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Amber has two flexible water models, one for classical dynamics, SPC/Fw[69] (called
“SPF”) and one for path-integral MD, qSPC/Fw[70] (called “SPG”). You would use these in
the following manner:

WAT = SPG

loadAmberParams frcmod.qspcfw

set default FlexibleWater on

Then, when you load a PDB file with residues called WAT, they will get the parameters for
qSPC/Fw. (Obviously, you need to run some version of quantum dynamics if you are using
qSPC/Fw water.)

The solvents.lib file, which is automatically loaded with many leaprc files, also contains pre-
equilibrated boxes for many of these water models. These are called POL3BOX, QSPCFW-
BOX, SPCBOX, SPCFWBOX, TIP3PBOX, TIP3PFBOX, TIP4PBOX, TIP4PEWBOX, and
TIP5PBOX. These can be used as arguments to the solvateBox or solvateOct commands in
LEaP.

In addition, non-polarizable models for the organic solvents methanol, chloroform and
N-methylacetamide are provided,[71] along with a box for an 8M urea-water mixture. The
input files for a single molecule are in $AMBERHOME/dat/leap/prep, and the corresponding
frcmod files are in $AMBERHOME/dat/leap/parm. Pre-equilibrated boxes are in
$AMBERHOME/dat/leap/lib. For example, to solvate a simple peptide in methanol, you could
do the following:

source leaprc.ff99SB (get a standard force field)

loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)

solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)

saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

2.11 CHAMBER

CHAMBER (CHarmm↔AMBER) is a tool which enables the use of the CHARMM force
field within AMBER’s molecular dynamics engines (MDEs). If you make use of this tool,
please cite the following [54]. There are two components to CHAMBER:

1. The tool ($AMBERHOME/bin/chamber) which converts a CHARMM psf, associated co-
ordinated file, parameter and topology to a CHARMM force field enabled version of
AMBER’s prmtop and inpcrd.

2. The additional code within sander and pmemd to evaluate the extra CHARMM energies
and forces.

AMBER[72] and CHARMM[73, 74] are two approaches to the parametrization of classical
force fields that find extensive use in the modeling of biological systems. The high similarity
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in the functional form of the two potential energy functions used by these force fields, Eq.(2.1
and 2.2), gives rise to the possible use of one force field within the other MDE.

VAMBER = ∑
bonds
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2 + ∑
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2 + ∑
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2
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In the case of the CHARMM force field, its MDE is also called CHARMM[75, 76]. For the
implementation of the CHARMM force field within Amber, parameters that are of the same
energy term can be directly translated. However, there are differences in the functional forms
of the two potentials, with CHARMM having three additional bonded terms. With respect to
the 1-4 non-bonded interactions, CHARMM scales these in a different manner: the electrostatic
scaling factor (scee) is 1.0 in CHARMM but 1.2 in Amber, while the van der Waals scaling fac-
tor (scnb) is 1.0 within CHARMM but 2.0 in Amber. Additionally, CHARMM uses a different
set of parameters in the Lennard-Jones equation for the van der Waals interaction if the two
atoms are bonded 1-4 to each other.

The first additional bonded term is CHARMM’s two-body Urey-Bradley term, which extends
over all 1-3 bonds. The second is a four-body quadratic improper term. The final additional term
is a cross term, named CMAP, [77, 78], which is a function of two sequential protein backbone
dihedrals. This term originates from differences observed between classically calculated two-
dimensional φ/ψ peptide free energy surfaces using the CHARMM22 force field and those of
experiment. CMAP is a numerical energy correction which essentially transforms the 2D φ/ψ

classical energy map to match that of a QM calculated map.
Support for these extra terms has required the development of extra sections to Amber’s ex-

tensible prmtop format to accommodate this new information as well as modifications of the
precision of existing sections. For example, the CHARMM parameter file stores the equilib-
rium angle (θ0, Eq.2.2) parameter in degrees in its parameter file, while Amber stores it in
radians in the prmtop. However, during the conversion with chamber, this becomes inexact
when converted to radians. Within CHARMM this is done internally at runtime and the inex-
actness is determined by the variable type that will hold the result of this conversion. However,
for Amber, this conversion is done at the chamber execution stage, and as a result is limited by
the precision to which that specific parameter is written to the prmtop file. Hence the precision
of the ANGLE_EQUIL_VALUE has been increased; similar changes were carried out for the
CHARGE and VDW sections for the same reasons. Specifically, the modified sections of the
prmtop format and the additions to it are as follows:
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%FLAG CTITLE

The keyword CTITLE is used in place of TITLE to specify that this is a CHAMBER prmtop.

%FLAG FORCE_FIELD_TYPE

%FORMAT(i2,a78)

1 CHARMM 31 *>>>>>>>>CHARMM22 All-Hydrogen Topology File for Proteins <<

This section described the force field in use. The initial integer specifies the number of lines
to be read. The keyword CHARMM here indicates that this is the CHARMM force field.

%FLAG CHARGE

%COMMENT Atomic charge multiplied by sqrt(332.0716D0) (CCELEC)

%FORMAT(3e24.16)

The default format for charge has been changed from 5e16.8 to 3e24.16

%FLAG CHARMM_UREY_BRADLEY_COUNT

%COMMENT V(ub) = K_ub(r_ik - R_ub)**2

%COMMENT Number of Urey Bradley terms and types

%FORMAT(2i8)

This additional section describes the number of CHARMM Urey-Bradley terms present and
the total number of Urey-Bradley types in use.

%FLAG CHARMM_UREY_BRADLEY

%COMMENT List of the two atoms and its parameter index

%COMMENT in each UB term: i,k,index

%FORMAT(10i8)

This additional section lists the atom indexes and parameter lookup index for each of the
Urey-Bradley terms.

%FLAG CHARMM_UREY_BRADLEY_FORCE_CONSTANT

%COMMENT K_ub: kcal/mole/A**2

%FORMAT(5e16.8)

This additional section lists the force constant for each of the Urey-Bradley types.

%FLAG CHARMM_UREY_BRADLEY_EQUIL_VALUE

%COMMENT r_ub: A

%FORMAT(5e16.8)

This additional section lists the equilibrium value for each of the Urey-Bradley types.

%FLAG SCEE_SCALE_FACTOR

%FORMAT(5e16.8)

This additional section lists a unique value of scee for each dihedral. This overides the de-
fault or &cntrl values set for scee and in the case of the CHARMM force field will always be
1.0 for all dihedrals.

%FLAG SCNB_SCALE_FACTOR
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%FORMAT(5e16.8)

This is the analogous additional term for scnb

%FLAG CHARMM_NUM_IMPROPERS

%COMMENT Number of terms contributing to the

%COMMENT quadratic four atom improper energy term:

%COMMENT V(improper) = K_psi(psi - psi_0)**2

%FORMAT(10i8)

This additional section lists the number of CHARMM improper terms present.

%FLAG CHARMM_IMPROPERS

%COMMENT List of the four atoms in each improper term

%COMMENT i,j,k,l,index i,j,k,l,index

%COMMENT where index is into the following two lists:

%COMMENT CHARMM_IMPROPER_{FORCE_CONSTANT,IMPROPER_PHASE}

%FORMAT(10i8)

This additional section lists the atom indices and index into the parameter arrays for each of
the CHARMM improper terms.

%FLAG CHARMM_NUM_IMPR_TYPES

%COMMENT Number of unique parameters contributing to the

%COMMENT quadratic four atom improper energy term

%FORMAT(i8)

This additional section lists the number of types present for the CHARMM impropers.

%FLAG CHARMM_IMPROPER_FORCE_CONSTANT

%COMMENT K_psi: kcal/mole/rad**2

%FORMAT(5e16.8)

This additional section lists the force constant for each CHARMM improper types.

%FLAG CHARMM_IMPROPER_PHASE

%COMMENT psi: degrees

%FORMAT(5e16.8)

This additional section lists the equilibrium phase angle for each of the CHARMM improper
types.

%FLAG LENNARD_JONES_ACOEF

%FORMAT(3e24.16)

The default format for the Lennard Jones A and B coefficients has been changed from 5e16.8
to 3e24.16.

%FLAG LENNARD_JONES_14_ACOEF

%FORMAT(3e24.16)
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This additional section and the corresponding BCOEF section provide the alternative pa-
rameters for 1-4 VDW interactions in the CHARMM force field.

In concert with these prmtop additions, the appropriate modifications have to be made within
sander and pmemd to enable the calculation of the energy and derivatives corresponding to
these new terms. The intention behind the approach of creating a CHARMM enabled prmtop
file is that the use of this prmtop file should be transparent to the user. Once a CHARMM
prmtop file is produced by chamber, the sander and pmemd dynamics engines automatically
detect the presence of CHARMM parameters in the prmtop file and automatically select the
correct parameters and code paths.

WARNING: The use of an unpatched Amber molecular dynamics engine with a chamber-
generated prmtop file will give undefined behavior, leading to incorrect results. If you see the
following error at runtime:

ERROR: Flag "TITLE" not found in PARM file

it most likely means that you are using an old pmemd or sander executable.

A difficulty that has been encountered with the chamber generated prmtop files is visualisa-
tion with VMD. The format of the chamber generated prmtop is valid with respect to AMBER’s
prmtop %FLAG, %FORMAT paradigm, however, VMD does not take into account a flag’s cor-
responding format specification since it has, a priori, set each flag to a specific format. Hence,
when the format of an existing flag is modified in a prmtop, VMD fails to recognise this and
incorrectly uses its hardcoded value instead.

As of AmberTools 12, chamber has the ability to write an additional version of the prmtop
(vmd_prmtop) file, that is compatible with VMD. The general strategy here, is to use this ad-
ditional vmd_prmtop file only for viewing purposes with VMD, and use the correct prmtop for
calculations with SANDER and PMEMD. The compatible vmd_prmtop file is correct with re-
spect to topology, but an incorrect with respect to certain parameters; for example %CHARGE
has been truncated to the old format and %COMMENT has been removed.

If one specifics the -vmd flag, an additional prmtop file, named vmd_prmtop, is generated.
This can then be used with VMD in the following ways:

vmd -parm7 vmd_prmtop -rst7 file.inpcrd

vmd -parm7 vmd_prmtop -mdcrd trajectory.mdcrd

vmd -parm7 vmd_prmtop -netcdf trajectory.nc

2.11.1 Usage

Here is the set of options returned from running the chamber binary:

Usage: chamber [args]

args for input are <default>

-top <top_all27_prot_na.rtf>

-param <par_all27_prot_na.prm>
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-psf <psf.psf>

-crd <chmpdb.pdb>

Note: -crd can specify a pdb, a CHARMM crd or CHARMM rst file.

The filetype is auto detected.

args for output are <default>

-p <prmtop>

-inpcrd <inpcrd>

args for options are:

-cmap / -nocmap (Required option. Specifies

whether CMAP terms should be

included or excluded.)

-tip3_flex (allow angle in water)

-box a b c

Set the Orthorhombic lattice parameters a b c

for the generated inpcrd file.

-verbose (lots of progress messages)

-vmd

Write a VMD compatible form of the prmtop file

-radius_set (GB radius set) options are: <default>

0 Bondi radii (bondi)

1 Amber 6 modified Bondi radii (amber6)

<2> modified Bondi radii (mbondi)

6 H(N)-modified Bondi radii (mbondi2)

arg for help (this message) -h

Typical usage would be as follows:

$AMBERHOME/bin/chamber -cmap -top top_all22_prot.inp \

-param par_all22_prot.inp -psf foo.psf -crd foo.coor \

-p foo.prmtop -inpcrd foo.inpcrd -box 48.37 40.15 35.21

2.11.2 Validation

A force field is defined by its specific potential energy equation and its specific set of associ-
ated parameters; it is independent of the MDE that it is expressed in. For a faithful reproduction
of a force field that exists in a reference MDE, one needs to be able to reproduce the following
in another engine to within a specific precision:

1. The same total potential energy of the system.

2. The same energy gradients on each atom in the system.

However, as soon as dynamics are explored using a force field, external attributes such as ther-
mostat, long range electrostatic treatment and cutoffs come into play and are specific to the
MDE; these are considered outside of the definition of a force field and more closely linked to
the type of simulation being run and the MDE.
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Starting with version c36a2 of CHARMM, a command (frcdump) has been implemented
which provides a validation route for alternate implementations of the CHARMM force fields.
For a given system, this command writes the various force field potential energy contributions,
as well as the energy gradient experienced by each atom, to a file using a specific format and
to a high precision. The same formatted output can also be generated by the AMBER MDEs
to facilitate comparison and to validate that the CHARMM force field is being implemented
correctly in Amber’s MDEs.

An example section of a charmm script that will write this output to a file called
charmm_gold_c36a2 is as follows:

open unit 20 form write name charmm_gold_c36a2

frcdump unit 20

close unit 20

The analogous mdin section for Amber is as follows:

&debugf

do_charmm_dump_gold = 1,

/

Given this directive, the Amber MDE will stop after evaluating the potential energy of a system
and write the energy and forces pertaining to this to a (hardcoded) file called charmm_gold
in the same directory as the mdin file. The reader is invited to examine the various example
test calculations within the $AMBERHOME/test/chamber/dev_tests/ directory for in depth ex-
amples of the above. For such testing, it is recommended that both the CHARMM binary and
the Amber MDE binaries be compiled with the same compiler. Given that CHARMM support
within Amber and the chamber software is still somewhat experimental, the user is advised to
carry out such a comparison before running a long production run.

2.11.3 Known limitations / Issues

This is a non-exhaustive list of the current known bugs and/or limitations with chamber:

• CHARMM polarization models are not supported. (IPOL /= 0)

• The ability to read CHARMM restart files is not currently supported.

• The mdout file will contain extra potential energy fields pertaining to the CHARMM
terms. This may break or confuse third party scripts that parse such outputs.

• Third party scripts and/or tools which do not correctly parse the extensible prmtop format
may have issues with a chamber-generated prmtop file.

• The potential energy decomposition components (self, reciprocal, direct, adjusted) of the
Particle Mesh Ewald energy generated in the charmm_gold file when the do_charmm_dump_gold
= 1 mdin option in Amber do not match with the breakdown used in CHARMM, however,
the summation and resulting forces do match.

51



2 Specifying a force field

If other issues are found, the chamber authors would be very grateful if these could be reported
to them, either via the Amber mailing list and/or directly to the authors. Please ensure that
prior to reporting an issue, the chamber binary passes the test cases provided with AmberTools.
Please provide a standalone example of the problem with all input files present and a script
reproducing the sequence of commands that triggers the problem. The posting of large files
(> 2 MB) to the Amber mailing list is not recommended; instead one should make the files
available on a website somewhere and provide a link to it with the posting to the list.

2.12 Obsolete force field files

The following files are included for historical interest. We do not recommend that these be used
any more for molecular simulations. The leaprc files that load these files have been moved to
$AMBERHOME/dat/leap/parm/oldff.

2.12.1 The Weiner et al. (1984,1986) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.

allnt.in All atom database input, NH3+ Amino acids.

uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.

unint.in United atom database input, NH3+ Amino acids.

parm91X.dat Parameters for 1984, 1986 force fields.

The ff86 parameters are described in early papers from the Kollman and Case groups.[79, 80]
[The “parm91” designation is somewhat unfortunate: this file is really only a corrected version
of the parameters described in the 1984 and 1986 papers listed above.] These parameters are
not generally recommended any more, but may still be useful for vacuum simulations of nucleic
acids and proteins using a distance-dependent dielectric, or for comparisons to earlier work. The
material in parm91X.dat is the parameter set distributed with Amber 4.0. The STUB nonbonded
set has been copied from parmuni.dat; these sets of parameters are appropriate for united atom
calculations using the “larger” carbon radii referred to in the “note added in proof” of the 1984
JACS paper. If these values are used for a united atom calculation, the parameter scnb must be
defined in the prmtop file and should be set to 8.0; for all-atom calculations it should be 2.0.
The scee parameter should be defined in the prmtop file and set to 2.0 for both united atom and
all-atom variants. Note that the default value for scee is now 1.2 (the value for 1994 and later
force fields); this must be explicitly defined in the prmtop file when using the earlier force fields.

parm91X.dat is not recommended. However, for historical completeness a number of terms
in the non-bonded list of parm91X.dat should be noted. The non-bonded terms for I (iodine),
CU (copper) and MG (magnesium) have not been carefully calibrated, but are given as approx-
imate values. In the STUB set of non-bonded parameters, we have included parameters for a
large hydrated monovalent cation (IP) that represent work by Singh et al.[81] on large hydrated
counterions for DNA. Similar values are included for a hydrated anion (IM).
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The non-bonded potentials for hydrogen-bond pairs in ff86 use a Lennard-Jones 10-12 poten-
tial. If you want to run sander with ff86 then you will need to recompile, adding -DHAS_10_12
to the Fortran preprocessor flags.

2.12.2 The Cornell et al. (1994) force field

all_nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all_aminont94.in NH3+ amino acid input for database.

nacl.in Ion file.

parm94.dat 1994 force field file.

parm96.dat Modified version of 1994 force field, for proteins.

parm98.dat Modified version of 1994 force field, for nucleic acids.

Contained in ff94 are parameters from the so-called “second generation” force field developed
in the Kollman group in the early 1990s.[72] These parameters are especially derived for sol-
vated systems, and when used with an appropriate 1-4 electrostatic scale factor, have been
shown to perform well at modeling many organic molecules. The parameters in parm94.dat
omit the hydrogen bonding terms of earlier force fields. This is an all-atom force field; no
united-atom counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of
the value of 2.0 that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this
exaggerates the dipole moment of most residues by 10-20%. It thus “builds in” the amount
of polarization which would be expected in aqueous solution. This is necessary for carrying
out condensed phase simulations with an effective two-body force field which does not include
explicit polarization. The charge-fitting procedure is described in Ref [72].

The ff96 force field [82] differs from parm94.dat in that the torsions for φ and ψ have been
modified in response to ab initio calculations [83] which showed that the energy difference be-
tween conformations were quite different than calculated by Cornell et al. (using parm94.dat).
To create parm96.dat, common V1 and V2 parameters were used for φ and ψ , which were
empirically adjusted to reproduce the energy difference between extended and constrained al-
pha helical energies for the alanine tetrapeptide. This led to a significant improvement between
molecular mechanical and quantum mechanical relative energies for the remaining members of
the set of tetrapeptides studied by Beachy et al. Users should be aware that parm96.dat has
not been as extensively used as parm94.dat, and that it almost certainly has its own biases and
idiosyncrasies, including strong bias favoring extended β conformations.[13, 84, 85]

The ff98 force field [86] differs from parm94.dat in torsion angle parameters involving the
glycosidic torsion in nucleic acids. These serve to improve the predicted helical repeat and
sugar pucker profiles.

2.12.3 The Wang et al. (1999) force field

parm99.dat Basic force field parameters

all_amino94.in topologies and charges for amino acids
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all_amino94nt.in same, for N-terminal amino acids

all_amino94ct.in same, for C-terminal amino acids

all_nuc94.in topologies and charges for nucleic acids

gaff.dat Force field for general organic molecules

all_modrna08.lib topologies for modified nucleosides

all_modrna08.frcmod parameters for modified nucleosides

The ff99 force field [87] points toward a common force field for proteins for “general” organic
and bio-organic systems. The atom types are mostly those of Cornell et al. (see below), but
changes have been made in many torsional parameters. The topology and coordinate files for
the small molecule test cases used in the development of this force field are in the parm99_lib
subdirectory. The ff99 force field uses these parameters, along with the topologies and charges
from the Cornell et al. force field, to create an all-atom nonpolarizable force field for proteins
and nucleic acids.

There are more than 99 naturally occurring modifications in RNA. Amber force field param-
eters for all these modifications have been developed to be consistent with ff94 and ff99.[88]
The modular nature of RNA was taken into consideration in computing the atom-centered par-
tial charges for these modified nucleosides, based on the charging model for the “normal”
nucleotides.[89] All the ab initio calculations were done at the Hartree-Fock level of theory
with 6-31G(d) basis sets, using the GAUSSIAN suite of programs. The computed electrostatic
potential (ESP) was fit using RESP charge fitting in antechamber. Three-letter codes for all of
the fitted nucleosides were developed to standardize the naming of the modified nucleosides in
PDB files. For a detailed description of charge fitting for these nucleosides and an outline for
the three letter codes, please refer to Ref. [88].

The AMBER force field parameters for 99 modified nucleosides are distributed in the form
of library files. The all_modrna08.lib file contains coordinates, connectivity, and charges, and
all_modrna08.frcmod contains information about bond lengths, angles, dihedrals and others.
The AMBER force field parameters for the 99 modified nucleosides in RNA are also maintained
at the modified RNA database at http://ozone3.chem.wayne.edu.

2.12.4 The 2002 polarizable force fields

frcmod.ff02pol.r1 Recommended initialization file

parm99.dat Force field, for amino acids and some organic molecules;

can be used with either additive or

non-additive treatment of electrostatics.

parm99EP.dat Like parm99.dat, but with "extra-points": off-center

atomic charges, somewhat like lone-pairs.

frcmod.ff02pol.r1 Updated torsion parameters for ff02.

all_nuc02.in Nucleic acid input for building database, for a non-

additive (polarizable) force field without extra points.

all_amino02.in Amino acid input ...

all_aminoct02.in COO- amino acid input ...

all_aminont02.in NH3+ amino acid input ....

all_nuc02EP.in Nucleic acid input for building database, for a non-
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additive (polarizable) force field with extra points.

all_amino02EP.in Amino acid input ...

all_aminoct02EP.in COO- amino acid input ...

all_aminont02EP.in NH3+ amino acid input ....

The ff02 force field is a polarizable variant of ff99. (See Ref. [90] for a recent overview of po-
larizable force fields.) Here, the charges were determined at the B3LYP/cc-pVTZ//HF/6-31G*
level, and hence are more like “gas-phase” charges. During charge fitting the correction for
intramolecular self polarization has been included.[71] Bond polarization arising from interac-
tions with a condensed phase environment are achieved through polarizable dipoles attached to
the atoms. These are determined from isotropic atomic polarizabilities assigned to each atom,
taken from experimental work of Applequist. The dipoles can either be determined at each step
through an iterative scheme, or can be treated as additional dynamical variables, and propagated
through dynamics along with the atomic positions, in a manner analogous to Car-Parinello dy-
namics. Derivation of the polarizable force field required only minor changes in dihedral terms
and a few modification of the van der Waals parameters.

Recently, a set up updated torsion parameters has been developed for the ff02 polarizable
force field.[91] These are available in the frcmod.ff02pol.r1 file.

The user also has a choice to use the polarizable force field with extra points on which ad-
ditional point charges are located; this is called ff02EP. The additional points are located on
electron donating atoms (e.g. O,N,S), which mimic the presence of electron lone pairs.[92] For
nucleic acids we chose to use extra interacting points only on nucleic acid bases and not on
sugars or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work
on small molecules is available.[71, 93] Beyond small molecules, our initial tests have focused
on small proteins and double helical oligonucleotides, in additive TIP3P water solution. Such
a simulation model, (using a polarizable solute in a non-polarizable solvent) gains some of
the advantages of polarization at only a small extra cost, compared to a standard force field
model. In particular, the polarizable force field appears better suited to reproduce intermolecular
interactions and directionality of H-bonding in biological systems than the additive force field.
Initial tests show ff02EP behaves slightly better than ff02, but it is not yet clear how significant
or widespread these differences will be.
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parameter files

This chapter describes the content of Amber parameter files, along with details about ParmEd
(which can be used to examine and modify prmtop files) and paramfit (which can be used to fit
force fields to quantum mechanical and other target data).

3.1 Understanding Amber parameter files

Romain M. Wolf, Jason Swails, and David A. Case

This chapter provides a short description of Amber-compatible force field parameter files
is given. Only the actual data in parameter (*.dat) files are discussed. The special issue of
deriving partial charges is not addressed. Also, more complex subjects dealing with parameters
for implicit solvent (GB or PB) or polarisability computations are skipped. This text is meant
as a documentation for users who want to understand parameter files, and in some cases might
be tempted to change or add some parameters. Most of the following documentation is found
in bits and pieces at various Amber-related sites and in tutorials or original Amber manuals and
these various sources have been helpful to put together this hopefully concise documentation.

3.1.1 Parameter Transfers between Force Fields

Transferring parameters from one force field to another must respect the underlying func-
tional form, the units in which parameters are expressed in the parameter files, and also the
exact procedures on how individual parameters were obtained. In addition, attention must be
paid to the methods used to deduce partial charges. Force fields are self-consistent, i.e., all
terms are interrelated and their actual values depend on the way they were derived. Therefore,
any parameter transfer between different force fields is dangerous, even when the functional
form is the same (or looks as if it were...).

Torsion terms are the most critical. Many torsion barriers and profiles are not easily assessed
experimentally and are often deduced from ab initio quantum mechanical (QM) computations
on small fragments. Since QM calculations offer many possibilities, the exact nature of these
calculations (basis sets, Hartree-Fock and/or density functionals, etc.) used to derive parameters
should be known.

Special care must also be applied to 1-4 interactions, i.e., interactions between atoms sepa-
rated by exactly three consecutive bonds. Most Amber force fields for example assume that 1-4
interactions get a special treatment. See section 3.1.6 for details. In many other force fields, the
special treatment of 1-4 interactions is either different or non-existent. This has an immediate
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influence on the torsion terms and resulting conformation energies. Therefore, before transfer-
ring torsion terms, van der Waals parameters and partial charges from other force fields, check
the special treatment of 1-4 interactions in the source and the target force field.

3.1.2 How Amber Routines Use the Parameter Files

Amber routines that perform actual calculations (sander, pmemd, etc...) do not read param-
eter files directly. They use a special file type, the parameter-topology file (parmtop from now
on), which contains all the information required by the various energy functions in the compu-
tation routines. The parmtop file is specific to the molecular system for which it was created
and is directly related to the second required file, the coordinate file.1 Smallest changes to the
system (adding or removing atoms, or even changing the order of atoms in the coordinate file)
render the parmtop useless.

Although parmtop files are pure ASCII files, changing parameters directly in them by stan-
dard text editors is strongly discouraged. In the worst case, computations will run without any
warnings, but results might be totally flawed. The safest way to generate parmtop files is to use
an Amber tool like tleap that has been used, tested, and enhanced over a number of years and
usually generates correct parmtop files, provided that the input is correct and that all required
information is available via fragment libraries and parameter files. The latest AmberTools 12.0
version (April 2012) includes the ParmEd python script of Jason Swails which is very useful
to examine or post-process parmtop files. However, only users with detailed knowledge on the
exact format of parmtop files should dare fiddling around with this data type.

3.1.3 "*.dat" and "frcmod.*" Files

The standard parameter files with the .dat extension are located in the folder $AMBERHOME/dat/leap/parm.
Adding or changing parameters directly in the parameter files delivered with an Amber distri-
bution is not a good idea for the following reasons: (a) you might mess up the parameter file,
(b) you might have trouble to remember and find your changes later and add confusion when
publishing results, (c) subsequent updates or patches might overwrite your changes.

In the above mentioned folder, there are also various frcmod.* files. They have basically the
same format as the parameter *.dat files. See some of the examples provided in the Amber
distributions. These files can be read into tleap exactly like the standard *.dat files. They
merge the default parameters in the *.dat file with the new parameters in the frcmod.* files.
More important, if the same parameters already exist in the *.dat files, the parameters in the
frcmod.* files overwrite the default *.dat parameters. This offers a handy way to add new
or to change original parameters without ever touching the default parameter files. Just make
sure to read the respective frcmod.* files in tleap when the new or altered parameters should
be used.

3.1.4 Parameters Required for Amber Force Fields

The simplest form of the Amber force field (neglecting implicit solvent or polarisation terms)
uses the following Hamiltonian:

1This file can be in the Amber coordinate ’crd’ file format or, for some applications, also in PDB format.
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Etotal = ∑
bonds

kb(r− r0)
2

+ ∑
angles

kθ (θ −θ0)
2

+ ∑
dihedrals

Vn[1+ cos(nφ − γ)]

+
N−1

∑
i=1

N

∑
j=i+1

[
Ai j

R12
i j
−

Bi j

R6
i j
+

qiq j

εRi j

]
(3.1)

In this equation, the terms kb,r0,kθ ,θ0,Vn,γ,Ai j,Bi j are parameters to be specified in the
parameter files mentioned in section 3.1.3 for the various Amber force fields.2 The meaning of
these different parameters is outlined in the following sections.

Equation 3.1 does not have a special term for out-of-plane motions. Amber routines handle
these terms through the same formulation as the torsion terms (see section 3.1.6).

Partial charges (qi,q j in equation 3.1), although parameters also, do not appear in parameter
files, but are assigned differently (see 3.1.7).

3.1.5 Atom Types

Amber atom types can be one or two characters long. Uppercase (standard protein and
nucleotide force fields), lowercase (GAFF General Amber Force Field ), and mixed upper-
lowercase (GLYCAM sugar force field) are allowed. Obviously, atom types must have a single,
unique, definition.

If considering the definition a new atom type, think about the consequences. Of course, an
atom type with an identical name must not already exist in one of the standard force fields used
in the Amber community. Depending on how often and in how many combinations the atom
type might occur, be also aware of the rather large number of additional parameters that might
be required. Especially for bond angles, this number can grow very rapidly.

A new atom type definition, if required, must be clear and precise. It should also be possible
to treat the definition in an automatic atom-type assignment procedure. Requiring users to
visually verify and to change atom types by hand will cause trouble and will make it impossible
to use the force field in automatic procedures that should not require user intervention for this
task.

3.1.6 Bonded Interaction Terms

Bond Stretching Terms

The first row in equation 3.1 (page 59) is the harmonic term for bond stretching. In Amber-
type parameter files, the force constant kb is given for energy values in kcal/mol, with bond

2Note that equation 3.1 does not use the (physically more correct) kb
2 , kθ

2 , and Vn
2 notations because it refers to the

constants as they appear in the actual parameter files.
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lengths in Å. The following line shows an example from the GAFF force field file gaff.dat.
The bond between a sp3 carbon (c3) and a hydroxyl oxygen (oh) has a default (equilibrium)

value of 1.426 Å and a force constant of 314.1 kcal/mol/Å2.

c3-oh 314.1 1.4260 SOURCE1 914 0.0129

The entrance in the parameter file starts with the definition of the bond (atomtype1 hyphen

atomtype2), followed by the force constant kb (in kcal/mol/Å2) and the equilibrium bond length
r0 (in Å). Only the first three fields are relevant for computations. The other fields on the line
above are mainly documentation.

As stated before, atom types in Amber FFs cannot have more than two characters. But if
they have only one character (e.g., a carbonyl carbon atom c), entries with a one-letter atom
type must look like this:

c -oh 466.4 1.3060 SOURCE1 271 0.0041

i.e., the space is after the atom type, before the hyphen.
Starting with a space like on the next line might lead to problems.

c-oh 466.4 1.3060 SOURCE1 271 0.0041

This holds for all parameter file entries that use hyphens to separate atom types, i.e., also angle
and torsion terms (see following sections).

Angle Bending Terms

Angle bending terms are parameterised by a force constant kθ in kcal/mol/radian2 and an
equilibrium angle value θ0 in degrees. They have the format as shown below:

c3-c3-oh 67.720 109.430 SOURCE3 48 1.5023

The middle atom c3 is bonded to another c3 and to a hydroxyl oxygen oh. The equilibrium bond
angle θ0 is 109.43 degrees and the force constant is 67.720 kcal/mol/radian2. Note that inter-
nally, angle deviations are computed in π-radian2. The parmtop files also express the default
’equilibrium’ bond angles in radians. For example, the angle of 109.43 degrees is internally rep-
resented as 1.9099 π-radians. Using degrees in the original parameter files is obviously more
convenient. Anything after the third field, the equilibrium angle, is mainly documentation and
not required.

Torsion Terms

The third row in equation 3.1 is the usual Fourier-series expansion for torsional terms. In
Amber parameter files, these entries require a careful explanation:

First, many torsion terms contain generic entries, using the notation ’X’ for ’any atom’.
These terms are used when the parameter file does not contain more specific terms for the same
torsion. They are combined with explicit terms when present. Entries with generic ’X’ atoms
must always come before the more specific ones in the parameter files.

Second, Amber parameter files use a special notation for torsions that require more than one
torsional term (see example towards the end of section 3.1.6).
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Third, the parameter file entry not only contains the torsion barrier term Vn (in kcal/mol),
the phase γ (degrees) and the periodicity n, but also a divider (integer) which splits the torsion
term into individual contributions for each pair of atoms involved in the torsion.

Fourth, torsion entries can also contain information about the special scaling of 1-4 non-
bonded interactions (see section 3.1.6 on page 63).

Consider the following example, the default term for the torsion around a Csp3-Csp3 single
bond:

X -c3-c3-X 9 1.400 0.000 3.000 JCC,7,(1986),230

The five relevant terms on this line are:

1. the definition (X -c3-c3-X)

2. the divider (9)

3. the barrier term (1.400)

4. the phase (0.000)

5. the periodicity (3.000)

Fields after the periodicity are mainly comment, except for the special flags SCNB and SCEE,
that, if present, govern the special treatment of 1-4 non-bonded interaction (see section 3.1.6)

The torsional barrier term (the actual barrier divided by two) is 1.400 and the periodicity is
3. The phase is zero in this example, meaning that a maximum energy is encountered at zero
degrees. A phase of 180 degrees on the other hand means that there is a minimum at 180
degrees. The divider is 9 because each Csp3 has three X attached to it and each X ’sees’ three X
attached to the other Csp3 (3 × 3 = 9).

For a torsion angle φ (defined as X-c3-c3-X) of -60, 60, or 180 degrees, the torsion energy
term would be zero:

1.4
9
× [1+ cos(3×φ −0.0)] = 0 (3.2)

This corresponds to the staggered conformation, i.e., the lowest energy state in a X3C-CX3
connectivity like for example ethane (H3C-CH3)

By rotating around the C-C bond, an eclipsed conformation where the X are exactly opposed
is encountered three times (periodicity = 3), namely at φ = 0, 120, or 240 (-120) degrees.

1.4
9
× [1+ cos(3×φ −0.0)] = 0.3111 (3.3)

.
Since the divider is 9, we have to multiply the value of 0.3111 by 9 to get the full torsional

barrier, i.e., 9×0.3111 = 2.8 kcal/mol.3 This might be used for ethane for example and would
be close to the experimental torsion barrier (ca. 3 kcal/mol).

In GAFF however, there is also a specific term for hc-c3-c3-hc that would come into play
for ethane. In this case, the divider is 1, because the term is fully defined.

3The actual barrier value of 2.8 kcal/mol here is twice the barrier term of 1.4 in the parameter file.
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hc-c3-c3-hc 1 0.15 0.0 3. Junmei et al, 1999

Thus, using GAFF for ethane, this term counts 9 times because there are nine [hc,hc] pairs
seeing each other. Instead of equation 3.3, one would use

0.15× [1+ cos(3×φ −0.0)] = 0.3000 (3.4)

i.e., the total torsional term in ethane would be 9× 0.3 = 2.7 kcal/mol. The experimental
torsional barrier value of ca. 3 kcal/mol would be reached because of the additional van der
Waals and Coulomb repulsion terms between the staggered hydrogens.

Assume a connectivity for which some terms are fully defined (all four atom types are spec-
ified) while no specific entry is given for others. In that case, the equations are combined.
The specific terms are counted once (divider = 1) and the remaining general terms are added
according to

Vbarrier

divider
× [1+ cos(periodicity×φ − phase)] (3.5)

Things get more complex when the Fourier series has more than one term. A typical
example would be the rotation around an amide bond R1-NH-C(=O)-R2. In this case, the trans
amide (H and O on opposite sides, φ = 180◦) is preferred over the cis-amide (H and O on the
same side, φ = 0). The entry in the GAFF parameter file for this torsion is

hn-n -c -o 1 2.50 180.0 -2. JCC,7,(1986),230
hn-n -c -o 1 2.00 0.0 1. J.C.cistrans-NMA

If the torsion definition has a "negative" periodicity (-2 in the case above), it tells programs
reading the parameter file that additional terms are present for that particular connectivity. The
equation to be applied for hn-n -c -o is:

Etorsion = 2.00× [1+ cos(1×φ −0.0)]+2.50× [1+ cos(2×φ −180.0)] (3.6)

Equation 3.6 prefers the trans amide (φ = 180◦) over the cis amide (φ = 0) by 4 kcal/mol
considering the torsion term alone. However the more favourable Coulomb term (the 1-4 at-
tractive interaction between the negative carbonyl oxygen and the positive amide hydrogen)
reduces the overall preference for the trans conformation close to the experimental value of ca.
2 kcal/mol.

In addition, the following general terms have to be applied for the torsions involving R1 and
R2 in the peptide bond R1-NH-C(=O)-R2, in order to compute the high torsional barrier of an
amide bond:

X -c -n -X 4 10.000 180.000 2.000

Torsional terms are obviously the most difficult part to parametrize in a force field. They are
in a way the last rescue to get torsional barriers right, after all other terms have been adjusted.
Therefore, their transfer from one force field to the other is always most risky and acceptable
only if all other involved terms in two force fields are very similar. Transferability must always
be validated.
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Out-of-Plane Terms

Out-of-plane terms are handled via a Fourier term, similar to the torsion terms. But the four
involved atoms are not serially (linearly) bonded, they are "branched". The "central" atom is
the atom that is forced into the plane of the other three. For example, to keep a carbonyl group
R1-C(=O)-R2 planar, the central C atom must be forced into the plane of the other three
connected items R1, R2, and O. The entry in the GAFF parameter file for this term is

X -X -c -o 10.5 180. 2. JCC,7,(1986),230

Note that in Amber the central atom type (here c) is the third in the definition.The order of the
remaining atoms should (by definition) be alphabetic. The phase is always 180◦. In all-atom
force fields, the periodicity is always 2.

Out-of-plane terms are the only terms that are allowed to be "missing" in Amber parameter
files. Common ones are added automatically by tools like tleap. In many cases, these terms are
"cosmetics" that avoid "in principle" planar structures from getting distorted under the influence
of other forces (e.g., fused rings, planar nitrogens with three substituents, etc...). The actual
parameterisation is often intuitive and for many entries, the ("generic") parameters are identical.

1-4 Non-Bonded Interaction Scaling

Figure 3.1: 1-4 Interactions between atoms "1" and "4".

Non-bonded interactions between atoms separated by three consecutive bonds (as schemati-
cally shown in Figure ??) require a special treatment in Amber force fields. Although referring
to non-bonded interactions, scaling information is included in the torsion terms part of the pa-
rameter files.

By default, vdW 1-4 interactions are divided (scaled down) by a factor of 2.0, electrostatic
1-4 terms by a factor of 1.2. These are default values for the protein force fields and GAFF, but
not for sugar force field GLYCAM_06EPb and GLYCAM_06h, for example, in which these
interactions are not scaled at all.

Without any additional information, programs like tleap, used to prepare parmtop files,
assume that the standard scaling mentioned above is to be applied. However, this default can
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be overwritten in the torsion section of the parameter file. An example is shown below for
torsional terms in the GLYCAM_06h force field:

S -Ng-Cg-H1 1 2.00 0.0 1. SCEE=1.0 SCNB=1.0 N-Sulfates

S -Ng-Cg-Cg 1 0.0 0.0 -3. SCEE=1.0 SCNB=1.0 N-Sulfates

The special notation SCEE=1.0 SCNB=1.0 following the standard torsion terms4 will tell tleap
to prepare a parmtop file which transfers these data into a special section, as shown below:

%FLAG SCEE_SCALE_FACTOR

%FORMAT(5E16.8)

scaling factors are entered here....

%FLAG SCNB_SCALE_FACTOR

%FORMAT(5E16.8)

scaling factors are entered here....

When using standard Amber force field parameter files as delivered with AmberTools, the user
does not need to care about this. However, when adding additional parameters, especially
torsion terms, one should be aware of these scaling factors and decide if they should be default
or altered.

3.1.7 Non-Bonded Terms

Van der Waals Parameters

The standard formulation of the 6-12 Lennard-Jones potential Vi, j between two atoms i and
j is:

Vi, j = 4εi, j

[(
σi, j

ri, j

)12

−
(

σi, j

ri, j

)6
]

(3.7)

Here, ri, j is the distance separating the two atoms, εi, j is the depth of the potential well for
the interaction of atoms i and j, and σi, j is the distance where the potential is exactly zero, i.e.,
where ’repulsion’ starts for the two atoms. Both εi, j and σi, j are specific for the pair of atoms
(or more precisely, ’atom types’).

Another possible formulation of Vi, j, relating to the concept of van der Waals radii, is:

Vi, j = εi, j

[(
Rmin

ri, j

)12

−2
(

Rmin

ri, j

)6
]

(3.8)

In this case, Rmin is the sum of the van der Waals radii, Ri +R j of atoms i and j, the contact
distance at which the potential is at its minimum, i.e., at a value of −ε .

Combining equations (3.7) and (3.8) gives for the relation between σ and Rmin:

Rmin = 21/6
σ or σ = 2−1/6Rmin (3.9)

4In this case, the fields coming after the periodicity (field 5), i.e., fields 6 and 7 are also read and are not ’just’
comment!

64



3.1 Understanding Amber parameter files

Figure 3.2: Example of Lennard-Jones potential: the used data are those for the c3 atom type
in the gaff force field (vdW radius Rmin= 1.908 Å, ε = 0.1094 kcal/mol)

In force fields, the ’A,B’ notation of the Lennard-Jones potential is commonly used:

Vi, j =
Ai, j

r12
i, j
−

Bi, j

r6
i, j

(3.10)

where Ai, j and Bi, j are specific parameters for atom type pairs i and j. The meaning of Ai, j
and Bi, j are easily deduced from equation (3.7):

A = 4εσ
12 and B = 4εσ

6 (3.11)

or, in terms of Rmin, using equation (3.8):

A = εR12
min and B = 2εR6

min (3.12)

Van der Waals data in Amber force fields are given for each atom as a single data pair, a
radius Rmin (’van der Waals’ radius in Å) and an energy ε (kcal/mol) representing the depth of
the potential well.

These values are given at the end of the force field parameter files. In protein force fields,
lines above these data show equivalences. For example the line

N NA N2 N* NC NB NT NY

indicates that all atom types following N (the amide nitrogen) inherit the same Lennard-Jones
parameters. Thus, no entry for NA, N2, ... has to be given explicitly.

For Amber force fields, cross terms involving different atom types i and j are evaluated
according to the Lorentz/Berthelot mixing rules:
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σi, j = 0.5(σi,i +σ j, j) or Rmin,i, j = 0.5(Rmin,i +Rmin, j) (3.13)

εi, j =
√

εi,i · ε j, j (3.14)

The parmtop file entries are in ’A’ and ’B’ terms to be used directly with equation 3.10,
transforming the [Rmin,ε] data pairs from the parameter files.

As an example, consider ethanol (CH3CH2OH) with the GAFF force field. There are five
different GAFF atom types. Below are shown the corresponding [Rmin,ε] data pairs, as found
in the gaff.dat parameter file:

h1 1.3870 0.0157 Veenstra et al JCC,8,(1992),963

hc 1.4870 0.0157 OPLS

ho 0.0000 0.0000 OPLS Jorgensen, JACS,110,(1988),1657

oh 1.7210 0.2104 OPLS c3 1.9080 0.1094 OPLS

Note that there are three different hydrogen types: hc, the default H atom connected to an
aliphatic carbon, h1, a hydrogen type connected to an aliphatic carbon with one electronegative
substituent (the oxygen in this case), and the hydroxyl hydrogen ho (for which van der Waals
interactions are neglected in Amber).

Partial Charges

For Amber force fields, partial charges do not appear in parameter files. For proteins and
nucleic acid force fields that use fragment (residue) libraries, partial charges are pre-defined
and have been computed from electrostatic-potential fitting of high-level an initio QM. They
are automatically assigned by tools like tleap. Library files are found the folder

$AMBERHOME/dat/leap/lib.

Below is shown the alanine (ALA) residue of the library file all_amino94.lib:

"N" "N" 0 1 131072 1 7 -0.415700

"H" "H" 0 1 131072 2 1 0.271900

"CA" "CT" 0 1 131072 3 6 0.033700

"HA" "H1" 0 1 131072 4 1 0.082300

"CB" "CT" 0 1 131072 5 6 -0.182500

"HB1" "HC" 0 1 131072 6 1 0.060300

"HB2" "HC" 0 1 131072 7 1 0.060300

"HB3" "HC" 0 1 131072 8 1 0.060300

"C" "C" 0 1 131072 9 6 0.597300

"O" "O" 0 1 131072 10 8 -0.567900

The partial charges for each atom are given in the last field of each line.
For the GAFF force field, there are various options to compute partial charges, the AM1-BBC

method being probably the best trade-off between quality and speed. There are other file types
that can contain user-specified partial charges, e.g., SYBYL mol2 files. See the antechamber
documentation for details.
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In parmtop files, partial charges are not entered as fragments of the electron charge, but
are multiplied by the square-root of 332.05 (= 18.22), because the factor 332.05 converts the
Coulomb energy into kcal/mol when using fragments of the electron charge in the Coulomb
term of equation 3.1.

3.1.8 Final Remarks

Most parameters in Amber force fields have been tested on a large variety of structures.
In rare cases, situations are encountered where structures look "strange" or where results are
obviously wrong. One should first look into details of the simulation conditions and settings
before blaming the problem on actually flawed force field parameters. Simple test cases are
often helpful to resolve the enigma.

When changing or adding parameters and later publishing results, new parameter should be
mentioned. Also, the Amber developers team should be notified about possibly problematic
parameters. This ensures that potential errors are corrected via patches in later versions and it
will help the entire user community.

3.2 ParmEd

ParmEd (parmed.py) is a topology file editor written in Python that enables high level control
of the primary force field file in Amber: the prmtop file. ParmEd will modify the topology file
and produce a new topology file that will work with sander, pmemd, and NAB programs, and
provides options unavailable otherwise.

The principle capabilities unavailable through other methods are applying the mbondi3 GB
radii optimized for the igb=8 GB model in sander and pmemd, and assigning specific van der
Waals parameters for a pair of atoms without affecting the other pairs of those specific types.

3.2.1 Running parmed.py

parmed.py is used in a manner very similarly to ptraj.

usage: parmed.py [-h] [-v] [-i FILE] [-p <prmtop>] [-d] [-e] [-q]

[--prompt PROMPT] [-n]

[<prmtop>] [<script>]

positional arguments:

<prmtop> Topology file to analyze.

<script> Script with ParmEd commands to execute.

optional arguments:

-h, --help show this help message and exit

-v, --version show program’s version number and exit

-d, --debug Show tracebacks for any uncaught exceptions. Useful

for debugging. OFF by default

-e, --enable-interpreter

Print how each action is parsed and show which line of
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which file an error occurred on (verbose tracebacks).

OFF by default.

-q, --quiet Disable verbose tracebacks. Reverses -d/--debug

--prompt PROMPT String to use as a command prompt.

-n, --no-splash Prevent printing the greeting logo.

Input Files:

-i FILE, --input FILE

Script with ParmEd commands to execute. Default reads

from stdin. Can be specified multiple times to process

multiple input files.

-p <prmtop>, --parm <prmtop>

List of topology files to load into ParmEd. Can be

specified multiple times to process multiple

topologies.

Like with ptraj and cpptraj, if you do not supply the prmtop or the input_file, it will read
the commands from STDIN as you type them. The debugging option enables the printing of
detailed tracebacks. This adds the exact line number on the exact file that the error occurred on,
which can be useful for some debugging if the error message is too confusing.

3.2.2 ParmEd commands (they are all case-insensitive)

All actions that work on a topology file will use the “parm <idx>|<name>” input sequence to
operate on a specified topology file. If present, either the topology file loaded <idx> topologies
after the first one or the topology file loaded with the given <name> will be modified by that
action. If absent, the LAST topology file loaded will be modified. The <idx> ranges from 0 to
the total number of loaded topologies minus 1.

(Note: if you actually have a topology file named “1” that is not the second loaded topology
file, you will need to address it via an index. That is, integers will always be assumed to be
indices unless they are out of the topology file range.)

3.2.2.1 addAtomicNumber

Usage: addAtomicNumber
Adds a section in the topology file with the flag ATOMIC_NUMBER in order to identify

specific elements. Elements are matched based on their atomic masses in the MASS section
of the topology file. An atom is assigned an element by matching it with the element on the
periodic table whose atomic mass is closest to the atom in question. This approach should work
for any atom whose mass is either unchanged from the LEaP output or if that atom’s mass has
only been changed to one of its isotopes.

3.2.2.2 addDihedral

Usage: addDihedral <mask1> <mask2> <mask3> <mask4> <phi_k> <per> <phase>
<scee> <scnb> [type <type>]
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Adds a dihedral term (will NOT replace an existing dihedral) between atoms in mask1,
mask2, mask3, and mask4. The dihedral is defined around the bond between the atoms in
mask2 and mask3. Each mask must define the same number of atoms. For mask1 defines
atoms 1,2,3; mask2 defines atoms 11,12,13; mask3 defines atoms 21,22,23; and mask4 defines
atoms 31,32,33, then 3 new dihedrals will be added. One between atoms 1, 11, 21, and 31,
another between atoms 2, 12, 22, and 32, and a third between atoms 3, 13, 23, and 33. The
dihedrals will be set with force constant phi_k, periodicity per, phase angle phase, 1-4 electro-
static scaling factor scee (this must be specified – the default Amber value is 1.2 and the default
GLYCAM value is 1.0), the 1-4 van der Waals scaling factor scnb (this must be specified – the
default Amber value is 2.0 and the default GLYCAM value is 1.0). The type is either “normal”,
“multiterm”, or “improper”. “multiterm” simply means that 1-4 factors for that dihedral are
not calculated, which should be true for all but the last term in a multiterm dihedral (so 1-4
interactions are only counted once) and in some ring systems with at most 6 atoms, since that
could also lead to double-counting specific 1-4 interactions.

3.2.2.3 addExclusions

Usage: addExclusions <mask1> <mask2>
Allows you to add arbitrary exclusions to the exclusion list. Every atom in <mask2> is added

to the exclusion list for each atom in <mask1> so that non-bonded interactions between those
atom pairs will not be computed. NOTE that this ONLY applies to direct-space (short-range)
non-bonded potentials. For PME simulations, long-range electrostatics between these atom
pairs are still computed (in different unit cells).

3.2.2.4 addLJType

Usage: addLJType <mask> [radius <new_radius>] [epsilon <new_epsilon>] [radius_14
<new_radius14>] [epsilon_14 <new_epsilon14>]

This command will assign all atoms specified in the given mask to a new van der Waals
(VDW) atom type. Note that several different Amber atom types may in fact be the same
VDW type, so this command is designed to give you control over changing just a single atom’s
(or single Amber atom type’s) VDW parameters. Every atom specified in the mask will be
given the SAME type (but different from every other atom in the topology file), even if their
original VDW types are different. The parameters [new_radius] and [new_depth] are optional
parameters that specify that atom’s radius and well depth, which are combined with every other
type’s radius and depth via the canonical Amber combining rules. They default to the original
value of the FIRST atom that is matched by the mask.

Note that for chamber-created topology files (ONLY), each atom type has separate 1-4 pa-
rameters that may be specified as well. Unspecified values will be taken from the default pa-
rameters of the first atom type as described above. Any attempt to supply the 1-4 parameters on
a normal topology created with leap will result in an error.

See the command printLJTypes for additional information here. You can use this command
to see if addLJType may be necessary for what you’re trying to do.
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3.2.2.5 change

Usage: change <property> <atom_mask> <new_value>
This command allows you to change the value of an atom’s property for every atom in a given

mask to a new value. The allowed atomic properties you can modify are the CHARGE (given in
units of elementary atomic charges), MASS (in g/mol), RADII (in Angstroms, these are the GB
radii), SCREEN (the GB screening parameters), ATOM_NAME, and AMBER_ATOM_TYPE
(this is NOT the van der Waals type). Every atom in the mask will be given the same new_value.

NOTE: The prmtop utility used here stores the partial CHARGE array in terms of elemen-
tary atomic charges. All charges are multiplied by 18.2223 prior to being written to any new
topology file (and is divided by that number when read in from a topology file). Therefore, if
you are changing specific atomic charges in this case, specify new charges in elementary atomic
charges.

NOTE: This command gives you access to specific atoms. If you want to change all of the
GB radii to be compatible with a specific GB model, see the changeRadii command.

3.2.2.6 changeLJPair

Usage: changeLJPair <mask1> <mask2> <Rmin> <epsilon>
This command changes a specific pairwise interaction between the atom type of the atoms

in mask1 (these must all be the same type) and the atoms in mask2 (these must all be the same
type as well). Rmin and Depth are the pre-combined values of these variables, which allows
you to define your own combining rules for a specific pair of atoms.

If you want to see which atoms this command will affect, you can use the printLJTypes with
either of the given masks to get a list of atoms that share the same type as the atoms in that
mask.

This command is similar to NBFIX available through CHARMM.

3.2.2.7 changeLJ14Pair

Usage: changeLJ14Pair <mask1> <mask2> <Rmin> <epsilon>
This command is similar to changeLJPair above, except it alters the 1-4 Lennard Jones terms

only. Note that this command is only available for chamber-created topology files, and will
result in an error if applied to a normal topology created with leap.

3.2.2.8 changeLJSingleType

Usage: changeLJSingleType <mask> <Rmin> <epsilon>
This command allows you to change the radius and well depth of particular nonbonded atom

types. It will set new values for each interaction the selected type has with every other atom
type (irrespective if changeLJPair altered one of these terms before).

3.2.2.9 changeProtState

Usage: changeProtState <mask> <state #>
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Changes the protonation state of a residue that is titratable via constant pH simulations in
Amber. <mask> must match all atoms of one, and only one, titratable residue as defined in
$AMBERHOME/AmberTools/src/etc/cpin_data.py. As of Amber 11, current titratable residues
include AS4, GL4, HIP, LYS, CYS, TYR, and the basic nucleic acid residues DAP, DCP, DG,
DT, AP, CP, G, and U. See comments in cpin_data.py for descriptions of which state numbers
correspond to which protonation charge state.

3.2.2.10 changeRadii

Usage: changeRadii <parameter_set>
Parameter set is one of the following: bondi, mbondi, mbondi2, mbondi3, amber6. This

command will reset all of the intrinsic GB radii to the specified set without having to recreate a
topology file through leap. (Also, mbondi3 is only available here)

3.2.2.11 checkValidity

Usage: checkValidity
Thoroughly checks the topology file for a wide range of errors. If you are getting a strange

error from a simulation engine, it may be worth using this to check the prmtop.

3.2.2.12 combineMolecules

Usage: combineMolecules <mol_id1> [<mol_id2>]
This command will combine the two adjacent molecule numbers mol_id1 and mol_id2. The

molecule sequences begin at 1 (that is, the first molecule is 1, not 0). This is useful if you want to
image a couple molecules together, even if they have no covalent bonds defined between them.
For instance, if you have 2 strands of DNA that you don’t want to be imaged separately, this
command will combine them and force sander/pmemd to think of them as a single molecule.
Likewise for a protein system with a bound ligand, or anything else like this.

3.2.2.13 defineSolvent

Usage: defineSolvent <residue_list>
This command will allow you to define custom solvent residues. The residue_list must be

a comma-separated list with no whitespace separating the residue names. This is important
for the proper determination of the SOLVENT_POINTERS and ATOMS_PER_MOLECULE
sections of the topology file. By default, HOH and WAT residues are recognized as solvent.

3.2.2.14 deleteDihedral

Usage: deleteDihedral <mask1> <mask2> <mask3> <mask4>
Deletes the dihedral around <mask2> and <mask3> in which the end-groups are <mask1>

and <mask4>. For multi-term dihedrals, it removes each term.
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3.2.2.15 go

Usage: go
Stop reading commands and execute every command that has come before. This has exactly

the same effect as the End Of File (EOF) character. All commands in a script after “go” will be
ignored. Placing “go” as the last line of a script is the same as not including it at all (since the
next line contains EOF, which executes the same behavior). Thus, you can get the same behavior
from the interactive session by either typing “go” or sending the EOF character (which on unix
is CTRL-D)

3.2.2.16 help

Usage: help [action]
This command does one of two things. If action is not specified, a list of available commands

along with their short usage statement is displayed in a nicely formatted table. If action is
provided and that action exists, a usage statement along with a short description is printed. This
is a useful reference for quick interactive sessions. You can use a single “?” character instead
of the word ‘help’.

3.2.2.17 listParms

Usage: listParms
This command will list all of the topology file names for the topology files that have been

loaded into the main list, highlighting the active one.

3.2.2.18 ls

This is supposed to emulate the Unix ‘ls’ program as closely as possible, and can be used
inside ParmEd in the same way.

3.2.2.19 loadRestrt

Usage: loadRestrt <restart_filename>
This command takes an inpcrd or a restart file to assign coordinates to each of the atoms.

This is currently only needed for the writeOff function, as those files require coordinates.

3.2.2.20 netCharge

Usage: netCharge [mask]
This command will calculate the net charge of all atoms belonging to a specific mask. If no

mask is provided, it returns the net charge of all atoms in the topology file.

3.2.2.21 outparm

Usage: outparm <prmtop_name> [<restrt_name>]
This command is just like parmout, except it can occur as many times as you want it to, and

that topology file is written in the order in which that command is placed in the input file or
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read from STDIN (similar to outtraj in cpptraj). If you provide a file name for restrt_name,
parmed.py will also write a valid restart file from the provided initial coordinates and velocities
(if present) from the restart file added via the loadRestrt command. It will include velocities if
they were present in the initial restart file. Note this is most useful when used in conjunction
with the “strip” command. If all solvent is stripped, the box information will be discarded. If
you do not strip all solvent molecules, the box info will remain unchanged from the original
(even if you strip a large number of solvent molecules). If you removed a large number of
solvent molecules, take care to re-equilibrate the density before continuing with production
dynamics.

3.2.2.22 parm

Usage: parm <filename> | parm set <filename>|<index>
If used with the “set” keyword, the active topology is changed to the one with the given file

name or the <index>+1’th topology file that was loaded. If used without the “set” keyword, it
adds a new topology file to the list of available topologies from the given file name and sets that
as the active topology for all future actions. (All previous actions were already applied to the
previous ‘active’ topology).

3.2.2.23 parmout

Usage: parmout <prmtop_name> [<restrt_name>]
This command is similar to trajout in cpptraj and ptraj. It is ALWAYS the last command

executed, and only the last parmout command is executed. It writes a topology file with all of
the modifications made to it during the course of the whole ParmEd session. If you provide a
file name for restrt_name, parmed.py will also write a valid restart file from the provided initial
coordinates and velocities (if present) from the restart file added via the loadRestrt command. It
will include velocities if they were present in the initial restart file. Note this is most useful when
used in conjunction with the “strip” command. If all solvent is stripped, the box information
will be discarded. If you do not strip all solvent molecules, the box info will remain unchanged
from the original (even if you strip a large number of solvent molecules). If you removed a
large number of solvent molecules, take care to re-equilibrate the density before continuing
with production dynamics.

3.2.2.24 printAngles

Usage: printAngles <mask>
This will print out every angle that involves at least one atom specified by <mask>.

3.2.2.25 printBonds

Usage: printBonds <mask>
This will print out every bond that involves at least one atom specified by <mask>.
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3.2.2.26 printDihedrals

Usage: printDihedrals <mask>
This will print out every dihedral that involves at least one atom specified by <mask>. It

labels multiterm dihedrals with an M and improper dihedrals with an I in the output.

3.2.2.27 printDetails

Usage: printDetails <mask>
This command prints atomic details of every atom matching a given mask (atom number,

residue number, residue name, atom name, atom type, van der Waals radius, van der Waals
well depth, mass, and charge) in standard Amber units. This is a useful command to make
sure that every atom you think belongs in a mask actually does belong in the mask (and that
no atoms were missed). The mask parser implemented in Python here is (mostly) a copy of
ptraj’s mask parser implemented in C, but some parts had to be rewritten slightly to adjust for
different syntaxes of the two languages. Note, distance-based criteria is not yet implemented in
this parser.

3.2.2.28 printFlags

Usage: printFlags
This command prints every %FLAG present in the topology file (see http://ambermd.org/formats.html

for a description of what each section labelled with these FLAGs means).

3.2.2.29 printInfo

Usage: printInfo <flag>
This command just prints out all of the data in a given prmtop %FLAG (see http://ambermd.org/formats.html

for details)

3.2.2.30 printLJMatrix

Usage: printLJMatrix <mask>
This function prints out how every atom type interacts with the atom type(s) in <mask>.

3.2.2.31 printLJTypes

Usage: printLJTypes [mask]
This command prints out each atom’s van der Waals, or Lennard-Jones type in the mask, as

well as every other atom that shares the same atom type as any type in the mask. If no mask is
provided, it prints out that information for every atom. This is particularly useful if you want to
see if changing a particular pair interaction will affect more atoms than you expect. If it turns
out that you wish to treat some of the atoms that share the same VDW type differently from one
another, you will have to “separate” them by using the addLJType command before modifying
them.
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3.2.2.32 printPointers

Usage: printPointers
This command will print every pointer along with its name and a short description in the

topology file. Solvated topology files will also have their SOLVENT_POINTERs printed in the
same manner.

3.2.2.33 quit

Usage: quit
This command will halt parmed.py in its tracks. It is effectively the same as go except it will

NOT execute any parmout command (although any outparm command used prior to quitting
has already been executed)

3.2.2.34 scee

Usage: scee <value>
Allows the user to set/change the value of the electrostatic scaling constant that will be used

to scale 1-4 electrostatic interactions. This needs to be set in the prmtop since it was removed
from the sander/pmemd input file in Amber 11. This will apply <value> to all dihedral terms.

3.2.2.35 scnb

Usage: scnb <value>
Allows the user to set/change the value of the VDW scaling constant that will be used to

scale 1-4 VDW interactions. This needs to be set in the prmtop since it was removed from the
sander/pmemd input file in Amber 11. This will apply <value> to all dihedral terms.

3.2.2.36 setAngle

Usage: setAngle <mask1> <mask2> <mask3> <k> <THETeq>
Changes (or adds a non-existent) angle in the topology file. Each mask must select the same

number of atoms, and an angle will be placed between the atoms in mask1, mask2, and mask3
(one angle between atom1 from mask1, atom1 from mask2, and atom1 from mask3, another
angle between atom2 from mask1, atom2 from mask2, and atom2 from mask3, etc.)

3.2.2.37 setBond

Usage: setBond <mask1> <mask2> <k> <Req>
Changes (or adds a non-existent) bond in the topology file. Each mask must select the same

number of atoms, and a bond will be placed between the atoms in mask1 and mask2 (one bond
between atom1 from mask1 and atom1 from mask2 and another bond between atom2 from
mask1 and atom2 from mask2, etc.)
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3.2.2.38 setMolecules

Usage: setMolecules [solute_ions=True|False]
This command uses its own algorithm to determine system molecularity (which resets SOL-

VENT_POINTERS and ATOMS_PER_MOLECULE to what they should have been set to by
leap). It will also determine if there are any errors in which molecules are not represented as
consecutive atoms within a topology file (which won’t happen unless you modify it yourself
or there is a bug in tleap that prevents it from reordering atoms properly). However, in some
unusual systems, tleap has been known to set the molecularity incorrectly, leading to strange
segfaults and errors in sander and pmemd. Errors of this type can be caught with checkValidity
and corrected using this command. It will also allow you to choose whether free ions are treated
as part of the solute or part of the solvent.

3.2.2.39 setOverwrite

Usage: setOverwrite [True|False]
Allows the original topology file to be overwritten. By default, the original prmtop file is

protected, and you cannot overwrite it. If you provide no value on this line, then it defaults to
True. Note that no check is made if you are overwriting any other existing file (just the original
topology).

3.2.2.40 source

Usage: source <file>
Loads a file with a list of ParmEd commands and executes them immediately.

3.2.2.41 strip

Usage: strip <mask>
This will strip every atom that corresponds to the given atom mask out of the topology file

altogether. Any bond, angle, or dihedral that it is a part of will be deleted as well. The bond,
angle, and dihedral types that are no longer referenced after the atoms are stripped out are
deleted from the topology file. All Lennard Jones parameters are kept, however, even if they
are no longer used. In this way, any LJ modifications you did before the strip command will
remain intact. If all solvent residues and atoms are deleted, then the IFBOX pointer is set
to 0 and the SOLVENT_POINTERS, ATOMS_PER_MOLECULE, and BOX_DIMENSIONS
(unused section of the topology file) are deleted. NOTE that if you only remove a couple
solvent molecules, any combineMolecules or setMolecules commands issued previously will
be reset! You will have to run them again. Finally, pointer order could not be preserved for
remaining atoms for efficiency considerations. For this reason, all pointers are recalculated
before a new topology file is written out, so even stripping just a small ligand molecule will
appear to change the topology file significantly if comparing via diff or a similar program.
However, these differences are caused by a simple rearrangement of pointers and should yield
correct energies.
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3.2.2.42 tiMerge

Usage: tiMerge <mol1mask> <mol2mask> <scmask1> <scmask2> [<scmask1N>] [<sc-
mask2N>] [<tol>]

This will remove redundant bonding terms and atoms from prmtop files for use in thermody-
namic integration calculations with PMEMD. The input topology should have two molecules
corresponding to V0 and V1. mol1mask/mol2mask are the atom masks for the molecules that
should be merged (for V0 and V1 respectively). scmask1/scmask2 are the atom masks that list
the unique atoms within the molecules to be merged. These do not necessarily have to be
soft core atoms. For instance, removing the charges on a residue in a protein requires two
copies of that residue in the prmtop file. These masks can be set to that residue. All atoms not
in scmask1/scmask2 but in mol1mask/mol2mask should be the same, as these are considered
common atoms. Any bonding terms which involve scmask atoms will be kept, but any extra
terms will be removed. scmask1N/scmask2N are only used for atoms that will not be merged.
These atoms will be included in the masks for output, so that additional soft core molecules that
should not be merged do not have to be manually renumbered. tol specifies how close the coor-
dinates have to be for the atoms in V0 and V1 to be considered the same. See the Amber manual
for a complete description of thermodynamic integration in PMEMD as well as an example of
this command.

3.2.2.43 writeFrcmod

Usage: writeFrcmod <frcmod_name>
This command will dump a complete frcmod file containing every parameter in your topology

file. (Note that because LEaP cannot produce pair-specific VDW parameters, the effects of a
changeLJPair will NOT be reflected in the topology file unless the pair you choose is between
two atoms with the same VDW type). It assumes the canonical Amber combining rules for
VDW terms, and uses each type’s interaction with itself to extract the well depths and VDW
radii.

3.2.2.44 writeOFF

Usage: writeOFF <OFF_File>
Writes an Amber OFF (library) file containing every residue, including terminal residues,

found in a given topology file.

3.2.3 Examples

This section outlines a couple of example input files for parmed.py with comments de-
scribing what each command does. You can try these examples on the test parameter files in
$AMBERHOME/AmberTools/test/parmed (either the normal_prmtop/trx.prmtop or the cham-
ber_prmtop/dhfr_gas.prmtop).

Example 1

# This file generates a topology file with the new mbondi3 radii
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# optimized for the igb = 8 GB model and changes the charge set

# of LYS 3 (trx.prmtop) to set up for a FEP-like calculation.

# In practice you would need more than just the protonated and

# deprotonated state (you would have to interpolate), but this

# is just a demonstration.

# Change to mbondi3

changeRadii mbondi3

# Output the first topology file

outparm trx_mbondi3_state0.parm7

# Change the charges of the LYS

change charge :3@N -0.3479

change charge :3@H 0.2747

change charge :3@CA -0.24

change charge :3@HA 0.1426

change charge :3@CB -0.10961

change charge :3@HB2,HB3 0.034

change charge :3@CG 0.06612

change charge :3@HG2,HG3 0.01041

change charge :3@CD -0.03768

change charge :3@HD2,HD3 0.01155

change charge :3@CE 0.32604

change charge :3@HE2,HE3 -0.03358

change charge :3@NZ -1.03581

change charge :3@HZ1 0

change charge :3@HZ2,HZ3 0.38604

change charge :3@C 0.7341

change charge :3@O -0.5894

# Output the second topology file

outparm trx_mbondi3_state1.parm7

Example 2

# This file generates a topology file in which the L-J

# interactions between atoms 10 and 28 have been removed,

# and the L-J interactions between atoms 40, 41, 42, and

# 57 with everybody else has been removed.

# Make atoms 10 and 28 new LJ types, but keep their original

# well depths and radii

addLJType @10

addLJType @28
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# Zero the interaction between them

changeLJPair @10 @28 0.0 0.0

# Make atoms 40, 41, 42, and 57 a new LJ type with 0s for

# their parameters to remove all of their LJ interactions

# with every other atom

addLJType @40-42,57 0.0 0.0

# Write the final topology file. This statement could have

# been put anywhere

parmout altered_LJ.parm7

3.2.4 xparmed.py

To aid in simple tasks and make single- (or few-) prmtop file changes easier, a GUI version of
ParmEd is available. It uses the Tk/Python graphical toolkit interface (called Tkinter). Tkinter
is part of the standard Python library, but not all operating systems provide it with their system
Python. The package names recognized by different package managers (e.g. apt-get, port, and
yum) vary from system to system, and are detailed in the section below separated by common
operating systems that have been tested by developers.

The GUI is very basic with a number of limitations. For instance, windows cannot be resized
(but should fit on most standard terminals and should be sized appropriately). Furthermore,
if an information window is present, the application will not end with the “Exit xParmEd”
button until all information windows are closed. For scripting purposes, the text-based version,
parmed.py, should be used instead.

3.2.4.1 Tkinter on Ubuntu (Debian)

To install Tkinter on Ubuntu (the package name on other Debians may differ), use the fol-
lowing command: sudo apt-get install python-tk

3.2.4.2 Tkinter on Red Hat

To install Tkinter on Red Hat (and CentOS and Fedora, probably), use the following com-
mand: sudo yum install tkinter

3.2.4.3 Tkinter on Mac OS X

The default Python installation on Mac OS X has Tkinter installed by default. In fact, it’s
a much ’prettier’ version because it is built on top of Apple’s GUI toolkits, which makes it
look like a native Mac application. You can force Amber programs to use the Mac system
Python by specifying /usr/bin/python as the default python to configure. If you wish to use a
Python installed via MacPorts, you will need to also install the corresponding tkinter port. For
instance, if you installed Python 2.7 from MacPorts and wish to use that, you will also need to
install py27-tkinter.
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3.2.4.4 Tkinter on Everything Else

If your system does not already have Tkinter installed, and none of the above helps you, you
should consult a search engine or online forums. If it doesn’t exist, you may have to stick with
parmed.py.

3.2.5 Advanced Options

This section describes some of the advanced options in parmed.py. Note these are not gener-
ally available to xparmed.py

3.2.5.1 Interactive Python Shell

To increase ParmEd’s flexibility, you can activate an limited, interactive Python interpreter
to inject your own custom Python code into parmed.py’s normal execution. This brings with it
the risk that custom code can be malicious if untrusted, so custom code evaluation is
disallowed by default. To enable it, use the “-e” or “–enable-interpreter” command-line flag
when executing parmed.py. To improve security, import statements are disallowed, although
the math module has been imported for basic mathematical operations. To execute a single
instruction, begin the command with a “!”. In this case, leading whitespace is eliminated (so
leading tabs/spaces are ignored here). For example,

bash $ parmed.py -e -n trx.prmtop

Loaded Amber topology file trx.prmtop

Reading input from STDIN...

> !print amber_prmtop.parm.parm_data[’ATOM_NAME’][0:10]

[’N’, ’H1’, ’H2’, ’H3’, ’CA’, ’HA’, ’CB’, ’HB2’, ’HB3’, ’OG’]

To execute a formatted block of code that requires more than one line, use “!!” to indicate to
ParmEd that you wish to drop to interpreter mode. Terminate that block of code with another
“!!” line. The prompt in STDIN-mode changes to “py >>>”. For example:

bash$ parmed.py -e -n trx.prmtop

Loaded Amber topology file trx.prmtop

Reading input from STDIN...

> !!

py >>> def formatted_print(items):

py >>> i = 0

py >>> for item in items:

py >>> print ’%10.4f ’ % item,

py >>> i += 1

py >>> if i % 5 == 0: print ”

py >>> print ”

py >>>

py >>> formatted_print(amber_prmtop.parm.parm_data[’CHARGE’][0:10])
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py >>> !!

0.1849 0.1898 0.1898 0.1898 0.0567

0.0782 0.2596 0.0273 0.0273 -0.6714

> quit

Quitting.

The main topology class list being worked on is called amber_prmtop. The currently ‘active’
topology file is the ‘parm’ attribute of the list. You can also access specific topology files using
an integer index or the original prmtop name. See the API documentation below if you are
interested in making custom modifications. Note that it is VERY easy to break a topology file
with this approach, so consider this an advanced option. A description of the topology file
format can be found on http://ambermd.org/formats.html.

WARNING: Variable declarations you make here drop onto the top-level namespace in ParmEd’s
normal operating environment. That is, any variable you declare here MIGHT override a criti-
cal one for ParmEd. Variable names to avoid using include any of the Python built-in functions
and types as well as line, code, debug, ParmedActions, ParmError, LineToCmd, amberParm,
output_parm, and input.

3.2.5.2 ParmEd API

The actions in this version of ParmEd have been generalized to make it easy to incorporate
them into your own Python scripts. To gain access to the actions, you must import them from the
ParmedActions module in the ParmedTools package. When cast to a string, the action instance
will output what it has done (or will do). The execute method bound to each Action instance
will actually carry out the action on the specified topology file. All actions are lowercase only
(to aid in case-insensitivity in parmed.py parsing).

You can instantiate a new action in one of two ways, but the first argument must be an
AmberParm (or ParmList) instance in both cases. Then, you can either load a single string with
all of the options and key words (the same way as you would type it in parmed.py), or you can
enter each argument independently with keywords being added appropriately.

An example showing how to add a new Lennard-Jones atom type is shown below using both
techniques described above.

# First add AMBERHOME/bin to the list of directories searched

# for modules and packages

import os

import sys

sys.path.append(os.path.join(os.getenv(’AMBERHOME’), ’bin’))

from chemistry.amber.readparm import AmberParm

from ParmedTools.ParmedActions import addljtype

parm = AmberParm(’trx.prmtop’)

act = addljtype(parm, ’@1 radius 0.0 epsilon 0.0’)

act.execute()
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print ’I just did:\n%s’ % act

parm.writeParm(’trx_modified.prmtop’)

# The following code does the same thing

parm = AmberParm(’trx.prmtop’)

act = addljtype(parm, ’@1’, radius=0.0, epsilon=0.0)

act.execute()

print ’I just did:\n%s\n\t...again.’ % act

parm.writeParm(’trx_modified_2.prmtop’)

3.2.5.3 Python Amber Topology class documentation

class AmberParm: The main topology file class. Its constructor takes a topology file name
and a restart file name. If the topology file name is given, it is read immediately. Otherwise,
the AmberParm instance can always be filled by passing an Amber topology file to its
“rdparm” method. Certain instance attributes are accessible only if a restart file is loaded
(these are indicated below). It is accessible through the module chemistry.amber.readparm.
Instantiate AmberParm objects via commands like:

from chemistry.amber.readparm import AmberParm

my_topology = AmberParm(’my_file.prmtop’)

or

import chemistry.amber.readparm

my_topology = chemistry.amber.readparm.AmberParm(’my_file.prmtop’, ’my_file.inpcrd’)

Class methods:

__init__(prmtop_name,[inpcrd_name]) Constructor. Sets up the instance variables, parses
the topology file, and loads the coordinates for each atom if an inpcrd file name is given.

__str__() Returns the topology file name as the string representation of an amberParm class.
Called via “typecasting” an amberParm to a str-type or invoking the __str__ method di-
rectly. Use like: str(my_topology) –or– my_topology.__str__() –or– ’%s’ % my_topology

LoadPointers() Reloads the “pointers” instance attributes from the POINTERS section of the
topology file data. You should use this if you make any changes to the data in the POINT-
ERS section of the topology file. Use like: my_topology.LoadPointers()

ptr(pointer) Returns the value of the given pointer from the pointers dictionary (NOT from the
topology file). It is case-insensitive. See http://ambermd.org/formats.html for a list of
pointer names. Use like: num_atoms = my_topology.ptr(’natom’)
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rdparm(name) Parses the topology file and stores all of the data in the arrays and dictionaries
detailed below. This is called automatically in the constructor (__init__) method if a
prmtop file name is provided. It must be called separately if AmberParm was instantiated
without a topology filename.

rdparm_old() Parses old-style topology files. This is called automatically inside rdparm() if
it’s determined that the prmtop is an old-style topology file.

writeParm(name) Writes a new topology file with the given name (required) using all data
present in the parm_data and formats dictionaries.

writeOFF(name) Writes an OFF file to a given filename (defaults to “off.lib”)

fill_LJ() Calculates the LJ radii and LJ depths for each atom type by analyzing each type’s self-
interaction (the ACOEF and BCOEF for each atom type interacting with another atom
of the same type) by reversing the combining rules. This fills LJ_radius, LJ_depth, and
LJ_types arrays/dictionary.

fill_14_LJ() Calculates the LJ radii and LJ depths for each atom type’s 1-4 interactions (CHAM-
BER prmtops only!) the same way that it’s done in fill_LJ() (but it fills the LJ_14_radius
and LJ_14_depth arrays).

recalculate_LJ() Repopulates the LENNARD_JONES_ACEOF and LENNARD_JONES_BCOEF
arrays by using the normal Amber combining rules on the well depths and radii found in
LJ_depth and LJ_radius.

recalculate_14_LJ() Same as recalculate_LJ(), but it does it for CHAMBER prmtops for the
1-4 nonbonded parameters using the LJ_14_radius and LJ_14_depth arrays.

LoadRst7(filename) Loads a restart file and its coordinates and/or velocities. This is called
automatically in the constructor if a restart filename is given.

addFlag(options**) Options are (flag_name, flag_format, num_items | data, comments). This
will add a %FLAG to the topology file data dictionary, it will add the appropriate Fortran
format statement (it must be a simple statement like 10I8, 5E16.8, etc.) to the formats
dictionary, and it will either add an array of size num_items filled with 0s OR it will use
the provided data array. If you do not give a data array (which MUST be an iterable, and
it is converted to a Python list), then you have to give the number of 0s to put in a list
under that FLAG name. It will also add any prmtop comments if you supply them.

delete_mask(mask) This takes an AmberMask instance (but checks that the AmberMask’s
topology is the same as itself) or it takes a string mask and converts it to an AmberMask
object, removing all atoms from atom_list. This should only be called *once* for each
instance, as not all internal variables and settings are reset properly to enable a second
delete_mask. The coord and vels arrays are updated to reflect only the coordinates and
velocities of the remaining atoms. remake_parm() is called at the end of delete_mask.
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remake_parm() This recalculates the topology parameters from the given atom_list and lists
of bonds, angles, and dihedrals. So far, it only works with normal topology files (not
chamber-created topology files, LES topology files, or Amoeba topology files). This
only needs to be called if any of the above variables have been changed (and is called
automatically by writeParm if it detects any of the arrays have been modified in any
way).

Instance variables (or attributes). Note that Python dictionaries are like hash tables and Python
lists index starting from 0:

parm_data Dictionary that pairs a prmtop %FLAG name with a Python list containing all of
the data corresponding to that FLAG.

parm_comments Dictionary that pairs a prmtop %FLAG name with a Python list containing
all of the comments associated with that FLAG.

formats Dictionary that pairs a prmtop %FLAG name with its Fortran format string specified
in the topology file.

chamber Boolean value that indicates whether a topology file was written by CHAMBER or
not (if it has a %FLAG CTITLE instead of TITLE)

version Version string found at the top of the prmtop file (str type)

prm_name Name of the original topology file (str type)

overwrite Boolean (True or False) that determines if we are allowed to overwrite prm_name in
the writeParm method described above.

valid Boolean that indicates whether there were any problems parsing the topology file or any
glaring issue with it (like it was lacking a POINTERS section)

exists Boolean that indicates whether or not the prmtop file exists.

LJ_types Dictionary that maps AMBER_ATOM_TYPE to the type index from the flag ATOM_TYPE_INDEX.
Useful if you only have the Amber atom type and not the atom number (in which case,
just use the ATOM_TYPE_INDEX list from parm_data)

LJ_radius Python list of ordered Lennard Jones radii corresponding to ATOM_TYPE_INDEX
values.

LJ_depth Python list of ordered Lennard Jones well depths corresponding to ATOM_TYPE_INDEX
values.

LJ_14_radius Same as LJ_radius above for 1-4 non-bonded parameters. ONLY present in
CHAMBER prmtops!

LJ_14_depth Same as LJ_depth above for 1-4 non-bonded parameters. ONLY present in
CHAMBER prmtops!
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coords Python list with coordinates of each atom in the format [x1,y1,z1,x2,y2,z2, ..., xN,yN,zN].
Only exists if a restart file was loaded via the LoadRst7() above.

hasvels Boolean value that indicates whether velocities were loaded from the parsed restart
file. Only present if a restart file was loaded.

vels If has_vels is True, this stores all of the velocities parsed from the restart file in a Python
list. Only present if has_vels is True.

hasbox Boolean value that indicates whether box information was loaded from the parsed
restart file. Only present if a restart file was loaded.

box Python list containing all box information found in the restart file. Only present if hasbox
is True.

atom_list List of Atom classes that describe each atom in the system. Each atom has in-
stance variables bond_partners, angle_partners, dihedral_partners, xx, xy, xz (cartesian
coordinates if a restart file is loaded), vx, vy, vz (velocities if a restart file is loaded),
starting_index, and idx. The partners arrays are used to define which atoms that atom
defines a bond, angle, or dihedral with (each atom appears only once and only in one of
those arrays). These are used to define the exclusion list. starting_index is a pointer into
all of the atomic data arrays (like ATOM_NAME, ATOM_TYPE_INDEX, etc.), and is
updated every time remake_parm() is called. idx is never set until writeParm is called to
write the topology file (and is reset to -1 after starting_index is updated at the end of the
routine).

bonds_inc_h List of all bonds including hydrogen listed in the original topology file. This
array is NOT modified by delete_mask. The only bonds from this list that are added to
the prmtop in remake_parm are the ones whose atoms still exist in the atom_list array at
the time remake_parm is called. Each bond has associated with it a bond type that is in
the bond_type_list array described below.

bonds_without_h List of all bonds without hydrogen. See description for bonds_inc_h

bond_type_list List of all bond types defined in original topology file. The only ones assigned
indexes are the ones found in bonds between remaining atoms defined in bonds_inc_h
and bonds_without_h.

angles_inc_h, angles_without_h, angle_type_list Same as bond counterparts, but for angles

dihedrals_inc_h, dihedrals_without_h, dihedral_type_list Same as bond/angle counterparts,
but for dihedrals

residue_container A Python list in which each atom’s index (starting from 0) contains the
residue number (CAREFUL: starting from 1) that that atom belongs to.
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3.2.5.4 Extending ParmEd

This section describes what is necessary to add a new action to ParmEd. When testing ad-
ditions, it is useful to use the -d/–debug flags, which will print detailed information (such as
offending file lines, etc.) about syntax errors and other exceptions.

All actions are parsed from the ParmedActions.py file in $AMBERHOME/AmberTools/sr-
c/parmed/ directory. Each action must be its own class that inherits from Action and takes the
AmberParm instance amber_prmtop as its first argument in its constructor. All arguments in
the constructor *after* the topology file class must appear in the order that you want the user
to place them in the command. See existing methods as examples. You also need to take care
to write the class doc-strings (the string immediately following every class declaration) to be as
helpful as possible, because they are used in the help function. You must also add your com-
mand’s usage statement in the “usages” dictionary found at the top of ParmedActions.py, or it
will be invisible to the help function.

No further action is necessary to add your functionality to ParmEd (and you should never
have to edit parmed.py directly – any class put in ParmedActions.py is immediately accessible
by parmed.py). Existing actions provide helpful examples if you choose to expand ParmEd.

Extending xParmEd: Any action that is added to ParmedActions.py will be visible as but-
tons in xparmed.py, but will be disabled by default unless you implement that action directly.
There is no well-defined standard for implementing actions in the GUI version like there is in
the text-based version. GUI actions are defined in $AMBERHOME/AmberTools/src/parmed/-
ParmedTools/gui/_guiactions.py, and all additional actions must be defined there. You should
only have to modify _guiactions.py, since the GUI is automatically sized and filled based on
classes in ParmedActions.py. The best advice I can give if you want to expand xParmEd is to
copy the class that does a similar task and modify it for your class. The related examples are
fairly consistent in their style of implementation, so hopefully it is easy enough to add actions
quickly.

3.3 paramfit

Robin Betz

The paramfit program allows specific forcefield parameters to be optimized or created by
fitting to quantum energy data. Paramfit can be used when parameters are missing in the default
forcefields and antechamber cannot find a replacement, or when existing parameters do not
describe the system to the desired level of accuracy, such as for dihedral constants on protein
backbones.

Paramfit attempts to make the following statement true: The quantum energy and the en-
ergy that AMBER predicts should be the same over many conformations of a structure.

Paramfit attempts to fit the AMBER energy to the quantum energy for a variety of conforma-
tions of the input structure, minimizing the equation EMD−EQM +K = 0 where K is a constant
intrinsic difference between the QM and MD calculations. The program works by altering the
parameters that AMBER uses to describe the molecule, which alter the elements in the AMBER
sum that is used to calculate the energy. It is necessary to evaluate over many conformations of
the molecule because the parameters predict how the molecule will behave dynamically rather
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than statically. To get a good idea of the forces on a dihedral, for example, the energy needs to
be evaluated for multiple conformations of the dihedral to see how it changes each time. Param-
fit will fit so that the energy changes that AMBER predicts will happen when the dihedral twists
match the changes predicted with quantum methods.

Paramfit provides functionality for the majority of steps in the fitting process, including writ-
ing input files for quantum packages, specifying which parameters are to be fit, determining
the value of K for the system, and finally conducting the fit and saving it in a force field mod-
ification file that can be used by other programs. An external quantum program is needed to
generate the energies needed for paramfit to conduct a fitting. Currently, the program is capable
of writing input files for ADF, GAMESS, and Gaussian, although if you write your own input
files instead of using paramfit’s functionality, any quantum package will work.

Paramfit has OpenMP support for parallelization of the AMBER function evaluation over the
input conformations, where each core will evaluate the energy for a subset of the conformations.
Enable this by adding the -openmp option to configure and rebuilding paramfit. By default all
available cores will be used. To change this, set the OMP_NUM_THREADS environment
variable to the number of threads to be executed.

3.3.1 Usage

Paramfit is called from the command line:

paramfit -i Job_Control.in -p prmtop -c mdcrd -q QM_data.dat \

-v MEDIUM --random-seed seed

Only input files are specified from the command line, and will default to the following file
names unless otherwise specified.

Job_Control.in The job control file for the program. See 3.3.2 for a description of the options
and format for this file. If no job control file is specified, a wizard will be initiated that
will prompt you for options and help create the file.

prmtop The molecular topology file for the structure.

mdcrd A coordinate file containing many conformations of the input structure. These may be
generated by running a short simulation in solution, or by manually specifying coordi-
nates for each atom. It is important that there be a good representation of the solution
space for any parameters that are to be optimized- for example, if you want a bond force
constant it would be a good idea to have input structures with a good range of values for
the length of the that bond type. See 3.3.5

QM_data.dat A file containing the quantum energies of the structures in the coordinate file, in
order, one per line. You will have to extract the energies from the output files that the
quantum package produces. An example script to do this for Gaussian formatted output
files can be found in $AMBERHOME/AmberTools/src/paramfit/scripts.

MEDIUM The verbosity level to run the program at, either LOW, MEDIUM, or HIGH.

seed The integer seed for the random number generator. Only specify this parameter when
exactly reproducible results are needed for debugging.
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3.3.2 The Job Control File

Similarly to sander and other programs, paramfit requires a job control file that specifies
individual options for each run. The format consists of variable assignments, in the format vari-
able=value, with one assignment per line. Pound signs (#) will comment out lines. See the fol-
lowing sections for a description of what to put in the job control file for various tasks. There is
a template job control file in $AMBERHOME/AmberTools/src/paramfit/example_config_files
that lists all possible options. Additionally, running paramfit without specifying a job control
file will initiate a helpful series of prompts that aids in its creation.

General options

paramfit requires several options be set for every run. These variables should usually appear
in your job control file.

RUNTYPE Specifies whether this run will be creating quantum input files, setting parameters,
or conducting a fit.

= CREATE_INPUT The structures in the coordinate file will be written out as individual
input files for a quantum package. See 3.3.2.

= SET_PARAMS Provides an interactive prompt allowing you to specify which parame-
ters will be fit for this molecule. See 3.3.2.

= FIT Conducts a fitting using one of the two minimization algorithms. See 3.3.2for other
options that need to be specified.

NSTRUCTURES Specifies how many structures are in the input coordinate file. If this value is
less than the total number of structures in the file, only the first n will be read.

Creating quantum input files

Given a trajectory, paramfit can write input files for a variety of quantum packages. This
is necessary to generate the energy values for each input conformation that paramfit will fit
to. You do not necessarily need to do this step and can write your own input files if desired.
Currently Gaussian, ADF, and GAMESS formats are supported.

By default, the files will be named Job.n.in, where n is the nth structure in the coordinate file.
Once all the input files are written, you must run the quantum package yourself and then extract
the energies from the output files into the format that paramfit requires, with one energy per
line in the same order as the input structures. An example script to do this for Gaussian format
output files is in the $AMBERHOME/AmberTools/src/paramfit/scripts directory.

To enter this mode, set RUNTYPE=CREATE_INPUT and specify the following options in
your job control file:

QMHEADER File that will be prepended to all created input files for the quantum program.
This specifies things on a per-system basis, such as choice of basis set, amount of mem-
ory to use, etc. These parameters will vary depending on which quantum package you
are using. Sample header files for all supported quantum packages are included in exam-
ple_config_files in paramfit’s source directory.
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QMFILEFORMAT Specifies which quantum package the created input files should be formatted
for.

= ADF Use the Amsterdam Density Functional Theory package.

= GAMESS Use the General Atomic and Molecular Electronic Structure System (GAMESS).

= GAUSSIAN Use Gaussian.

QM_SYSTEM_CHARGE The integral charge of the system. Defaults to 0. Note that some
quantum packages may require this to also be specified in your header file.

QM_SYSTEM_MULTIPLICITY The integral multiplicity of the system. Defaults to 1 (singlet).

QMFILEOUTSTART The prefix for each of the created input files. Defaults to ’Job.’ The
structure number and then the suffix will be appended to this value.

QMFILEOUTEND The suffix for each of the created input files. Defaults to ’.in’. With both
default options, the file will be named Job.n.in.

Specifying parameters

In order to facilitate batch runs as well as simplify the process of running paramfit on larger
systems, the parameters to be fit are saved and then loaded in during actual fitting so that they
do not have to be specified every time. The parameter setting runtype accomplishes this by
prompting whether you would like to fit bond, angle and/or dihedral parameters and then dis-
playing a list of the specific atom types for each so that you can pick exactly what paramfit
should optimize. This saved file does not specify a value for any of the parameters, but simply
indicates which ones are to be changed during fitting.

If you do not wish to save a parameter file, you may instead fit a default set of parameters or
be prompted every time. See 3.3.2.

To enter this mode, set RUNTYPE=SET_PARAMS and the following options:

PARAMETER_FILE_NAME Specifies the name of a file in which to store the parameters. When
loading these parameters in during a fitting, this line will stay the same. Do not modify
this file by hand: paramfit numbers each bond, angle, and dihedral in a manner that is
consistent but not human-readable.

Fitting options

The fitting function accomplishes the actual parameter modification. It does this by minimiz-
ing the least squares difference between the quantum energy and the energy calculated with the
AMBER equation over all of the input conformations. For a perfect fit, this means that over all
structures, EMD−EQM +K = 0.

K is the intrinsic difference between the quantum and the classical energies, which is repre-
sented as a parameter that is also fit. The value of K depends on the system, and should be fit
once as the only parameter before fitting any other parameters.

To enter this mode, set RUNTYPE=FIT and set the following additional variables:
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ALGORITHM The minimization algorithm to use. paramfit currently implements a genetic
algorithm and a simplex algorithm for conduction minimization. Each algorithm requires
several parameters and is suited to different problems. Please see 3.3.4 for descriptions
of these options and a guide on choosing the appropriate algorithm.

= GENETIC

= SIMPLEX

= BOTH

FUNC_TO_FIT The fitting function to use for these results. Please see 3.3.3for descriptions of
thsee options

= SUM_SQUARES_AMBER_STANDARD Standard fit to single-point energies. Recom-
mended selection.

= AMBER_FORCES Fit to the forces on atoms involved in fitted parameters. Currently
only supports Gaussian output.

= DIHEDRAL_LEAST_SQUARES Use Chad Hopkins and Adrian Roitberg’s method to
fit all dihedral terms at once.

K The intrinsic difference between the quantum and classical energies. This value needs to be
determined once for each system so that the algorithm can minimize to zero instead of to
a constant. See 3.3.6 for an example.

PARAMETERS_TO_FIT Sets how paramfit determines which parameters are to be fit. paramfit
does not fit electrostatics, but is capable of fitting every other element of the AMBER
sum, which include bond harmonic force constant and equilibrium length, angle harmonic
force constant and equilibrium angle, and proper and improper dihedral barrier height,
phase shift, and periodicity. As a general rule, the fewer parameters there are to fit, the
faster and more accurate the results will be. Avoid fitting more parameters than necessary.

= DEFAULT Fit all bond force constants and lengths, angle force constants and sizes,
and dihedral force constants. This option will usually fit a very large number of
parameters, and is rarely necessary. For most cases, only a few parameters are
desired, and they should be fit individually.

= K_ONLY Do not fit any force field parameters. Only fit the value of K (the difference
between quantum and classical energies for the system). This needs to be done once
per system in order to determine K before any other parameters are fit, as attempting
to fit it at the same time results in inaccurate results. Since small changes in K
produce a great change in the overall least squares sum, the algorithm will tend to
focus on changing the value of K and will neglect the parameters.

= LOAD The list of parameters to be fit is contained in a file that was previously created
with the parameter setting runtype. Set PARAMETER_FILE_NAME to the loca-
tion of this file. To create this file, run paramfit with RUNTYPE=SET_PARAMS.

SCEE The value by which to scale 1-4 electrostatics for the AMBER sum. Defaults to 1.2

SCNB The value by which to scale 1-4 van der Waals for the AMBER sum. Defaults to 2.0.
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QM_ENERGY_UNITS The unit of energy in the quantum data file if you are fitting to ener-
gies. This will depend on your quantum package and settings used for the single point
calculations.

= HARTREE Default

= KCALMOL

= KJMOL

QM_ENERGY_UNITS The unit of force in the quantum data files if you are fitting to forces.
This will depend on your quantum package and settings used for the force calculations.

= HARTREE_BOHR Default

= KCALMOL_ANGSTROM

WRITE_ENERGY Saves the final AMBER energy and the quantum data for each structure to a
file. Plotting these data is useful in verifying the results of the fitting and identifying any
problem structures. See 3.3.6 for more on how to verify the accuracy of results.

WRITE_FRCMOD When the fitting is complete, the parameters will be saved in a force field
modification file at this location in addition to displaying them in standard output. This
file may be used with leap to create a new prmtop. If no value is specified the file will not
be created.

SCATTERPLOTS Creates graphs of the bond, angles, and dihedrals found in the input files for
each parameter that is being fit. These plots can be visualized using scripts/scatterplots.sh
found in paramfit’s source directory. This can be helpful in assessing the quality of the
input conformations.

3.3.3 Available fitting functions

Paramfit now includes several ways fitting functions to aid in parameter generation. It can fit
such that the energy of each input structure matches the single-point quantum energies inputted,
or can now do the same fitting only with the forces on each atom, which may produce a more
accurate fit that is less sensitive to problems with the input structure, and can also fit all dihedral
force constants and phases simultaneously to a small set of quantum energies using a method
developed by Chad Hopkins and Adrian Roitberg.

Fitting forces requires several additional options to specify the location of the output forces
files in the job control file. The easiest way to create a job control file for any of these options
is to use the wizard, which runs automatically when no job control file is specified. This will
walk you through the creation of a job control file and write it for you while prompting for all
necessary options for the selected fitting function.

It is highly recommended that you fit to single-point quantum energies, as fitting to forces
has difficulties with convergence and is considerably more expensive in terms of required cal-
culation. The implementation of the dihedral fitting method is also experimental, and requires
a varied set of input structures. No matter which method is used, please take care to care-
fully validate all parameters for reasonableness– paramfit’s fit is dependent on the variation and
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quality of the input structures and is not guaranteed to converge in well-defined areas of the
conformation set.

3.3.4 Algorithm options

Paramfit implements two minimization algorithms: a simplex and a genetic algorithm (GA).
Each algorithm has its own strengths and weaknesses, and choosing the correct algorithm for a
given problem is important for achieving a good fit within a reasonable amount of time.

The genetic algorithm starts with a randomly generated solution set, which it recombines and
alters in ways similar to evolution, converging to an optimum after a number of “generations”
have passed without improvement. Currently, this algorithm requires many more evaluations of
the AMBER sum than the simplex algorithm, making it slower for some problems. However,
the GA excels on sample sets that are not as well defined, and outperforms the simplex algo-
rithm when a large number of parameters are to be changed, especially in systems where some
parameters are interdependent, such as molecules with multiple dihedrals.

The GA will start with many initial randomly generated sets of parameters. It will then
determine which are the best by evaluating the AMBER sum, select them for recombination to
produce a new set of parameters, randomly alter a few parameters slightly to prevent premature
convergence, and iterate until convergence has been reached.

Choose the genetic algorithm if you wish to optimize more than three parameters or do not
have a very good sampling of the parameters to be fit. The GA also requires the following
options:

OPTIMIZATIONS The integer number of possible optimizations the algorithm will use. Analo-
gous to the population size in evolution; larger values require more function evaluations
and are slower but produce better results, and smaller ones will delay convergence. In
general, choose the largest value your hardware and/or patience will tolerate. Defaults to
20.

SEARCH_SPACE If positive, the algorithm will search for new parameters for everything ex-
cept dihedral phases within this percentage of the original value, where 1.0 will search
within ±100% of the value found in the input prmtop. See 3.3.6 for examples of how to
use this variable. Defaults to searching over the entire range of valid values and ignoring
the original value in the prmtop.

MAX_GENERATIONS The maximum number of iterations the algorithm is allowed to run be-
fore it returns the best non-converged optimization. Defaults to 10000.

GENERATIONS_TO_CONV The number of iterations in a row that must pass without improve-
ment in the best parameter set for the algorithm to be considered converged. The value
will not be checked until 100 generations have passed, to prevent premature convergence.
Set to a larger value for a longer but potentially more accurate run. Defaults to 1000,
which may be too large for many systems.

The simplex algorithm starts at an initial set of parameters and moves “downhill” iteratively,
converging when the improvement from one step to another becomes negligible. The simplex
algorithm is generally faster than the GA, and excels at well-defined systems with a small
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number of dimensions. This algorithm requires a very well-defined sample space, and the input
structures should contain a good range over all the bonds, angles, and dihedrals that are to be
optimized. Otherwise, the algorithm tends to wander and will converge in badly defined areas
of the sample set. In smaller, well-defined systems with only a few parameters, this algorithm
will outperform the GA.

Choose the simplex algorithm if you wish to fit only a few parameters and have a large
number of input conformations, and specify the following options:

BONDFC_dx Intrinsic length of parameter space for minimization. Used to determine the size
of the steps to construct the initial simplex. Should be large enough that the steps sample
a sufficiently large area but small enough to not move outside of normal parameter range.
Bond force constant step size defaults to 5.0.

BONDEQ_dx Bond equilibrium length step size. Defaults to 0.02.

ANGLEFC_dx Angle force constant step size. Defaults to 1.0.

ANGLEEQ_dx Angle equilibrium step size. Defaults to 0.05.

DIHEDRALBH_dx Dihedral force constant step size. Defaults to 0.2.

DIHEDRALN_dx Dihedral periodicity step size. Defaults to 0.01.

DIHEDRALG_dx Dihedral phase step size. Defaults to 0.05.

K_dx Step size for intrinsic difference constant. Defaults to 10.0.

CONV_LIMIT Floating point number that details the convergence limit for the minimization.
The smaller the number, the longer the algorithm will take to converge but the results
may be more accurate. Defaults to 1.0E-15.

3.3.5 Bounds Checking

In order to ensure that the algorithms can return meaningful results, bounds checking routines
are included in paramfit. The bounds checking functionality ensures that the algorithm’s results
are reasonable given the initial sample set, and also makes sure that the sample set is well-
defined.

Since bonds and angles are approximately harmonic, the algorithm’s result is reasonable if it
lies within a well-defined area of the sample set. Bonds and angle values are therefore checked
after the algorithm has finished running. In order to properly fit dihedrals, sample structures
should span the entire range of phases for each dihedral that is to be fit. Dihedral checking is
therefore accomplished before the algorithm begins to conduct the fit.

Bounds checking defaults to halting execution of the program upon reaching a failing condi-
tion. It is not recommended that this behavior be disabled, since the results of the fit are most
likely inaccurate. Using the fitted parameters anyway will probably result in an inaccurate de-
piction of the molecule. Properly represented parameters in the input structures are crucial for
a valid fit. Instead of using the parameters, fix the input structures so that data are provided in
the missing ranges, which will be stated in the error message, and rerun the program twice: first
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in CREATE_INPUT mode to obtain quantum energies for the added structures and then in FIT
mode to redo the fit.

If you know that your input structures describe the parameters to be fit quite well, the selec-
tivity of the bounds checking can be altered by the specifying the following options in the job
control file. Use these options with caution, and verify the generated parameters carefully.

CHECK_BOUNDS

= ON The recommended and default option. This will halt execution when the bounds
check fails.

= WARN Continue upon reaching a bounds failure condition, but output a warning. Do
not use the parameters generated by this fit without careful verification! Use the
error message and other results to determine if they are reasonable.

BOND_LIMIT Fitting results for bond lengths that are this many Angstroms away from the
closest approximation in the input structures will result in a failing condition. Defaults to
0.1.

ANGLE_LIMIT Fitting results for angles that are more than this many radians away from the
closes approximation in the input structures will result in a failing condition. Defaults to
0.05π .

DIHEDRAL_SPAN The entire range of valid dihedral angles, 0 to π , for each dihedral that is to
be fit should be spanned by this many input structure values, otherwise a failing condition
will result. Defaults to 12, meaning that there needs to be a dihedral in every π

12 radian
interval of the valid range.

3.3.6 Examples

Setting up to fit

The fitting process with paramfit follows a specific order. Example job control files for each
step and a description of the step follow.

First, write a job control file to create the input structures and run paramfit:

RUNTYPE=CREATE_INPUT

NSTRUCTURES=50

QMFILEFORMAT=GAUSSIAN

QMHEADER=Gaussian.header

$AMBERHOME/bin/paramfit -i Job_Control.in -p prmtop -c mdcrd

After all 50 input files have been created, run the quantum program on them. Once it’s
finished, extract the quantum energies from the output files using the provided script. Since the
example used Gaussian:

$AMBERHOME/AmberTools/src/paramfit/scripts/extract_gaussian.x \

output_directory energies.dat
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Now, or while the quantum jobs are running since neither the energies nor the structures are
needed yet, determine which parameters are to be fit and save them.

RUNTYPE=SET_PARAMS

PARAMETER_FILE_NAME=saved_params

$AMBERHOME/bin/paramfit -i Job_Control.in -p prmtop

Now the quantum energies to fit have been obtained and the parameters to fit have been set, and
the fitting process may begin.

Fitting K

The first step in fitting is determining the value of K for a system. A job control file that will
only fit K follows:

RUNTYPE=FIT

PARAMETERS_TO_FIT=K_ONLY

FITTING_FUNCTION=SIMPLEX

Then,

$AMBERHOME/bin/paramfit -i Job_Control.in -p prmtop -c mdcrd -q energies.dat

Take this value of K and put it back in the job control file when conducting the actual fit.

RUNTYPE=FIT

PARAMETERS_TO_FIT=LOAD

PARAMETER_FILE_NAME=saved_params

FITTING_FUNCTION=GENETIC

OPTIMIZATIONS=500

GENERATIONS_TO_CONV=150

WRITE_FRCMOD=fitted_params.frcmod

And call paramfit just as before. This example fit will create a force field modification file
that can later be read into leap to create a new prmtop with the modified parameters for the
molecule.

Improving a fit iteratively

The genetic algorithm does a good job improving on the initial values that it is given, but
can converge away from the actual minimum. If you suspect that this is happening, paramfit
can be run several times to produce better results by varying the SEARCH_SPACE parameter
of the genetic algorithm. This parameter determines how far away from the initial values the
algorithm will start to look for better answers. Setting it to a large value can help the algorithm
escape local minima, but it may be slower to converge.

Start with SEARCH_SPACE=-1 to have the algorithm search within the entire valid range
for each parameter. If you want to search only around the existing values in the input prmtop,
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set it to a positive value. The algorithm will then search within plus or minus that fractional
difference of the original value for the new results. For example, SEARCH_SPACE=0.14 will
search within ±14% of the original value.

If you have some values that you want to search the entire space for but not others, set those
values to zero in your prmtop. This can be done with xleap and/or a force field modification file,
or by (carefully) editing the prmtop yourself if you understand which values you need to change.
Make sure to carefully check the output to see what paramfit thinks the initial parameters are!

Evaluating Results

When using paramfit, it is important to verify the accuracy of the fitted parameters for your
input structures. The WRITE_ENERGY option in the Job Control file is useful for this. Set
it to a filename and paramfit will write the final AMBER energy of each structure next to the
quantum energy for the same structure in a file that can be easily graphed.

If you have gnuplot, a script has been provided to quickly show each structure’s energies.
Assuming your energy file is named energy.dat:

$AMBERHOME/AmberTools/src/paramfit/scripts/plot_energy.x energy.dat

The resulting graph makes the identification of problem structures much easier, and gives a
good visualization of the fit. In general, carefully validate parameters generated by paramfit
against other data before conducting large simulations.

The SCATTERPLOT option in the job control file can also be useful in assessing the quality
of the input structures. If this option is set, paramfit will dump a variety of data files indicating
the value for all fitted bonds, angles, and dihedrals in the input conformations. These data may
be visualized if you have the program gnuplot by running the following command in the
directory where paramfit was run:

$AMBERHOME/AmberTools/src/paramfit/scripts/scatterplots.sh

The resulting graphs feature different colored points for each bond, angle, and dihedral type
that is being fit for each of the input structures. This is useful in evaluating if the results of the
fit are reasonable– for example, if the algorithm converges with an equilibrium bond length that
is not similar to any of the structures, that parameter may not be accurate.
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4.1 Introduction

LEaP is the generic name given to the programs teLeap and xaLeap, which are generally run
via the tleap and xleap shell scripts. These two programs share a common command language
but the xleap program has been enhanced through the addition of an X-windows graphical user
interface. The name LEaP is an acronym constructed from the names of the older AMBER
software modules it replaces: link, edit, and parm. Thus, LEaP can be used to prepare input for
the AMBER molecular mechanics programs.

LEaP is the basic tool to construct force field files (see Fig. 1.1). Using tleap, the user can:

Read AMBER PREP input files

Read Amber PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and NAB

usage: tleap [ -I<dir> ] [ -f <file>|- ]

The command tleap is a simple shell script that calls teLeap with a number of standard argu-
ments. Directories to be searched are indicated by one or more “-I” flags; standard locations
are provided in the tleap script. The “-f” flag is used to tell tleap to take its input from a file (or
from stdin if “-f -” is specified). If there is no “-f” flag, input is taken interactively from the
terminal.

A key command for LEaP is loadPdb, which inputs sequence and structure information from
Protein Databank Files. Be sure to read Section 6.8 for information on how to “clean up” PDB
files before loading them.

4.2 Concepts

In order to effectively use LEaP it is necessary to understand the philosophy behind the
program, especially the concepts of LEaP commands, variables, and objects. In addition to
exploring these concepts, this section also addresses the use of external files and libraries with
the program.
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4.2.1 Commands

A researcher uses LEaP by entering commands that manipulate objects. An object is just a
basic building block; some examples of objects are ATOMs, RESIDUEs, UNITs, and PARM-
SETs. The commands that are supported within LEaP are described throughout the manual and
are defined in detail in the “Command Reference” section.

The heart of LEaP is a command-line interface that accepts text commands which direct the
program to perform operations on objects. All LEaP commands have one of the following two
forms:

command argument1 argument2 argument3 ...

variable = command argument1 argument2 ...

For example:

edit ALA trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some
commands return objects which are then associated with a variable using an assignment (=)
statement. Each command acts upon its arguments, and some of the commands modify their
arguments’ contents. The commands themselves are case-insensitive. That is, in the above ex-
ample, edit could have been entered as Edit, eDiT, or any combination of upper and lower
case characters. Similarly, loadPdb could have been entered a number of different ways, in-
cluding loadpdb. In this manual, we frequently use a mixed case for commands. We do this to
enhance the differences between commands and as a mnemonic device. Thus, while we write
createAtom, createResidue, and createUnit in the manual, the user can use any case when
entering these commands into the program.

The arguments in the command text may be objects such as NUMBERs, STRINGs, or LISTs,
or they may be variables. These two subjects are discussed next.

4.2.2 Variables

A variable is a handle for accessing an object. A variable name can be any alphanumeric
string whose first character is an alphabetic character. Alphanumeric means that the characters
of the name may be letters, numbers, or special symbols such as “*”. The following special
symbols should not be used in variable names: dollar sign, comma, period (full stop), pound
sign (hash), equals sign, space, semicolon, double quote, or the curly braces { and }. LEaP
commands should not be used as variable names. Unlike commands, variable names are
case-sensitive: “ARG” and “arg” are different variables. Variables are associated with objects
using an assignment statement not unlike that found in conventional programming languages
such as Fortran or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }
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In the above examples, both mole and MOLE are variable names, whose contents are the same
(6.02 × 1023). Despite the fact that both mole and MOLE have the same contents, they are not
the same variable. This is due to the fact that variable names are case-sensitive. LEaP maintains
a list of variables that are currently defined. This list can be displayed using the list command.
The contents of a variable can be printed using the desc command.

4.2.3 Objects

The object is the fundamental entity in LEaP. Objects range from the simple, such as NUM-
BERs and STRINGs, to the complex, such as UNITs, RESIDUEs and ATOMs. Complex ob-
jects have properties that can be altered using the set command, and some complex objects can
contain other objects. For example, RESIDUEs are complex objects that can contain ATOMs
and have the properties: residue name, connect atoms, and residue type.

NUMBERs

NUMBERs are simple objects holding double-precision floating point numbers. They serve
the same function as “double precision” variables in Fortran and “double” variables in C.

STRINGs

STRINGs are simple objects that are identical to character arrays in C and similar to
character strings in Fortran. STRINGs store sequences of characters which may be delimited
by double quote characters. Example strings are:

"Hello there"

"String with a "" (quote) character"

"Strings contain letters and numbers:1231232"

LISTs

LISTs are made up of sequences of other objects delimited by LIST open and close
characters. The LIST open character is an open curly bracket ({) and the LIST close character
is a close curly bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep.
Example LISTs are:

{ 1 2 3 4 }

{ 1.2 "string" }

{ 1 2 3 { 1 2 } { 3 4 } }

LISTs are used by many commands to provide a more flexible way of passing data to the
commands. The zMatrix command has two arguments, one of which is a LIST of LISTs
where each subLIST contains between three and eight objects.
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PARMSETs (Parameter Sets)

PARMSETs are objects that contain bond, angle, torsion, and non-bonding parameters for
AMBER force field calculations. They are normally loaded from force field data files, such as
parm94.dat, and frcmod files.

ATOMs

ATOMs are complex objects that do not contain any other objects. The ATOM object corre-
sponds to the chemical concept of an atom. Thus, it is a single entity that may be bonded to other
ATOMs and used as a building block for creating molecules. ATOMs have many properties that
can be changed using the set command. These properties are defined below.

name This is a case-sensitive STRING property and it is the ATOM’s name. The names for
all ATOMs in a RESIDUE should be unique. The name has no relevance to molecular
mechanics force field parameters; it is chosen arbitrarily as a means to identify ATOMs.
Ideally, the name should correspond to the PDB standard, being 3 characters long except
for hydrogens, which can have an extra digit as a 4th character.

type This is a STRING property. It defines the AMBER force field atom type. It is important
that the character case match the canonical type definition used in the appropriate force
field data (*.dat) or frcmod file. For smooth operation, all atom types must have element
and hybridization defined by the addAtomTypes command. The standard AMBER force
field atom types are added by the selected leaprc file.

charge The charge property is a NUMBER that represents the ATOM’s electrostatic point
charge to be used in a molecular mechanics force field.

element The atomic element provides a simpler description of the atom than the type, and
is used only for LEaP’s internal purposes (typically when force field information is not
available). The element names correspond to standard nomenclature; the character “?” is
used for special cases.

position This property is a LIST of NUMBERs. The LIST must contain three values: the (X,
Y, Z) Cartesian coordinates of the ATOM.

RESIDUEs

RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of ATOMs,
and are either molecules (e.g., formaldehyde) or are linked together to form molecules (e.g.,
amino acid monomers). RESIDUEs have several properties that can be changed using the set

command. (Note that database RESIDUEs are each contained within a UNIT having the same
name; the residue GLY is referred to as GLY.1 when setting properties. When two of these
single-UNIT residues are joined, the result is a single UNIT containing the two RESIDUEs.)

One property of RESIDUEs is connection ATOMs. Connection ATOMs are ATOMs that
are used to make linkages between RESIDUEs. For example, in order to create a protein, the
N-terminus of one amino acid residue must be linked to the C-terminus of the next residue.
This linkage can be made within LEaP by setting the N ATOM to be a connection ATOM at the
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N-terminus and the C ATOM to be a connection ATOM at the C-terminus. As another example,
two CYX amino acid residues may form a disulfide bridge by crosslinking a connection atom
on each residue.

There are several properties of RESIDUEs that can be modified using the set command. The
properties are described below:

connect0 This defines the first of up to three ATOMs that are used to make links to other
RESIDUEs. In UNITs containing single RESIDUEs, the RESIDUE’s connect0 ATOM
is usually defined as the UNIT’s head ATOM. (This is how the standard library UNITs
are defined.) For amino acids, the convention is to make the N-terminal nitrogen the
connect0 ATOM.

connect1 This defines the second of up to three ATOMs that are used to make links to other
RESIDUEs. In UNITs containing single RESIDUEs, the RESIDUE’s connect1 ATOM
is usually defined as the UNIT’s tail ATOM. (This is done in the standard library UNITs.)
For amino acids, the convention is to make the C-terminal oxygen the connect1 ATOM.

connect2 This defines the third of up to three ATOMs that are used to make links to other
RESIDUEs. In amino acids, the convention is that this is the ATOM to which disulfide
bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently, it
can have one of the following values: “undefined”, “solvent”, “protein”, “nucleic”, or
“saccharide”. Some of the LEaP commands behave in different ways depending on the
type of a residue. For example, the solvate commands require that the solvent residues
be of type “solvent”. It is important that the proper character case be used when defining
this property.

name The RESIDUE name is a STRING property. It is important that the proper character
case be used when defining this property.

UNITs

UNITs are the most complex objects within LEaP, and the most important. They may contain
RESIDUEs and ATOMs. UNITs, when paired with one or more PARMSETs, contain all of the
information required to perform a calculation using AMBER. UNITs can be created using the
createUnit command. RESIDUEs and ATOMs can be added or deleted from a UNIT using
the add and remove commands. UNITs have the following properties, which can be changed
using the set command:

head

tail These define the ATOMs within the UNIT that are connected when UNITs are joined to-
gether using the sequence command or when UNITs are joined together with the PDB
or PREP file reading commands. The tail ATOM of one UNIT is connected to the head
ATOM of the next UNIT in any sequence. (Note: a TER card in a PDB file causes a new
UNIT to be started.)
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box This property can either be null, a NUMBER, or a LIST. The property defines the bounding
box of the UNIT. If it is defined as null then no bounding box is defined. If the value is
a single NUMBER, the bounding box will be defined to be a cube with each side being
box Å across. If the value is a LIST, it must contain three NUMBERs, the lengths of the
three sides of the bounding box.

cap This property can either be null or a LIST. The property defines the solvent cap of the
UNIT. If it is defined as null, no solvent cap is defined. If it is a LIST, it must contain
four NUMBERs. The first three define the Cartesian coordinates (X, Y, Z) of the origin
of the solvent cap in Å, while the fourth defines the radius of the solvent cap, also in Å.

Examples of setting the above properties are:

set dipeptide head dipeptide.1.N

set dipeptide box { 5.0 10.0 15.0 }

set dipeptide cap { 15.0 10.0 5.0 8.0 }

The first example makes the amide nitrogen in the first RESIDUE within “dipeptide” the head
ATOM. The second example places a rectangular bounding box around the origin with the (X,
Y, Z) dimensions of ( 5.0, 10.0, 15.0 ) in Å. The third example defines a solvent cap centered
at ( 15.0, 10.0, 5.0 ) Å with a radius of 8.0 Å. Note: the set cap command does not actually
solvate, it just sets an attribute. See the solvateCap command for a more practical case.

Complex objects and accessing subobjects

UNITs and RESIDUEs are complex objects. Among other things, this means that they can
contain other objects. There is a loose hierarchy of complex objects and what they are allowed
to contain. The hierarchy is as follows:

• UNITs can contain RESIDUEs and ATOMs.

• RESIDUEs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. How-
ever, the convention that has evolved within LEaP is to have UNITs directly contain RESIDUEs
which directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot “.” notation. An
example would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two
RESIDUEs each of which contain several ATOMs. If the UNIT is referenced (named) by the
variable dipeptide, then the RESIDUE named ALA can be accessed in two ways. The user
may type one of the following commands to display the contents of the RESIDUE:

desc dipeptide.ALA

desc dipeptide.1

The first command translates to “describe some RESIDUE named ALA within the UNIT
named dipeptide”. The second form translates as “describe the RESIDUE with sequence
number 1 within the UNIT named dipeptide”. The second form is more useful because every
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subobject within an object is guaranteed to have a unique sequence number. If the first form is
used and there is more than one RESIDUE with the name ALA, then an arbitrary residue with
the name ALA is returned. To access ATOMs within RESIDUEs, either of the following forms
of command may be used:

desc dipeptide.1.CA

desc dipeptide.1.3

Assuming that the ATOM with the name CA has a sequence number 3 within RESIDUE 1, then
both of the above commands will print a description of the $alpha$-carbon of RESIDUE dipep-
tide.ALA or dipeptide.1. The reader should keep in mind that dipeptide.1.CA is the ATOM, an
object, contained within the RESIDUE named ALA within the variable dipeptide. This means
that dipeptide.1.CA can be used as an argument to any command that requires an ATOM as an
argument. However dipeptide.1.CA is not a variable and cannot be used on the left hand side of
an assignment statement.

4.3 Running LEaP

xleap -h or tleap -h

will give a list of command-line arguments (which are very simple). Once you have started
either program, typing “help” will bring up a lot of useful information about possible actions.

A file called leaprc is executed as a script file at the start of the LEaP session unless the user
suppresses it with a command line option. Sample files are in $AMBERHOME/dat/leap/cmd,
and you may wish to copy one of these to become "your" default file. LEaP will look first for a
learpc file in the user’s current directory, then in any directories included with -I flags.

The command line interface allows the user to specify a log file that is used to log all input
and output within the command line environment. The log file is named using the logFile
command. The file has two purposes: to allow the user to see a complete record of operations
performed by LEaP, and to help recover from (and recreate) program crashes. Output from
LEaP commands is written to the log file at a verbosity level of 2 regardless of the verbosity
level set by the user using the verbosity command. Each line in the log file that was typed in by
the user begins with the two characters "> " (a greater-than sign followed by a space). This
allows the user to extract the commands typed into LEaP from the log file to create a script file
that can be executed using the source command. This provides a type of insurance against
program crashes by allowing the user to regenerate their interactive sessions. An example of a
command that will create a script to reenact a LEaP session is:

cat LOGFILE | grep "^> " | sed "s/^> //" > SOURCEFILE.x

Note that changes via graphical and table interfaces (xleap) are not captured by command-line
traces.

tleap (terminal LEaP) is the non-graphical, command-line-only interface to LEaP. It has the
same functionality as the xleap main window (Universe Editor Command Window, described
below), and uses standard text control keys. xleap is a windowing interface to LEaP. In addition
to the command-line interface contained in the Universe Editor window, it has a Unit Editor
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(graphical molecule editor), an Atom Properties Editor, and a Parmset Editor. These editors are
discussed in subsequent subsections.

4.3.1 Universe Editor

The window that first appears when the user starts xleap is called the Universe Editor. The
Universe Editor is the most basic way in which users can interact with xleap. It has two parts,
the "command window," which corresponds to the tleap command interface, and the "pulldown"
items above the window, which provide mouse-driven methods to generate specific commands
for the command window, either directly or via popped-up dialog boxes. The items in the
pulldowns allow the user to generate commands using dialog boxes. To display the "File"
pulldown, for example, press the left mouse button on "File;" to select an item in the pulldown,
keep the button down, move the mouse to highlight the item, then release the mouse button. A
dialog box will then pop up containing fields which the user can fill in, and lists from which
values can be chosen; these will be used to generate commands for the command window
interface.

4.3.2 Unit Editor

When the user enters the \fCedit\fR command from the Universe Editor Command Window,
the Unit Editor will be displayed if the argument to the \fCedit\fR command is an existing
UNIT or a nonexistent (i.e. new) object. The Parmset Editor will be activated if the argument
is a PARMSET. The Parmset Editor is discussed later in this subsection.

The Unit Editor has five parts. At the top of the window is a pulldown menu bar; below it
is a set of buttons titled "Manipulation" that define the mode of mouse activity in the graphics
window, and below that, a list of elements to select for the manipulation "Draw" mode (se-
lecting one automatically selects "Draw" mode). Then comes the graphical molecule-editing
("viewing") window itself, and at the very bottom a text window where status and errors are
reported.

Unit Editor Menu Bar

The menu bar has three pulldowns: "Unit," "Edit," and "Display."

Unit pulldown The Unit pulldown contains commands affecting the whole UNIT.

• "Check unit" – checks the UNIT in the viewing window for improbable bond lengths,
missing force field atom types, close nonbonded contacts, and a non-integral and
non-zero total charge. Information is printed in the text window at the bottom of the
Unit Editor.

• "Calculate charge" – the total electrostatic charge for the UNIT is displayed in the
text window at the bottom of the Unit Editor.

• "Build," "Add H & Build" – the coordinates of new atoms are adjusted according
to hybridization (inferred from bonds) and standard geometries. (See also the Edit
pulldown’s "Relax” selection.) Newly-drawn ATOMs are marked as "unbuilt" until
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they are marked otherwise by one of the Build commands or by the Edit pulldown’s
"Mark selection (un)built." The builder only builds coordinates for unbuilt ATOMs.
This allows users to draw molecules piecemeal and make adjustments as they draw,
without worrying that the builder is going to undo their work. "Add H & Build"
adds hydrogens to the ATOMs that do not have a full valence and builds coordinates
for the hydrogens and any other ATOMs that are marked "unbuilt." The number of
hydrogens added to each ATOM is determined by the hybridization and element
type of each ATOM.

• "Import unit" – a selection window pops up for the user to incorporate a copy of
another unit in the current one. The imported unit will generally superimpose on
the existing one. (Hint: select all atoms in the current unit before doing this to
simplify dragging them apart using the Manipulation Move mode.)

• "Close" – Exit the Editor.

Edit pulldown The Edit pulldown contains commands relating to the currently- selected ATOMs
in the viewer window. Selection is described below in the "Manipulation buttons" section.

• "Relax selection" – performs a limited energy minimization of all selected ATOMs,
leaving unselected ATOMs fixed in place, by relaxing strained bonds, angles, and
torsions. If atom types have been assigned and can be found in the currently-loaded
force field, force field parameters are used. If no types are available then default
parameters are used that are based on ATOM hybridization. This command invokes
an iterative algorithm that can take some time to converge for large systems. As
the algorithm proceeds, the modified UNIT will be continuously updated within
the viewing window. The user can stop the process at any time by placing the
mouse pointer within the viewing window and typing control-C. Since only internal
coordinates are energy minimized, steric overlap can result.

• "Edit selected atoms" – pops up an Atom Properties Editor, a tool for examining/set-
ting the properties of the selected ATOMs. The Atom Properties Editor allows the
user to edit the ATOM names, types and charges in a convenient table format. It is
described in a separate subsection below.

• "Flip chirality" – This command inverts the chirality of all selected ATOMs. In
order for the chirality to be inverted, the ATOM cannot be in more than one ring.
The operation causes the lightest chains leaving the ATOM to be moved so as to
invert the chirality. If the ATOM has only three chains attached to it, then only one
of the chains will be moved.

• "Select Rings/Residues/Molecules" – expands the currently selected group of atoms
to include all partially-contained rings, residues, or molecules.

• "Show everything" – causes all ATOMs to become visible.

• "Hide selection" – makes all selected ATOMs invisible.

• "Show selection only" – makes only selected ATOMs visible.

• "Mark selection unbuilt/built" - see "Unit/Build," above.
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Display pulldown The Display pulldown contains commands that determine what information
is displayed within the viewing window.

• "Names" – toggles display of ATOM names at each ATOM position.

• "Types" – toggles display of molecular mechanics atom types. The ATOM types
are displayed within parentheses "()".

• "Charges" – toggles display of the atomic charges.

• "Residue names" – toggles display of residue names. These are displayed at the
position of the first ATOM, before any of that ATOM’s information that may be
displayed. The residue names are displayed within angled brackets "<>".

• "Axes" – toggles display of the Cartesian coordinate axes. The origin of the axes
coincides with the origin of Cartesian space.

• "Periodic box" – toggles display of the periodic box, if the UNIT has one.

Unit Editor manipulation buttons

The Manipulation buttons are Select, Twist, Move, Erase, and Draw. They determine the
behavior of the mouse left-button when the mouse pointer is in the Viewing Window.

Select This button allows one to select part or all of a UNIT in anticipation of a subsequent
operation or action. In the Select mode, the user can highlight ATOMs within the view-
ing window for special operations. The mouse pointer becomes a pointing hand in the
viewing window in this mode. Selected ATOMs are displayed in a different color (or dif-
ferent line styles on monochrome systems) from all other ATOMs. Atoms can be selected
with the left-button in several ways: first, clicking on an atom and releasing selects that
atom. Clicking twice in a row on an atom (at any speed) selects all atoms (this is a bug –
only the residue should be selected). Keeping the button down and moving to release on
another atom selects all ATOMs in the shortest chain between the two ATOMs, if such
a chain exists. Finally, by first pressing the button in empty space, and holding it down
as the mouse is moved, one can "drag a box" enclosing atoms of interest. Note that a
current selection can be expanded by using the "Edit" menubar pulldown select option to
complete any partial selection of rings, residues or molecules.

If the user holds down the SHIFT key while performing any of the above actions, the
same effect will be seen, except ATOMs will be unselected.

Twist Twist mode operates on previously-Selected atoms. The intention is to allow rotation
about dihedrals; if too many atoms are selected, odd transformations can occur. While
in the Twist mode, the mouse pointer looks like a curved arrow. Twisting is driven by
holding down the left-button anywhere in the viewing window and moving the mouse up
and down. It is important to select a complete torsion (all four atoms) before trying to
"twist" it.

Move Like Twist, Move mode operates on previously-Selected atoms. While in the Move mode,
the mouse pointer looks like four arrows coming out of one central point. Holding down
the left-button anywhere allows movement of these atoms by dragging in any direction in
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the viewing plane. (The view can be rotated by holding down the middle-button to allow
any movement desired.) This option allows the user to move the selected ATOMs relative
to the unselected ATOMs.

To rotate the selected ATOMs relative to the unselected ones, press and drag the mode
(left) button while holding down the SHIFT key. The selected ATOMs will rotate around
a central ATOM on a "virtual sphere" (see the subsubsection below on the rotate (middle)
button for more information on the "virtual sphere"). The user can change which ATOM
is used as the center of rotation by clicking the mode (left) button on any of the ATOMs
in the window.

Erase Erase mode causes the mouse pointer to resemble a chalkboard eraser when it is in
the viewing window. Clicking the left-button will delete any atoms or bonds under this
mouse pointer, one atom or bond per click.

Draw Choosing Draw is equivalent to choosing the default "Elements" atom in the next array
of buttons; the initial default is carbon. While in the Draw mode, the mouse pointer is
a pencil when in the viewing window. Clicking the left-button deposits an atom of the
current element, while dragging the mouse pointer with the left-button held down draws
a bond: if no atom is found where the button is released, one is created.

When the mouse pointer approaches an ATOM, the end of the line connected to the
pointer will "snap" to the nearest ATOM. This is to facilitate drawing of bonds between
ATOMs. Any bonds that are drawn will by default be single bonds. To change the order
of a bond, the user would move the mouse to any point along the bond and click the
mode (left) button. This will cause the order of the bond to increase until it is reset back
to a single bond. The user can cycle through the following bond order choices: single,
double, triple, and aromatic.

If the user rotates a structure as it is being drawn, she will notice that all of the ATOMs
that have been drawn lie in the same plane. New ATOMs are automatically placed in
the plane of the screen. The fact that LEaP places the new ATOMs in the same plane is
not a handicap because once a rough sketch of part of the structure is compete, the user
can invoke one of LEaP’s two model building facilities ("Unit/Build" and "Edit/Relax
Selection" in the Unit Editor Menu bar) to build full three dimensional coordinates.

Unit Editor Elements Buttons" "C, H, O, ..." These buttons put the viewing window in Draw
mode if it is not in that mode already, and select the drawing element. The more common
elements have their own buttons, and all elements are also found by pulling down the
other elements button.

Unit Editor Viewing Window

The viewing window displays a projection of the UNIT currently being edited. The user can
manipulate the structure within the viewing window with the mouse. By moving the mouse and
holding down the mouse buttons, the user can rotate, scale, and translate the UNIT within the
window. The functions attached to the mouse buttons are:
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Rotate (Middle button) By pressing the rotate (middle) button within the viewing window and
dragging the mouse, the user can rotate the UNIT around the center of the viewing win-
dow. While the rotate (middle) button is down, a circle appears within the viewing win-
dow, representing a "virtual sphere trackball." As the user drags the mouse around the
outside of the circle, the UNIT will spin around the axis normal to the screen. As the
user drags the mouse within the circle, the UNIT will spin around the axis in the screen,
perpendicular to the movement of the mouse. The structures that are being viewed can
be considered to be embedded within a sphere of glass. The circle is the projection of the
edge of the sphere onto the screen. Rotating a UNIT while the mouse is within the circle
is akin to placing a hand on a glass sphere and turning the sphere by pulling the hand. The
rotate operation does not modify the coordinates of the ATOMs; rather, it simply changes
the user’s point of view.

Translate (Right button) By pressing the translate (right) button within the viewing window
and dragging the mouse around the viewing window, the user can translate the UNIT
within the plane of the screen. The structures will follow the mouse as it moves around
the window. This operation does not modify the coordinates of the UNIT.

Scale (middle plus right button) If the scale "button" (holding the middle and right buttons
down at the same time) is depressed, the user will change the size of the structures within
the viewing window. Pressing the scale (middle plus right) button and dragging the mouse
up and down the screen will increase and decrease the scale of the structures. This oper-
ation does not modify the coordinates of the UNIT.

Mode (left button) The function of the left button is determined by the current mode of the
viewing window as described in the "Manipulation" section, above. When the mouse
enters the viewing window it changes shape to reflect the current mode of the viewing
window.

Spacebar Another always-available operation when the mouse pointer is in the viewing win-
dow is the keyboard spacebar. It centers and normalizes the size of the molecule in the
viewing window. This is especially useful if the UNIT becomes "lost" due to some oper-
ation.

The functions of the middle and right buttons are fixed and always available to the user.
This allows the user to change the viewpoint of the UNIT within the viewing window
regardless of its current mode. The user might ask why there are controls to translate in
the plane of the screen, but not out of the plane of the screen. This is because LEaP does
not have depth-cueing or stereo projection and this makes it difficult for users to perceive
changes in the depth of a structure. However, the user can rotate the entire UNIT by
90 degrees which will orient everything so that the direction that was coming out of the
screen becomes a direction lying in the plane of the screen. Once the UNIT has been
rotated using the rotate (middle) button, the user can translate the structure anywhere
in space. While it does take some getting used to, users can become very adept at the
combination of rotations and translations.

108



4.4 Basic instructions for using LEaP to build molecules

4.3.3 Atom Properties Editor

The Atom Properties Editor is popped up by the Unit Editor when the user selects the Edit
selected atoms command from the Edit pulldown. The Atom Properties Editor allows the user
to edit the properties of ATOMs using a convenient table format. ATOM properties are: name,
type, charge, and element.

4.3.4 Parmset Editor

If the user enters the command edit Foo in the Universe Editor and Foo is a PARMSET, then a
Parmset Editor is popped up. First, a window appears which contains a number of buttons. The
buttons list the parameters that can be edited – Atom, Bond, Angle, Proper Torsion, Improper
Torsion, and Hydrogen Bond – and an option to close the editor. Choosing one of the parameter
buttons will pop up a Table Editor. This editor resembles that of the Atom Properties Editor,
having three parts: the Menu Bar, Status Window, and Table Window.

4.4 Basic instructions for using LEaP to build molecules

This section gives an overview of how LEaP is most commonly used. Detailed descriptions
of all the commands are given in the following section.

4.4.1 Building a Molecule For Molecular Mechanics

In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be com-
pleted.

1. Any needed UNIT or PARMSET objects must be loaded;

2. The molecule must be constructed within LEaP;

3. The user must output topology and coordinate files from LEaP to use in AMBER.

The most typical command sequence is the following:

source leaprc.ff99SB (load a force field)

x = loadPdb trypsin.pdb (load in a structure)

.... add in cross-links, solvate, etc.

saveAmberParm x prmtop prmcrd (save files)

There are a number of variants of this:

1. Although loadPdb is by far the most common way to enter a structure, one might use
loadOff, or loadAmberPrep, or use the zmat command to build a molecule from a Z-
matrix. See the Commands section below for descriptions of these options. If you do
not have a starting structure (in the form of a PDB file), LEaP can be used to build the
molecule; you will find, however, that this is not always a straightforward process. Many
experienced Amber users turn to other (commercial and non-commercial) programs to
create their initial structures.
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2. Be very attentive to any errors produced in the loadPdb step; these generally mean that
LEaP has misread the file. A general rule of thumb is to keep editing your input PDB
file until LEaP stops complaining. It is often convenient to use the addPdbAtomMap or
addPdbResMap commands to make systematic changes from the names in your PDB files
to those in the Amber topology files; see the leaprc files in $AMBERHOME/dat/leap/cmd
for examples of this. Be sure to read Section 6.8 for information on how to “clean up”
PDB files before loading them.

3. The saveAmberParm command cited above is appropriate for most force fields; for po-
larizable calculations you will need to use saveAmberParmPol.

4.4.2 Amino Acid Residues

For each of the amino acids found in the LEaP libraries, there has been created an
N-terminal and a C-terminal analog. The N-terminal amino acid UNIT/RESIDUE names and
aliases are prefaced by the letter N (e.g., NALA) and the C-terminal amino acids by the letter
C (e.g., CALA). If the user models a peptide or protein within LEaP, they may choose one of
three ways to represent the terminal amino acids. The user may use (1) standard amino acids,
(2) protecting groups (ACE/NME), or (3) the charged C- and N-terminal amino acid
UNITs/RESIDUEs. If the standard amino acids are used for the terminal residues, then these
residues will have incomplete valences. These three options are illustrated below:

{ ALA VAL SER PHE }

{ ACE ALA VAL SER PHE NME }

{ NALA VAL SER CPHE }

The default for loading from PDB files is to use N- and C-terminal residues; this is established
by the addPdbResMap command in the default leaprc files. To force incomplete valences with
the standard residues, one would have to define a sequence (“ x = { ALA VAL SER PHE }”) and
use loadPdbUsingSeq, or use clearPdbResMap to completely remove the mapping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at
the δ or ε position. For this reason, the histidine UNIT/RESIDUE name is either HIP, HID, or
HIE (but not HIS). The default “leaprc” file assigns the name HIS to HIE. Thus, if a PDB file
is read that contains the residue HIS, the residue will be assigned to the HIE UNIT object. This
feature can be changed within one’s own leaprc file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the simi-
lar residue which participates in disulfide bridges, cystine (CYX). The user will have to explic-
itly define, using the bond command, the disulfide bond for a pair of cystines, as this informa-
tion is not read from the PDB file. In addition, the user will need to load the PDB file using the
loadPdbUsingSeq command, substituting CYX for CYS in the sequence wherever a disulfide
bond will be created.

4.4.3 Nucleic Acid Residues

The “D” prefix can be used to distinguish between deoxyribose and ribose units. Residue
names like “A” or “DA” can be followed by a “5” or “3” (“DA5”, “DA3”) for residues at the
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ends of chains; this is also the default established by addPdbResMap, even if the “5” or “3” are
not added in the PDB file. The “5” and “3” residues are “capped” by a hydrogen; the plain
and “3” residues include a “leading” phosphate group. Neutral residues (nucleotides) capped
by hydrogens end their names with “N”, as in “DAN”.

4.5 Commands

The following is a description of the commands that can be accessed using the command
line interface in tleap, or through the command line editor in xleap. Whenever an argument in
a command line definition is enclosed in square brackets (e.g., [arg]), then that argument is
optional. When examples are shown, the command line is prefaced by “> ”, and the program
output is shown without this character preface.

Some commands that are almost never used have been removed from this description to save
space. You can use the “help” facility to obtain information about these commands; most only
make sense if you understand what the program is doing behind the scenes.

4.5.1 add

add a b

UNIT/RESIDUE/ATOM a,b
Add the object b to the object a. This command is used to place ATOMs within RESIDUEs,

and RESIDUEs within UNITs. This command will work only if b is not contained by any other
object.

The following example illustrates both the add command and the way the TIP3P water
molecule is created for the LEaP distribution.

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> o = createAtom O OW -0.834

>

> set h1 element H

> set h2 element H

> set o element O

>

> r = createResidue TIP3

> add r h1

> add r h2

> add r o

>

> bond h1 o

> bond h2 o

> bond h1 h2

>

> TIP3 = createUnit TIP3
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>

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.O

>

> zMatrix TIP3 {

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

>

> saveOff TIP3 water.lib

Saving TIP3.

Building topology.

Building atom parameters.

4.5.2 addAtomTypes

addAtomTypes { { type element hybrid } { ... } ... }

Define element and hybridization for force field atom types. This command for the standard
force fields can be seen in the default leaprc files. The STRINGs are most safely rendered using
quotation marks. If atom types are not defined, confusing messages about hybridization can
result when loading PDB files.

4.5.3 addIons

addIons unit ion1 numIon1 [ion2 numIon2]

Adds counterions in a shell around unit using a Coulombic potential on a grid. If numIon1
is 0, then the unit is neutralized. In this case, numIon1 must be opposite in charge to unit
and numIon2 must not be specified. If solvent is present, it is ignored in the charge and steric
calculations, and if an ion has a steric conflict with a solvent molecule, the ion is moved to
the center of that solvent molecule, and the latter is deleted. (To avoid this behavior, either
solvate _after_ addions, or use addIons2.) Ions must be monatomic. This procedure is not
guaranteed to globally minimize the electrostatic energy. When neutralizing regular-backbone
nucleic acids, the first cations will generally be placed between phosphates, leaving the final two
ions to be placed somewhere around the middle of the molecule. The default grid resolution is
1 Å, extending from an inner radius of (maxIonVdwRadius + maxSoluteAtomVdwRadius) to an
outer radius 4 Å beyond. A distance-dependent dielectric is used for speed.

4.5.4 addIons2

addIons2 unit ion1 numIon1 [ion2 numIon2]

Same as addIons, except solvent and solute are treated the same.
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4.5.5 addPath

addPath path

Add the directory in path to the list of directories that are searched for files specified by other
commands. The following example illustrates this command.

> addPath /disk/howard

/disk/howard added to file search path.

After the above command is entered, the program will search for a file in this directory if a
file is specified in a command. Thus, if a user has a library named “/disk/howard/rings.lib”
and the user wants to load that library, one only needs to enter load rings.lib and not load
/disk/howard/rings.lib.

4.5.6 addPdbAtomMap

addPdbAtomMap list

The atom Name Map is used to try to map atom names read from PDB files to atoms within
residue UNITs when the atom name in the PDB file does not match an atom in the residue.
This enables PDB files to be read in without extensive editing of atom names. Typically, this
command is placed in the LEaP startup file, “leaprc”, so that assignments are made at the
beginning of the session. list should be a LIST of LISTs. Each sublist should contain two
entries to add to the Name Map. Each entry has the form:

{ string string }

where the first string is the name within the PDB file, and the second string is the name in the
residue UNIT.

4.5.7 addPdbResMap

addPdbResMap list

The Name Map is used to map RESIDUE names read from PDB files to variable names within
LEaP. Typically, this command is placed in the LEaP startup file, “leaprc”, so that assignments
are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist contains
two or three entries to add to the Name Map. Each entry has the form:

{ double string1 string2 }

where double can be 0 or 1, string1 is the name within the PDB file, and string2 is the variable
name to which string1 will be mapped. To illustrate, the following is part of the Name Map
that exists when LEaP is started from the “leaprc” file included in the distribution:

ADE --> DADE

: :

0 ALA --> NALA
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0 ARG --> NARG

: :

1 ALA --> CALA

1 ARG --> CARG

: :

1 VAL --> CVAL

Thus, the residue ALA will be mapped to NALA if it is the N-terminal residue and CALA if it
is found at the C-terminus. The above Name Map was produced using the following (edited)
command line:

> addPdbResMap {

> { 0 ALA NALA } { 1 ALA CALA }

> { 0 ARG NARG } { 1 ARG CARG } : :

> { 0 VAL NVAL } { 1 VAL CVAL }

> : :

> { ADE DADE } : :

> }

4.5.8 alias

alias [ string1 [ string2 ] ]

This command will add or remove an entry to the Alias Table or list entries in the Alias Table.
If both strings are present, then string1 becomes the alias to string2, the original command. If
only one string is used as an argument, then that string will be removed from the Alias Table.
If no arguments are given to the command, the current aliases stored in the Alias Table will be
listed.

The proposed alias is first checked for conflict with the LEaP commands and rejected if a
conflict is found. A proposed alias will replace an existing alias with a warning being issued.
The alias can stand for more than a single word, but also as an entire string so the user can
quickly repeat entire lines of input.

4.5.9 bond

bond atom1 atom2 [ order ]

Create a bond between atom1 and atom2. Both of these ATOMs must be contained by the
same UNIT. By default, the bond will be a single bond. By specifying “-”, “=”, “#”, or “:” as
the optional argument, order, the user can specify a single, double, triple, or aromatic bond,
respectively. Example:

bond trx.32.SG trx.35.SG

4.5.10 bondByDistance

bondByDistance container [ maxBond ]
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Create single bonds between all ATOMs in the UNIT container that are within maxBond Å of
each other. If maxBond is not specified, a default distance will be used. This command is
especially useful in building molecules. Example:

bondByDistance alkylChain

4.5.11 check

check unit [ parms ]

This command can be used to check unit for internal inconsistencies that could cause prob-
lems when performing calculations. This is a very useful command that should be used before
a UNIT is saved with saveAmberParm or its variants. Currently it checks for the following
possible problems:

• long bonds

• short bonds

• non-integral total charge of the UNIT

• missing force field atom types

• close contacts (< 1.5 Å) between nonbonded ATOMs

The user may collect any missing molecular mechanics parameters in a PARMSET for
subsequent editing. In the following example, the alanine UNIT found in the amino acid
library has been examined by the check command:

> check ALA

Checking ’ALA’....

Checking parameters for unit ’ALA’.

Checking for bond parameters.

Checking for angle parameters.

Unit is OK.

4.5.12 combine

variable = combine list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is placed in
variable. This command is similar to the sequence command except it does not link the
ATOMs of the UNITs together. In the following example, the input and output should be
compared with the example given for the sequence command.

> tripeptide = combine { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Sequence: PRO
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> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

4.5.13 copy

newvariable = copy variable

Creates an exact duplicate of the object variable. Since newvariable is not pointing to the
same object as variable, changing the contents of one object will not alter the other object.
Example:

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not solvated.
Had the user instead entered

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated since they would both refer to the same
object.

4.5.14 createAtom

variable = createAtom name type charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type,
and electrostatic point charge. (See the add command for an example of the createAtom

command.)

4.5.15 createResidue

variable = createResidue name

Return a new and empty RESIDUE with the name name. (See the add command for an example
of the createResidue command.)
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4.5.16 createUnit

variable = createUnit name

Return a new and empty UNIT with the name name. (See the add command for an example of
the createUnit command.)

4.5.17 deleteBond

deleteBond atom1 atom2

Delete the bond between the ATOMs atom1 and atom2. If no bond exists, an error will be
displayed.

4.5.18 desc

desc variable

Print a description of the object variable. In the following example, the alanine UNIT found in
the amino acid library has been examined by the desc command:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<ALA 1>.A<C 9>

Contents: R<ALA 1>

Now, the desc command is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>
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Next, we illustrate the desc command by examining the ATOM N of the first residue (1) of the
alanine UNIT:

> desc ALA.1.N

ATOM Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert- notdisp- tchd-

posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will give
the same output as the previous example:

> desc ALA.1.1

4.5.19 groupSelectedAtoms

groupSelectedAtoms unit name

Create a group within unit with the name name, using all of the ATOMs within unit that are
selected. If the group has already been defined then overwrite the old group. The desc
command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like “TRP@sideChain” returns a LIST, so any commands that require LISTs
can take advantage of this notation. After assignment, one can access groups using the “@”
notation. Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the “sideChain” group. (See the
select command for a more detailed example.)

4.5.20 help

help [string]

This command prints a description of the command in string. If no argument is given, a list of
help topics is provided.
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4.5.21 impose

impose unit seqlist internals

The impose command allows the user to impose internal coordinates on unit. The list of
RESIDUEs to impose the internal coordinates upon is in seqlist. The internal coordinates to
impose are in internals, which is an object of type LIST.

The command works by looking into each RESIDUE within unit that is listed in seqlist and
attempts to apply each of the internal coordinates within internals. The seqlist argument is
a LIST of NUMBERS that represent sequence numbers or ranges of sequence numbers. A
range of sequence numbers is represented by two element LISTs that contain the first and last
sequence number in the range. The user can specify sequence number ranges that are larger
than what is found in unit, in which case the range will stop at the beginning or end of unit as
appropriate. For example, the range { 1 999 } will include all RESIDUEs in a 200 RESIDUE
UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM
names which are of type STRING followed by the value of the internal coordinate. An
example of the impose command would be:

impose peptide { 1 2 3 } { { “N” “CA” “C” “N” -40.0 } { “C” “N” “CA” “C” -60.0 } }

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT peptide
to assume an α-helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } { { “CA” “CB” 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within the
UNIT peptide a bond length of 5.0 Å between the α and β carbon atoms. RESIDUEs without
an ATOM named CB, such as glycine, will be unaffected.

It is important to understand that the impose command attempts to perform the intended
action on all residues in the seqlist, but does not necessarily limit itself to acting only upon
internals contained within those residues. That is, the list does not limit the residues to consider.
Rather, it is a list of all starting points to consider. In other words, to specify a seqlist of { 3 4
} tells impose to attempt to set two torsions, one starting in residue 3 and the other starting in
residue 4. It does not specify that the torsion should only be set if the atoms are found within
residues 3 and/or 4.

Because of this, one must be careful when setting torsions between two residues. It is neces-
sary to know which atoms are contained in which residues. Consider the following trisaccha-
ride:

α-D-Glcp-(1-6)-β -D-Manp-(1-6)-β -D-Galp-OH

To build it most simply in leap requires the following directive. Note that the build order in
leap is the reverse of the standard order in which the residues are written above.

glycan = sequence { ROH 6LB 6MB 0GA }
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A proper build of a 1-6 oligosaccharide linkage often requires setting three torsions. In the
manner that residues are defined in the Glycam force fields, the atoms describing two of those
torsions, φ and ψ , span two residues. However, the atoms in the third, ω , exist entirely within
one residue. In fact, they exist within all three glycan residues in the example above. The
following commands will set only the three torsions in the glycosidic linkage between residues
4 (0GA) and 3 (6MB).

impose glycan { 4 } { { “H1” “C1” “O6” “C6” -60.0 } } # O6 & C6 are in residue 3

impose glycan { 4 } { { “C1” “O6” “C6” “C5” 180.0 } } # only C1 is in residue 4

impose glycan { 3 } { { “O6” “C6” “C5” “O5” 60.0 } } # all are in residue 3

The common misconception that the seqlist sets a limit on the residues affected can cause
trouble in this case. For example, this command

impose glycan { 4 3 } { { “H1” “C1” “O6” “C6” -60.0 } }

will find all sequences beginning in residue 4 and in residue 3 that contain the serially bonded
atoms H1 C1 O6 and C6. Therefore, in this case, it will set the specified torsions between
residues 4 and 3 as well as between 3 and 2. Similarly, this command

impose peptide { 4 } { { “O6” “C6” “C5” “O5” 60.0 } }

will not affect any inter-residue linkage, but instead will set the C5-C6 torsion in the glucopy-
ranoside (0GA) at the non-reducing end of the oligosaccharide.

The ordering and content within the internals list is important as well. For these examples,
consider the simple peptide sequence:

peptide = sequence { ALA ALA ALA ALA }

The ordering of the internals specifies the atoms to which the torsion set is applied. The
impose command will find the first atom in the internals list, check for the presence of a
bonded second atom, and so forth. It will then apply the action, here a torsion, to those four
atoms. For example, this command:

impose peptide { 3 } { { “N” “CA” “C” “N” -40.0 } } # between 3 and 4

will set the torsion between residues 3 and 4. However, this one:

impose peptide { 3 } { { “N” “C” “CA” “N” -40.0 } } # between 3 and 2

will set the torsion between residues 3 and 2.
If at any point, the impose command does not find an atom bonded to a previous atom in an

internals list, it will silently ignore the command. This is likely to occur in two instances. One,
the atom simply might not exist in the residue:

impose peptide { 3 } { { “N” “CA” “CB” “HB4” 10.0 } } # no effect, silent
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Here, of course, there is no atom named HB4 in alanine. Similarly, improper torsions are
ignored. For example, this command also has no effect:

impose peptide { 3 } { { “N” “HB1” “CA” “CB” 10.0 } } # no effect, silent

because HB1 is not bonded to N.
Three types of conformational change are supported: Bond length changes, bond angle

changes, and torsion angle changes. If the conformational change involves a torsion angle,
then all dihedrals around the central pair of atoms are rotated. The entire list of internals is
applied to each RESIDUE.

It is also important to note that the impose command performs its actions entirely using
internal coordinates. Because of this, it is difficult to predict the resulting behavior when the
coordinates are translated back to cartesian, for example when writing a PDB file.

4.5.22 list

List all of the variables currently defined. To illustrate, the following (edited) output shows
the variables defined when LEaP is started from the leaprc file included in the distribution:

> list A ACE ALA ARG ASN : : VAL W WAT Y

4.5.23 loadAmberParams

variable = loadAmberParams filename

Load an AMBER format parameter set file and place it in variable. All interactions defined in
the parameter set will be contained within variable. This command causes the loaded
parameter set to be included in LEaP’s list of parameter sets that are searched when parameters
are required. General proper and improper torsion parameters are modified during the
command execution with the LEaP general type “?” replacing the AMBER general type “X”

> parm91 = loadAmberParams parm91X.dat

> saveOff parm91 parm91.lib

4.5.24 loadAmberPrep

loadAmberPrep filename [ prefix ]

This command loads an AMBER PREP input file. For each residue that is loaded, a new UNIT
is constructed that contains a single RESIDUE and a variable is created with the same name as
the name of the residue within the PREP file. If the optional argument prefix (a STRING) is
provided, its contents will be prefixed to each variable name; this feature is used to prefix
UATOM residues, which have the same names as AATOM residues with the string “U” to
distinguish them.

> loadAmberPrep cra.in

Loaded UNIT: CRA
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4.5.25 loadOff

loadOff filename

This command loads the OFF library within the file named filename. All UNITs and
PARMSETs within the library will be loaded. The objects are loaded into LEaP under the
variable names the objects had when they were saved. Variables already in existence that have
the same names as the objects being loaded will be overwritten. Any PARMSETs loaded using
this command are included in LEaP’s library of PARMSETs that is searched whenever
parameters are required (the old AMBER format is used for PARMSETs rather than the OFF
format in the default configuration). Example command line:

> loadOff parm91.lib

Loading library: parm91.lib

Loading: PARAMETERS

4.5.26 loadMol2

variable = loadMol2 filename

Load a Sybyl MOL2 format file into variable, a UNIT. This command is very much like
loadOff, except that it only creates a single UNIT.

4.5.27 loadPdb

variable = loadPdb filename

Load a Protein Data Bank (PDB) format file with the file name filename into variable, a UNIT.
The sequence numbers of the RESIDUEs will be determined from the order of residues within
the PDB file ATOM records. This function will search the variables currently defined within
LEaP for variable names that map to residue names within the ATOM records of the PDB file.
If a matching variable name is found then the contents of the variable are added to the UNIT
that will contain the structure being loaded from the PDB file. Adding the contents of the
matching UNIT into the UNIT being constructed means that the contents of the matching
UNIT are copied into the UNIT being built and that a bond is created between the connect0
ATOM of the matching UNIT and the connect1 ATOM of the UNIT being built. The UNITs
are combined in the same way UNITs are combined using the sequence command. As atoms
are read from the ATOM records their coordinates are written into the correspondingly named
ATOMs within the UNIT being built. If the entire residue is read and it is found that ATOM
coordinates are missing, then external coordinates are built from the internal coordinates that
were defined in the matching UNIT. This allows LEaP to build coordinates for hydrogens and
lone-pairs which are not specified in PDB files.

> crambin = loadPdb 1crn
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4.5.28 loadPdbUsingSeq

loadPdbUsingSeq filename unitlist

This command reads a PDB format file named filename. This command is identical to
loadPdb except it does not use the residue names within the PDB file. Instead, the sequence is
defined by the user in unitlist. For more details see loadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }

> pept = loadPdbUsingSeq pept.pdb peptSeq

In the above example, a variable is first defined as a LIST of united atom RESIDUEs. A PDB
file is then loaded, in this sequence order, from the file “pept.pdb”.

4.5.29 logFile

logFile filename

This command opens the file with the file name filename as a log file. User input and all output
is written to the log file. Output is written to the log file as if the verbosity level were set to 2.
An example of this command is

> logfile /disk/howard/leapTrpSolvate.log

4.5.30 measureGeom

measureGeom atom1 atom2 [ atom3 [ atom4 ] ]

Measure the distance, angle, or torsion between two, three, or four ATOMs, respectively.
In the following example, we first describe the RESIDUE ALA of the ALA UNIT in order

to find the identity of the ATOMs. Next, the measureGeom command is used to determine a
distance, simple angle, and a dihedral angle. As shown in the example, the ATOMs may be
identified using atom names or numbers.

> desc ALA.ALA

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein ....

4.5.31 quit

Quit the LEaP program.

4.5.32 remove

remove a b
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Remove the object b from the object a. If a does not contain b, an error message will be
displayed. This command is used to remove ATOMs from RESIDUEs, and RESIDUEs from
UNITs. If the object represented by b is not referenced by any other variable name, it will be
destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents: R<ALA 1> R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents: R<ALA 1>

4.5.33 saveAmberParm

saveAmberParm unit topologyfilename coordinatefilename

Save the Amber/NAB topology and coordinate files for unit into the files named topologyfile-
name and coordinatefilename respectively. This command will cause LEaP to search its list of
PARMSETs for parameters defining all of the interactions between the ATOMs within unit. It
produces topology files and coordinate files that are identical in format to those produced by
Amber PARM and can be read into Amber and NAB for calculations. The output of this oper-
ation can be used for minimizations, dynamics, and thermodynamic perturbation calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT
ALA are generated:

> saveamberparm ALA ala.top ala.crd

4.5.34 saveMol2

saveMol2 unit filename type-flag

Write unit to the file filename as a Tripos mol2 format file. If type-flag is 0, the Tripos (Sybyl)
atom types will be used; if type-flag is 1, the Amber atom types present in unit will be used.
Generally, you would want to set type-flag to 1, unless you need the Sybyl atom types for use
in some program outside Amber; Amber itself has no force fields that use Sybyl atom types.

4.5.35 saveOff

saveOff object filename
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The saveOff command allows the user to save UNITs and PARMSETs to a file named filename.
The file is written using the Object File Format (off) and can accommodate an unlimited number
of uniquely named objects. The names by which the objects are stored are the variable names
specified within the object argument. If the file filename already exists, the new objects will
be added to it. If there are objects within the file with the same names as objects being saved
then the old objects will be overwritten. The argument object can be a single UNIT, a single
PARMSET, or a LIST of mixed UNITs and PARMSETs. (See the add command for an example
of the saveOff command.)

4.5.36 savePdb

savePdb unit filename

Write unit to the file filename as a PDB format file. In the following example, the PDB file
from the “all_amino94.lib” UNIT ALA is generated:

> savepdb ALA ala.pdb

4.5.37 sequence

variable = sequence list

The sequence command is used to combine the contents of list, which should be a LIST of
UNITs, into a new, single UNIT. This new UNIT is constructed by taking each UNIT in list in
turn and copying its contents into the UNIT being constructed. As each new UNIT is copied, a
bond is created between the tail ATOM of the UNIT being constructed and the head ATOM of
the UNIT being copied, if both connect ATOMs are defined. If only one is defined, a warning
is generated and no bond is created. If neither connection ATOM is defined then no bond is
created. As each RESIDUE is copied into the UNIT being constructed it is assigned a
sequence number which represents the order the RESIDUEs are added. Sequence numbers are
assigned to the RESIDUEs so as to maintain the same order as was in the UNIT before it was
copied into the UNIT being constructed. This command builds reasonable starting coordinates
for all ATOMs within the UNIT; it does this by assigning internal coordinates to the linkages
between the RESIDUEs and building the external coordinates from the internal coordinates
from the linkages and the internal coordinates that were defined for the individual UNITs in
the sequence.

> tripeptide = sequence { ALA GLY PRO }

4.5.38 set

set default variable value

or set container parameter object

This command sets the values of some global parameters (when the first argument is “default”)
or sets various parameters associated with container. The following parameters can be set
within LEaP:

For “default” parameters:
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OldPrmtopFormat If set to “on”, the saveAmberParm command will write a prmtop file in the
format used in Amber 6 and earlier versions; if set to “off” (the default), it will use the
new format.

Dielectric If set to “distance” (the default), electrostatic calculations in LEaP will use a distance-
dependent dielectric; if set to “constant”, a constant dielectric will be used.

PdbWriteCharges If set to “on”, atomic charges will be placed in the “B-factor” field of PDB
files saved with the savePdb command; if set to “off” (the default), no such charges will
be written.

PBRadii Used to choose various sets of atomic radii for generalized Born or Poisson-Boltzmann
calculations. Options are: “bondi”, which gives values from Ref. [94], which may be
used with igb = 2, 5 or 7; “mbondi”, which is the default, and the recommended parame-
ter set for igb = 1 [95]; “mbondi2”, which is a second modification of the Bondi radii set
[96], and can also be used with igb = 2 or 5; and “amber6”, which is only to be used for
reproducing very early calculations that used igb = 1 [97].

nocenter If set to “on”, LEaP will not center the coordinates inside the box for a periodic sim-
ulation, but will leave them unchanged (as it does for non-periodic simulations); if set
to “off” (the default), centering of coordinates will take place (as it always has, in previ-
ous versions of LEaP). Avoiding coordinate translations can be useful to avoid changing
reference (perhaps experimental) coordinates. This option may be especially helpful for
crystal simulations.

For ATOMs:

name A unique STRING descriptor used to identify ATOMs.

type This is a STRING property that defines the AMBER force field atom type.

charge The charge property is a NUMBER that represents the ATOM’s electrostatic point
charge to be used in a molecular mechanics force field.

position This property is a LIST of NUMBERs containing three values: the (X, Y, Z) Cartesian
coordinates of the ATOM.

pertName This STRING is a unique identifier for an ATOM in its final state during a Free
Energy Perturbation calculation.

pertType This STRING is the AMBER force field atom type of a perturbed ATOM.

pertCharge This NUMBER represents the final electrostatic point charge on an ATOM during
a Free Energy Perturbation.

For RESIDUEs:

connect0 This identifies the first of up to three ATOMs that will be used to make links to other
RESIDUEs. In a UNIT containing a single RESIDUE, the RESIDUE’s connect0 ATOM
is usually defined as the UNIT’s head ATOM.
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connect1 This identifies the second of up to three ATOMs that will be used to make links to
other RESIDUEs. In a UNIT containing a single RESIDUE, the RESIDUE’s connect1
ATOM is usually defined as the UNIT’s tail ATOM.

connect2 This identifies the third of up to three ATOMs that will be used to make links to other
RESIDUEs. In amino acids, the convention is that this is the ATOM to which disulfide
bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently, it
can have one of the following values: “undefined”, “solvent”, “protein”, “nucleic”, or
“saccharide”.

name This STRING property is the RESIDUE name.

For UNITs:

head Defines the ATOM within the UNIT that is connected when UNITs are joined together:
the tail ATOM of one UNIT is connected to the head ATOM of the subsequent UNIT in
any sequence.

tail Defines the ATOM within the UNIT that is connected when UNITs are joined together: the
tail ATOM of one UNIT is connected to the head ATOM of the subsequent UNIT in any
sequence.

box This property defines the bounding box of the UNIT. If it is set to null then no bounding
box is defined. If it is a single NUMBER, the bounding box will be defined to be a cube
with each side being box Å across. If it is a LIST, it must contain three NUMBERs, the
lengths (in Å) of the three sides of the bounding box.

cap This property defines the solvent cap of the UNIT. If it is set to null then no solvent cap
is defined. Otherwise, it should be a LIST of four NUMBERs; the first three NUMBERs
define the Cartesian coordinates (X, Y, Z) of the origin of the solvent cap in Å, while the
fourth defines the radius of the solvent cap, also in Å.

4.5.39 solvateBox and solvateOct

solvateBox solute solvent distance [ closeness ]

solvateOct solute solvent distance [ closeness ]

These two commands create periodic solvent boxes around solute, which should be a UNIT.
solvateBox creates a cuboid box, while solvateOct creates a truncated octahedron. solute is
modified by the addition of copies of the RESIDUEs found within solvent, which should also
be a UNIT, such that the closest distance between any atom originally present in solute and the
edge of the periodic box is given by the distance parameter. The resulting solvent box will be
repeated in all three spatial directions.

The optional closeness parameter can be used to control how close, in Å, solvent ATOMs
may come to solute ATOMs. The default value of closeness is 1.0. Smaller values allow
solvent ATOMs to come closer to solute ATOMs. The criterion for rejection of overlapping
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solvent RESIDUEs is if the distance between any solvent ATOM and its nearest solute ATOM
is less than the sum of the two ATOMs’ van der Waals radii multiplied by closeness.

> mol = loadpdb my.pdb

> solvateOct mol TIP3PBOX 12.0 0.75

4.5.40 solvateCap

solvateCap solute solvent position radius [ closeness ]

The solvateCap command creates a solvent cap around solute, which is a UNIT. solute is
modified by the addition of copies of the RESIDUEs found within solvent, which should also
be a UNIT. The solvent box will be repeated in all three spatial directions to create a large
solvent sphere with a radius of radius Å.

The position argument defines where the center of the solvent cap is to be placed. If position
is a UNIT, a RESIDUE, an ATOM, or a LIST of UNITs, RESIDUEs, or ATOMs, then the
geometric center of the ATOM or ATOMs within the object will be used as the center of the
solvent cap sphere. If position is a LIST containing three NUMBERs, then it will be treated as
a vector describing the position of the solvent cap sphere center.

The optional closeness parameter can be used to control how close, in Å, solvent ATOMs
may come to solute ATOMs. The default value of closeness is 1.0. Smaller values allow
solvent ATOMs to come closer to solute ATOMs. The criterion for rejection of overlapping
solvent RESIDUEs is if the distance between any solvent ATOM and its nearest solute ATOM
is less than the sum of the two ATOMs’ van der Waals radii multiplied by closeness.

This command modifies solute in several ways. First, the UNIT is modified by the addition
of solvent RESIDUEs copied from solvent. Secondly, the “cap” parameter of solute is
modified to reflect the fact that a solvent cap has been created around the solute.

> mol = loadpdb my.pdb

> solvateCap mol WATBOX216 mol.2.CA 12.0 0.75

4.5.41 solvateShell

solvateShell solute solvent thickness [ closeness ]

The solvateShell command adds a solvent shell to solute, which should be a UNIT. solute is
modified by the addition of copies of the RESIDUEs found within solvent, which should also
be a UNIT. The resulting solute/solvent UNIT will be irregular in shape since it will reflect the
contours of the original solute molecule. The solvent box will be repeated in three directions to
create a large solvent box that can contain the entire solute and a shell thickness Å thick.
Solvent RESIDUEs are then added to solute if they lie within the shell defined by thickness
and do not overlap with any ATOM originally present in solute. The optional closeness
parameter can be used to control how close solvent ATOMs can come to solute ATOMs. The
default value of the closeness argument is 1.0. Please see the solvateBox command for more
details on the closeness parameter.

> mol = loadpdb my.pdb

> solvateShell mol WATBOX216 12.0 0.8
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4.5.42 source

source filename

This command executes the contents of the file given by filename, treating them as LEaP com-
mands. To display the commands as they are read, see the verbosity command.

4.5.43 transform

transform atoms, matrix

Transform all of the ATOMs within atoms by a symmetry operation. The symmetry operation
is represented as a (3 × 3) or (4 × 4) matrix, and given as nine or sixteen NUMBERs in matrix,
a LIST of LISTs. The general matrix looks like:

r11 r12 r13 -tx r21 r22 r23 -ty r31 r32 r33 -tz 0 0 0 1
The matrix elements represent the intended symmetry operation. For example, a reflection

in the (x,y) plane would be produced by the matrix:

1 0 0 0 1 0 0 0 -1

This reflection could be combined with a 6 Å translation along the x-axis by using the
following matrix:

1 0 0 6 0 1 0 0 0 0 -1 0 0 0 0 1

In the following example, wrB is transformed by an inversion operation:

transform wrpB { { -1 0 0 } { 0 -1 0 } { 0 0 -1 } }

4.5.44 translate

translate atoms direction

Translate all of the ATOMs within atoms by the vector given by direction, a LIST of three
NUMBERs.

Example:

translate wrpB { 0 0 -24.53333 }

4.5.45 verbosity

verbosity level

This command sets the level of output that LEaP provides the user. A value of 0 is the default,
providing the minimum of messages. A value of 1 will produce more output, and a value of 2
will produce all of the output of level 1 and display the text of the script lines executed with
the source command. The following line is an example of this command:

> verbosity 2

Verbosity level: 2
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4.5.46 zMatrix

zMatrix object zmatrix

The zMatrix command is quite complicated. It is used to define the external coordinates of
ATOMs within object using internal coordinates. The second parameter of the zMatrix
command is a LIST of LISTs; each sub-list has several arguments:

{ a1 a2 bond12 }

This entry defines the coordinate of a1, an ATOM, by placing it bond12 Å along the x-axis
from ATOM a2. a2 is placed at the origin if its coordinates are not defined.

{ a1 a2 a3 bond12 angle123 }

This entry defines the coordinate of a1 by placing it bond12 Å away from a2 making an angle
of angle123 degrees between a1, a2 and a3. The angle is measured in a right-hand sense and
in the xy plane. ATOMs a2 and a3 must have coordinates defined.

{ a1 a2 a3 a4 bond12 angle123 torsion1234 }

This entry defines the coordinate of a1 by placing it bond12 Å away from a2, creating an angle
of angle123 degrees between a1, a2, and a3, and making a torsion angle of torsion1234
degrees between a1, a2, a3, and a4.

{ a1 a2 a3 a4 bond12 angle123 angle124 orientation }

This entry defines the coordinate of a1 by placing it bond12 Å away from a2, and making angles
angle123 degrees between a1, a2, and a3, and angle124 degrees between a1, a2, and a4. The
argument orientation defines whether a1 is above or below a plane defined by a2, a3 and a4. If
orientation is positive, a1 will be placed so that the triple product ((a3−a2) × (a4−a2)) · (a1−a2)
is positive. Otherwise, a1 will be placed on the other side of the plane. This allows the coordi-
nates of a molecule like fluoro-chloro-bromo-methane to be defined without having to resort to
dummy atoms.

The first arguments within the zMatrix entries (a1, a2, a3 and a4) are either ATOMs, or
STRINGs containing names of ATOMs that already exist within object. The subsequent argu-
ments (bond12, angle123, torsion1234 or angle124, and orientation) are all NUMBERs. Any
ATOM can be placed at the a1 position, even one that has coordinates defined. This feature
can be used to provide an endless supply of dummy atoms, if they are required. A predefined
dummy atom with the name “*” (a single asterisk, no quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order,
as long as they maintain the requirement that all ATOMs a2, a3, and a4 must have external
coordinates defined, except for entries that define the coordinate of an ATOM using only a
bond length. (See the add command for an example of the zMatrix command.)

4.6 Building oligosaccharides and lipids

The approach presented below has been automated, with many additional options available,
at the GLYCAM-Web site: www.glycam.org.
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Figure 4.1: Schematic representation of disaccharide formation, indicating the need for open
valences on carbon and oxygen atoms at linkage positions.

Before continuing in this section, you should review the GLYCAM naming conventions cov-
ered in Section 2.7. After that, there are two important things to keep in mind. The first is
that GLYCAM is designed to build oligosaccharides, not just monosaccharides. In order to link
the monosaccharides together, each residue in GLYCAM will have at least one open valence
position. That is, each GLYCAM residue lacks either a hydroxyl group or a hydroxyl proton,
and may be lacking more than one proton depending on the number of branching locations.
Thus, none of the residues is a complete molecule unto itself. For example, if you wish to build
α-D-glucopyranose, you must explicitly specify the anomeric -OH group (see Figure 4.1 for
two examples).

The second thing to keep in mind is that when the sequence command is used in LEaP to
link monosaccharides together to form a linear oligosaccharide (analogous to peptide
generation), the residue ordering is opposite to the standard convention for writing the
sequence. For example, to build the disaccharides illustrated in Figure 4.1, using the sequence
command in LEaP, the format would be:

upperdisacc = sequence { ROH 3GB 0GB }

lowerdisacc = sequence { OME 4GB 0GA }

While the sequence command is the most direct method to build a linear glycan, it is not the
only method. Alternatives that facilitate building more complex glycans and glycoproteins are
presented below. For those who need to build structures (and generate topology and coordinate
files) that are more complex, a convenient interface that uses GLYCAM is available on the
internet (http://glycam.ccrc.uga.edu or http://www.glycam.org).

Throughout this section, sequences of LEaP commands will be entered in the following
format:

command argument(s) # descriptive comment

This format was chosen so that the lines can be copied directly into a file to be read into LEaP.
The number sign (#) signifies a comment. Comments following commands may be left in
place for future reference and will be ignored by LEaP. Files may be read into LEaP either by
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sourcing the file or by specifying it on the command line at the time that LEaP is invoked, e.g.:

tleap -f leap_input_file

Note that any GLYCAM parameter set shipped with Amber is likely to be updated in the future.
The current version is GLYCAM_06h.dat. This file and GLYCAM_06h.prep are automatically
loaded with the default leaprc.GLYCAM_06h. The user is encouraged to check www.glycam.org
for updated versions of these files.

4.6.1 Procedures for building oligosaccharides using the GLYCAM-06
parameters

4.6.1.1 Example: Linear oligosaccharides

This section contains instructions for building a simple, straight-chain tetrasaccharide:

α-D-Manp-(1-3)-β -D-Manp-(1-4)-β -D-GlcpNAc-(1-4)-β -D-GlcpNAc-OH

First, it is necessary to determine the GLYCAM residues that will be used to build it. Since
the initial α-D-Manp residue links only at its anomeric site, the first character in its name is 0
(zero), indicating that it has no branches or other connections, i.e., it is terminal. Since it is a D-
mannose, the second character, the one-letter code, is M (capital). Since it is an α-pyranose, the
third character is A. Therefore, the first residue in the sequence above is 0MA. Since the second
residue links at its 3-position as well as at the anomeric position, the first character in its name
is 3, and, being a β -pyranose, it is 3MB. Similarly, residues three and four are both 4YB. It will
also be necessary to add an OH residue at the end to generate a complete molecule. Note that
in Section 4.6.3, below, the terminal OH must be omitted in order to allow subsequent linking
to a protein or lipid. Note also that when present, a terminal OH (or OME etc) is assigned its
own residue number.

Converting the order for use with the sequence command in LEaP, gives:

Residue name sequence: ROH 4YB 4YB 3MB 0MA

Residue number: 1 2 3 4 5

Here is a set of LEaP instructions that will build the sequence (there are, of course, other ways
to do this):

source leaprc.GLYCAM_06h # load leaprc

glycan = sequence { ROH 4YB 4YB 3MB 0MA } # build oligosaccharide

Using the sequence command, the φ angles are automatically set to the orientation that is
expected on the basis of the exo-anomeric effect (± 60°). If you wish to change the torsion
angle between two residues, the impose command may be used. In the following example, the
ψ angles between the two 4YB residues and between the 4YB and the 3MB are being set to
the standard value of zero.

impose glycan {3} { {C1 O4 C4 H4 0.0} } # set psi between 4YB (3) & 4YB (2)

impose glycan {4} { {C1 O4 C4 H4 0.0} } # set psi between 3MB (4) & 4YB (3)
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You may now generate coordinate, topology and PDB files, for example:

saveamberparm glycan glycan.top glycan.crd # save top & crd

savepdb glycan glycan.pdb # save pdb file

4.6.1.2 Example: Branched oligosaccharides

This section contains instructions for building a simple branched oligosaccharide. The ex-
ample used here builds on the previous one. Again, it will be assumed that the carbohydrate is
not destined to be linked to a protein or a lipid. If it were, one should omit the ROH residue
from the structure. The branched oligosaccharide is

α-D-Manp-(1–3)-β -D-Manp-(1–4)-β -D-GlcpNAc-(1–4)-β -D-GlcpNAc-OH
6
|

α-D-Manp-1

Note that the β -D-mannopyranose is now branched at the 3- and 6-positions. Consulting
Tables 2.4 to 2.7 informs us that the first character assigned to a carbohydrate linked at the 3-
and 6-positions is V. Thus, the name of the residue called 3MB in the previous section must
change to VMB.

Thus, when rewritten for LEaP this glycan becomes:

Residue name sequence: ROH 4YB 4YB VMB 0MA 0MA

Residue number: 1 2 3 4 5 6

To ensure that the correct residues are linked at the 3- and 6-positions in VMB, it is safest to
specify these linkages explicitly in LEaP. In the current example, the two terminal residues are
the same (0MA), but that need not be the case.

source leaprc.GLYCAM_06h # load leaprc

glycan = sequence { ROH 4YB 4YB VMB } # linear sequence to branch

The longest linear sequence is built first, ending at the branch point “VMB” in order to
explicitly specify subsequent linkages. The following commands will place a terminal, 0MA
residue at the number three position:

set glycan tail glycan.4.O3 # set attachment point to the O3 in VMB

glycan = sequence { glycan 0MA } # add one of the 0MA’s

The following commands will link the other 0MA to the 6-position. Note that the name of the
molecule changes from “glycan” to “branch”. This change is not necessary, but makes such
command sequences easier to read, particularly with complex structures.

set glycan tail glycan.4.O6 # set attachment point to the O6 in VMB

branch = sequence { glycan 0MA } # add the other 0MA
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Figure 4.2: Structure of Man-9, represented in the symbolic notation used by the Consortium
for Functional Glycomics. Here, =D-Manp and =D-GlcpNAc

It can be especially important to reset torsion angles when building branched oligosaccharides.
The following set of commands cleans up the geometry considerably and then generates a set
of output files:

impose branch {4} { {H1 C1 O6 C6 -60.0} } # set phi torsion and

impose branch {4} { {C1 O6 C6 H6 0.0} } # set psi 0MA(6) & VMB

impose branch {4} { {H1 C1 O4 C4 60.0} } # set phi torsion and

impose branch {4} { {C1 O4 C4 H4 0.0} } # set psi 3MB & 4YB

impose branch {3} { {H1 C1 O4 C4 60.0} } # set phi torsion and

impose branch {3} { {C1 O4 C4 H4 0.0} } # set psi 4YB & 4YB

impose branch {5} { {H1 C1 O3 C3 -60.0} } # set phi torsion and

impose branch {5} { {C1 O3 C3 H3 0.0} } # set psi 0MA(3) & VMB

saveamberparm branch branch.top branch.crd # save top & crd

savepdb branch branch.pdb # save pdb

4.6.1.3 Example: Complex branched oligosaccharides

The following example builds a highly branched, high-mannose structure shown in Figure
4.2 . In this example, it is especially important to note that when the branching is ambiguous,
LEaP might not choose the attachment point one wants or expects. For this reason, connectivity
should be specified explicitly whenever the structure branches. That is, one cannot specify the
longest linear sequence and add branches later. The sequence command must be interrupted at
each branch point. Otherwise, the connectivity is not assured. In this example, a branch occurs
at each VMA (-3,6-D-Manp ) residue.

The following set of commands, given to tleap, will safely produce the structure represented
in Figure4.2 .

source leaprc.GLYCAM_06h

glycan = sequence { ROH 4YB 4YB VMB }

set glycan tail glycan.4.O6

glycan=sequence { glycan VMA }

set glycan tail glycan.5.O6
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glycan=sequence { glycan 2MA 0MA }

set glycan tail glycan.5.O3

glycan=sequence { glycan 2MA 0MA }

set glycan tail glycan.4.O3

glycan=sequence { glycan 2MA 2MA 0MA }

impose glycan {3} { {H1 C1 O4 C4 60.0} }

impose glycan {3} { {C1 O4 C4 H4 0.0} }

impose glycan {4} { {H1 C1 O4 C4 60.0} }

impose glycan {4} { {C1 O4 C4 H4 0.0} }

impose glycan {5} { {H1 C1 O6 C6 -60.0} } # 1-6 Link from (5) to (4), Phi

impose glycan {5} { {C1 O6 C6 C5 180.0} } # 1-6 Link from (5) to (4), Psi

impose glycan {4} { {O6 C6 C5 O5 60.0} } # 1-6 Link from (5) to (4), Chi

impose glycan {10} { {H1 C1 O3 C3 -60.0} }

impose glycan {10} { {C1 O3 C3 H3 0.0} }

impose glycan {6} { {H1 C1 O6 C6 -60.0} }

impose glycan {6} { {C1 O6 C6 C5 180.0} }

impose glycan {5} { {O6 C6 C5 O5 -60.0} }

impose glycan {8} { {H1 C1 O3 C3 -60.0} }

impose glycan {8} { {C1 O3 C3 H3 0.0} }

impose glycan {7} { {H1 C1 O2 C2 -60.0} }

impose glycan {7} { {C1 O2 C2 H2 0.0} }

impose glycan {9} { {H1 C1 O2 C2 -60.0} }

impose glycan {9} { {C1 O2 C2 H2 0.0} }

impose glycan {11} { {H1 C1 O2 C2 -60.0} }

impose glycan {11} { {C1 O2 C2 H2 0.0} }

impose glycan {12} { {H1 C1 O2 C2 -60.0} }

impose glycan {12} { {C1 O2 C2 H2 0.0} }

saveamberparm glycan glycan.prmtop glycan.restrt

4.6.2 Procedures for building a lipid using GLYCAM-06 parameters

The procedure described here allows a user to produce a single lipid molecule without con-
sideration for axial alignment. Lipid bilayers are typically built in the (x,y) plane of a Cartesian
coordinate system, which requires the individual lipids to be aligned hydrophilic “head” to hy-
drophobic “tail” along the z-axis. This can be done relatively easily by loading a template PDB
file that has been appropriately aligned on the z-axis.

The lipid described in this example is 1,2-dimyristoyl-sn-glycero-3-phosphocholine or DMPC.
For this example, DMPC will be composed of four fragments: CHO, the choline “head” group;
PGL, the phospho-glycerol “head” group; MYR, the sn-1 chain myristic acid “tail” group; and
MY2, the sn-2 chain myristic acid “tail” group. See the molecular diagram in4.3 for atom la-
bels (hydrogens and atomic charges are removed for clarity) and bonding points between each
residue (dashed lines). This tutorial will use only prep files for each of the four fragments.
These prep files were initially built as PDB files and formatted as prep files using antechamber.
GLYCAM-compatible charges were added to the prep files and a prep file database (GLY-
CAM_lipids_06h.prep) was created containing all four files.
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Figure 4.3: DMPC

4.6.2.1 Example: Building a lipid with LEaP.

One need not load the main GLYCAM prep files in order to build a lipid using the
GLYCAM-06 parameter set, but it is automatically loaded with the default
leaprc.GLYCAM_06h. Note that the lipid generated by this set of commands is not necessarily
aligned appropriately to create a bilayer along an axis. The commands to use are:

source leaprc.GLYCAM_06h # source the leaprc for GLYCAM-06

loadamberprep GLYCAM_06_lipids.prep # load the lipid prep file

set CHO tail CHO.1.C5 # set the tail atom of CHO as C5.

set PGL head PGL.1.O1 # set the head atom of PGL to O1

set PGL tail PGL.1.C3 # set the tail atom of PGL to C3

lipid = sequence { CHO PGL MYR } # generate the straight-chain

# portion of the lipid

set lipid tail lipid.2.C2 # set the tail atom of PGL to C2

lipid = sequence { lipid MY2 } # add MY2 to the "lipid" unit

impose lipid {2} { {C1 C2 C3 O1 163} } # set torsions for

impose lipid {2} { {C2 C3 O1 C1 -180} } # PGL & MYR

impose lipid {2} { {C3 O1 C1 C2 180} }

impose lipid {2} { {O4 C1 C2 O1 -60} } # set torsions for

impose lipid {2} { {C1 C2 O1 C1 -180} } # PGL & MY2

impose lipid {2} { {C2 O1 C1 C2 180} }

# Note that the values here may not necessarily

# reflect the best choice of torsions.

savepdb lipid DMPC.pdb # save pdb file

saveamberparm lipid DMPC.top DMPC.crd # save top and crd files

4.6.3 Procedures for building a glycoprotein in LEaP.

The LEaP commands given in this section assume that you already have a PDB file containing
a glycan and a protein in an appropriate relative configuration. Thorough knowledge of the
commands in LEaP is required in order to successfully link any but the simplest glycans to the
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simplest proteins, and is beyond the scope of this discussion. Several options for generating the
relevant PDB file are given below (see Items 5a-5c).

The protein employed in this example is bovine ribonuclease A (PDBID: 3RN3). Here the
branched oligosaccharide assembled in the second example will be attached (N-linked) to ASN
34 to generate ribonuclease B.

4.6.3.1 Setting up protein pdb files for glycosylation in LEaP.

1. Delete any atoms with the “HETATM” card from the PDB file. These would typically
include bound ligands, non-crystallographic water molecules and non-coordinating metal
ions. Delete any hydrogen atoms if present.

2. In general, check the protein to make sure there are no duplicate atoms in the file. This
can be quickly done by loading the protein in LEaP and checking for such warnings. In
this particular example, residue 119 (HIS) contained duplicate side chain atoms. Delete
all but one set of duplicate atoms.

3. Check for the presence of disulfide bonds (SSBOND) by looking at the header section
of the PDB file. 3RN3 has four disulfide bonds, between the following pairs of cys-
teine residues: 26—84, 40—95, 58—110, and 65—72. Change the names of these eight
cysteine residues from CYS to CYX.

4. At present, it is possible to link glycans to serine, threonine, hydroxyproline and as-
paragine. You must rename the amino acid in the protein PDB file manually prior to
loading it into LEaP. The modified residue names are OLS (for O-linkages to SER), OLT
(for O-linkages to THR), OLP (for O-linkages to hydroxyproline, HYP) and NLN (for
N-linkages to ASN). Libraries containing amino acid residues that have been modified
for the purpose are automatically loaded when leaprc.GLYCAM_06h is sourced. See the
lists of library files in2.7 for more information.

5. Prepare a PDB file containing the protein and the glycan, with the glycan correctly
aligned relative to the protein surface. There are several approaches to performing this
including:

a) It is often the case that one or more glycan residues are present in the experimental
PDB file. In this case, a reasonable method is to superimpose the linking sugar
residue in the GLYCAM-generated glycan upon that present in the experimental
PDB file, and to then save the altered coordinates. If you use this method, remember
to delete the experimental glycan from the PDB file! It is also essential to ensure
that each carbohydrate residue is separated from other residues by a TER card in
the PDB file. Also remember to delete the terminal OH or OMe from the glycan.
Alternately, the experimental glycan may be retained in the PDB file, provided that
it is renamed according to the GLYCAM 3-letter code, and that the atom names and
order in the PDB file match the GLYCAM standard. This is tedious, but will work.
Again, be sure to insert TER cards if they are missing between the protein and the
carbohydrate and between the carbohydrate residues themselves.
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b) Use a molecular modeling package to align the GLYCAM-generated glycan with the
protein and save the coordinates in a single file. Remember to delete the terminal
OH or OMe from the glycan.

c) Use the Glycoprotein Builder tool at http://www.glycam.org. This tool allows the user
to upload protein coordinates, build a glycan (or select it from a library), and attach
it to the protein. All necessary AMBER files may then be downloaded. This site is
also convenient for preprocessing protein-only files for subsequent uploading to the
glycoprotein builder.

4.6.3.2 Example: Adding a branched glycan to 3RN3 (N-linked glycosylation).

In this example we will assume that the glycan generated above (“branch.pdb”) has been
aligned relative to the ASN 34 in the protein file and that the complex has been saved as a new
PDB file (e.g., as “3rn3_nlink.pdb”). The last amino acid residue should be VAL 124, and the
glycan should be present as 4YB 125, 4YB 126, VMB 127, OMA 128 and OMA 129.

Remember to change the name of ASN 34 from ASN to NLN. For the glycan structure,
ensure that each residue in the PDB file is separated by a “TER” card. The sequence command
is not to be used here, and all linkages (within the glycan and to the protein) will be specified
individually.

Enter the following commands into xleap (or tleap if a graphical representation is not
desired). Alternately, copy the commands into a file to be sourced.

source leaprc.GLYCAM_06h # load the GLYCAM-06 leaprc

source leaprc.ff12SB # load the (modified) ff12 force field

glyprot = loadpdb 3rn3_nlink.pdb # load protein and glycan pdb file

bond glyprot.125.O4 glyprot.126.C1 # make inter glycan bonds

bond glyprot.126.O4 glyprot.127.C1

bond glyprot.127.O6 glyprot.128.C1

bond glyprot.127.O3 glyprot.129.C1

bond glyprot.34.SG glyprot.125.C1 # make glycan -- protein bond

bond glyprot.26.SG glyprot.84.SG # make disulfide bonds

bond glyprot.40.SG glyprot.95.SG

bond glyprot.58.SG glyprot.110.SG

bond glyprot.65.SG glyprot.72.SG

addions glyprot Cl- 0 # neutralize appropriately

solvateBox glyprot TIP3P BOX 8 # solvate the solute

savepdb glyprot 3nr3_glycan.pdb # save pdb file

saveamberparm glyprot 3nr3_glycan.top 3nr3_glycan.crd # save top, crd

quit # exit leap
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These are a set of tools to generate files for organic molecules and for some metal centers
in proteins, which can then be read into LEaP. The Antechamber suite was written by Junmei
Wang, and is designed to be used in conjunction with the general AMBER force field (GAFF)
(gaff.dat).[98] See Ref. [99] for an explanation of the algorithms used to classify atom and bond
types, to assign charges, and to estimate force field parameters that may be missing in gaff.dat.
The Metal Center Parameter Builder (MCPB) program was developed by Martin Peters [100],
and is described in Section 5.6.

Like the traditional AMBER force fields, GAFF uses a simple harmonic function form for
bonds and angles. Unlike the traditional AMBER force fields, atom types in GAFF are more
general and cover most of the organic chemical space. In total there are 33 basic atom types and
22 special atom types. The charge methods used in GAFF can be HF/6-31G* RESP or AM1-
BCC.[101, 102] All of the force field parametrization were carried out with HF/6-31G* RESP
charges. However, in most cases, AM1-BCC, which was parametrized to reproduce HF/6-31G*
RESP charges, is recommended in large-scale calculations because of its efficiency.

The van der Waals parameters are the same as those used by the traditional AMBER force
fields. The equilibrium bond lengths and bond angles came from ab initio calculations at the
MP2/6-31G* level and statistics derived from the Cambridge Structural Database. The force
constants for bonds and angles were estimated using empirical models, and the parameters in
these models were trained using the force field parameters in the traditional AMBER force
fields. General torsional angle parameters were extensively applied in order to reduce the huge
number of torsional angle parameters to be derived. The force constants and phase angles in the
torsional angle parameters were optimized using our PARMSCAN package,[103] with an aim
to reproduce the rotational profiles depicted by high-level ab initio calculations (geometry opti-
mizations at the MP2/6-31G* level, followed by single point calculations at MP4/6-311G(d,p)).

By design, GAFF is a complete force field (so that missing parameters rarely occur); it covers
almost all the organic chemical space that is made up of C, N, O, S, P, H, F, Cl, Br and I. More-
over, GAFF is totally compatible with the AMBER macromolecular force fields. It should be
noted that GAFF atom types, except metal types, are in lower case, while AMBER atom types
are always in upper case. This feature makes it possible to load both AMBER protein/nucleic
acid force fields and GAFF without any conflict. One can even merge the two kinds of force
fields into one file. The combined force fields are capable of studying complicated systems that
include both proteins/nucleic acids and organic molecules. We believe that the combination
of GAFF with AMBER macromolecular force fields will provide a useful molecular mechan-
ical tool for rational drug design, especially in binding free energy calculations and molecular
docking studies. Since its introduction, GAFF has been used for a wide range of applications,
including ligand docking,[104] bilayer simulations,[105, 106] and the study of pure organic
liquids [107].
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5.1 Principal programs

The antechamber program itself is the main program of Antechamber. If your molecule falls
into any of several fairly broad categories, antechamber should be able to process your PDB
file directly, generating output files suitable for LEaP. Otherwise, you may provide an input
file with connectivity information, i.e., in a format such as Mol2 or SDF. If there are missing
parameters after antechamber is finished, you may want to run parmchk2 to generate a frcmod
template that will assist you in generating the needed parameters.

5.1.1 antechamber

This is the most important program in the package. It can perform many file conversions, and
can also assign atomic charges and atom types. As required by the input, antechamber executes
the following programs: sqm (or, alternatively, mopac or divcon), atomtype, am1bcc, bondtype,
espgen, respgen and prepgen. It typically produces many intermediate files; these may be
recognized by their names, in which all letters are upper-case. If you experience problems
while running antechamber, you may want to run the individual programs that are described
below.

Antechamber options:

-help print these instructions

-i input file name

-fi input file format

-o output file name

-fo output file format

-c charge method

-cf charge file name

-nc net molecular charge (int)

-a additional file name

-fa additional file format

-ao additional file operation

crd : only read in coordinate

crg: only read in charge

name : only read in atom name

type : only read in atom type

bond : only read in bond type

-m multiplicity (2S+1), default is 1

-rn residue name, if not available in the input file

-rf residue topology file name in prep input file, default is molecule.res

-ch check file name in gaussian input file, default is molecule

-ek empirical calculation (mopac or sqm) keyword (in quotes)

-gk gaussian keyword in a pair of quotation marks

-gm gaussian assign memory, inside a pair of quotes, such as "%mem=1000MB"

-gn gaussian assign number of processor, inside a pair of quotes, such as "%nproc=8"
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-df use divcon flag, 0 - use mopac; 2 - use sqm (the default)

-at atom type, can be gaff, amber, bcc and sybyl, default is gaff

-du check atom name duplications, can be yes(y) or no(n), default is yes

-j atom type and bond type prediction index, default is 4

0 : no assignment

1 : atom type

2 : full bond types

3 : part bond types

4 : atom and full bond type

5 : atom and part bond type

-eq equalize atomic charge, default is 1 for ’-c resp’ and ’-c bcc’

0 : no equalization

1 : by atomic paths

2 : by atomic paths and geometry, such as E/Z configurations

-s status information, can be 0 (brief), 1 (the default) and 2 (verbose)

-pf remove the intermediate files: can be yes (y) and no (n, default)

-i -o -fi and -fo must appear in command lines and the others are optional

Use ’antechamber -L’ to list the supported file formats and charge methods

List of the File Formats:

file format type abbre. index | file format type abbre. index

---------------------------------------------------------------

Antechamber ac 1 | Sybyl Mol2 mol2 2

PDB pdb 3 | Modified PDB mpdb 4

AMBER PREP (int) prepi 5 | AMBER PREP (car) prepc 6

Gaussian Z-Matrix gzmat 7 | Gaussian Cartesian gcrt 8

Mopac Internal mopint 9 | Mopac Cartesian mopcrt 10

Gaussian Output gout 11 | Mopac Output mopout 12

Alchemy alc 13 | CSD csd 14

MDL mdl 15 | Hyper hin 16

AMBER Restart rst 17 | Jaguar Cartesian jcrt 18

Jaguar Z-Matrix jzmat 19 | Jaguar Output jout 20

Divcon Input divcrt 21 | Divcon Output divout 22

SQM Input sqmcrt 23 | SQM Output sqmout 24

Charmm charmm 25 | Gaussian ESP gesp 26

--------------------------------------------------------------

AMBER restart file can only be read in as additional file

List of the Charge Methods:

charge method abbre. index | charge method abbre.

----------------------------------------------------------------

RESP resp 1 | AM1-BCC bcc 2

CM1 cm1 3 | CM2 cm2 4
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ESP (Kollman) esp 5 | Mulliken mul 6

Gasteiger gas 7 | Read in charge rc 8

Write out charge wc 9 | Delete Charge dc 10

----------------------------------------------------------------

Examples:

(1) antechamber -i g98.out -fi gout -o sustiva_resp.mol2 -fo mol2 -c resp

(2) antechamber -i g98.out -fi gout -o sustiva_bcc.mol2 -fo mol2 -c bcc -j 5

(3) antechamber -i g98.out -fi gout -o sustiva_gas.mol2 -fo mol2 -c gas

(4) antechamber -i g98.out -fi gout -o sustiva_cm2.mol2 -fo mol2 -c cm2

(5) antechamber -i g98.out -fi gout -o sustiva.ac -fo ac

(6) antechamber -i sustiva.ac -fi ac -o sustiva.mpdb -fo mpdb

(7) antechamber -i sustiva.ac -fi ac -o sustiva.mol2 -fo mol2

(8) antechamber -i sustiva.mol2 -fi mol2 -o sustiva.gzmat -fo gzmat

(9) antechamber -i sustiva.ac -fi ac -o sustiva_gas.ac -fo ac -c gas

(10)antechamber -i mtx.pdb -fi pdb -o mtx.mol2 -fo mol2 -c rc -cf mtx.charge

(11)antechamber -i g03.out -fi gout -o mtx.mol2 -fo mol2 -c resp

-a mtx.pdb -fa pdb -ao name

(12)antechamber -i ch3I.mol2 -fi mol2 -o gcrt -fo gcrt -gv 1 -ge ch3I.gesp

(13)antechamber -i acetamide.out -fi gout -o acetamide_eq0.mol2 -fo mol2

-c resp -eq 0

(14)antechamber -i acetamide.out -fi gout -o acetamide_eq0.mol2 -fo mol2

-c resp -eq 1 (15)antechamber -i acetamide.out -fi gout

-o acetamide_eq0.mol2 -fo mol2 -c resp -eq 2

The following is the detailed explanations of some flags

-nc This flag specifies the net charge of the input molecule, otherwise, the net charge is read in
from the input directly (such as gout, mopout, sqmout, sqmcrt, gcrt, etc.) or calculated
by summing the partial charges (such as mol2, prepi, etc).

-a,-fa,-ao Sometimes, one wants to read additional information from another file other than the
input, the ’-ao’ flag informs the program to read in which information from the additional
file specified with ’-a’ flag. In Example (11), a mol2 file is generated from a Gaussian
output file with atom names read in from a pdb file.

-ch,-gk,-gm,-gn Those flags specify the keywords and resource usage in Gaussian calculations

-ge,-gv The ’-ge’ flag specifies the file name of gesp file generated using iop(6/50=1) with
Gaussian 09; the -gv flag specifies the Gaussian version and the default is ’1’ for Gaussian
09. If one wants to generate Gaussian input files (gcrt and gzmat) for older Gaussian
versions, ’-gv’ must be set to ’0’.

-rn The ’-rn’ line specifies the residue name to be used; thus, it must be one to three characters
long.
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-at This flag is used to specify whether atom types are to be created for the GAFF force field
or for atom types consistent with parm94.dat and parm99.dat (i.e., the AMBER force
fields). If you are using antechamber to create a modified residue for use with the stan-
dard AMBER parm94/parm99 force fields, you should set this flag to “amber”; if you are
looking at a more arbitrary molecule, set it to “gaff”, even if the molecule is intended for
use as a ligand bound to a macromolecule described by the AMBER force fields.

-j This flag instructs the program how to run ’bondtype’ and ’atom type’. ’-j 1’ assumes the
bond types already exists; ’-j 4’ first predicts the connectivity table, then assigns bond
and atom types sequentially; ’-j 5’ reads in connectivity table from the input and then run
’bondtype’ and ’atomtype’ sequentially. In most situations, ’-j 4’, the default option, is
recommended. However, ’-j 5’ should be used if the input structure is not good enough
and it includes the bond connectivity information (such as mol2, mdl, gzmat, etc.)

-eq This flag specifies how to do charge equilibration. With ’-eq 1’, atomic charge equilibration
is predicted only by atom paths, in another word, if two or more atoms have exactly same
sets of atom paths, they are equivalent and their charges are forced to be same. While ’-eq
2’ predicts charge equilibration using both atom paths and some geometrical information
(E/Z configuration). With the ’-eq 2’ option, the charges of two hydrogen atoms bonded
to the No 2 carbon of chloroethene are different as they adopt different configurations to
chlorine (one is cis and the other is trans). Similarly, the two amide hydrogen atoms of
acetamide do not share the same partial charge as the amide bond cannot rotate freely. To
back-compatible to the older versions, the default is set to ’1’

In Example (12), a gcrt file of iodine methane is generated and a gesp file named ch3I.gesp is
produced when running Gaussian 09 with the default keyword. In Examples (13-15), RESP
charges are generated for acetamide using different charge equilibration options. In the
following table, the charges are listed for comparison purposes.

atom names | eq = 0 | eq = 1 eq = 2

|no equalization |atomic paths | + geometry

--------------------------------------------------------------------------

methyl carbon |-0.5190 | -0.5516 | -0.5193

methyl hydrogen | 0.1412/0.1380/0.1396 | 0.1470 | 0.1397

carbonyl carbon | 0.9673 | 0.9786 | 0.9673

oxygen |-0.6468 | -0.6463 | -0.6468

nitrogen |-1.1189 | -1.1219 | -1.1189

amide hydrogen | 0.4556/0.4429 | 0.4501 | 0.4556/0.4429

--------------------------------------------------------------------------

5.1.2 parmchk2

parmchk2 reads in an ac/mol2/prepi/prepc file, an atomtype similarity index file (the default
is $AMBERHOME/dat/antechamber/PARMCHK.DAT) as well as a force field file (the default
is $AMBERHOME/dat/leap/parm/gaff.dat). It writes out a force field modification (frcmod)
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file containing any force field parameters that are needed for the molecule but not supplied by
the force field (*.dat) file. Problematic parameters, if any, are indicated in the frcmod file with
the note, “ATTN, need revision”, and are typically given values of zero. This can cause fatal
terminations of programs that later use a resulting prmtop file; for example, a zero value for the
periodicity of the torsional barrier of a dihedral parameter will be fatal in many cases. For each
atom type, an atom type corresponding file (ATCOR.DAT) lists its replaceable general atom
types. By default, only the missing parameters are written to the frcmod file. When the “-a”
switch is given the value “Y”, parmchk2 prints out all force field parameters used by the input
molecule, whether they are already in the parm file or not. This file can be used to prepare the
frcmod file used by thermodynamic integration calculations using sander.

Unlike parmchk which only checks several substitutions for a missing force field parameter,
parmchk2 enumerates all the possible substitutions and select the one with the best similarity
score as the final substitue. Moreover, a penalty score, which measures the similarity between
the missing force field parameter and the substitute is provided. The similarity socres are
calculated using the similarity indexes defined in the atom type similarity index file
(PARMCHK.DAT). A similarity index of a pair of atom types (’A/B’) for a specific force field
parameter type was generated by calculating the average percent absolute error of two set of
force field parameters in gaff. The two set of force field parameters are identical except that
one set has atom type ’A’ and the other has ’B’. Each atom type pair (’A/B’) has nine
similarity indexes for nine different types of force field parameters, which are bond
equilibrium length, bond stretching force constant, bond equilibrium angle (’A’ and ’B’ are
central atoms), bond angle bending force constant (’A’ and ’B’ are central atoms), bond
equilibrium angle (’A’ and ’B’ are non-central atoms), bond angle bending force constant (’A’
and ’B’ are non-central atoms), torsional angle twisting force constant (’A’ and ’B’ are inner
side atoms), torsional angle twisting force constant (’A’ and ’B’ are outter side atoms), and
improper dihedral angle.

parmchk2 -i input file name

-o frcmod file name

-f input file format (prepi, ac ,mol2)

-p ff parmfile

-c atom type corresponding file, default is ATCOR.DAT

-a print out all force field parameters including those in the parmfile

can be ’Y’ (yes) or ’N’ (no), default is ’N’

-w print out parameters that matching improper dihedral parameters

that contain ’X’ in the force field parameter file, can be ’Y’ (yes)

or ’N’ (no), default is ’Y’

Example:

parmchk2 -i sustiva.prep -f prepi -o frcmod

This command reads in sustiva.prep and finds the missing force field parameters listed in frc-
mod.
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5.2 A simple example for antechamber

The most common use of the antechamber program suite is to prepare input files for LEaP,
starting from a three-dimensional structure, as found in a PDB file. The antechamber suite
automates the process of developing a charge model and assigning atom types, and partially
automates the process of developing parameters for the various combinations of atom types
found in the molecule.

As with any automated procedure, the output should be carefully examined, and users should
be on the lookout for any unusual or incorrect program behavior.

Suppose you have a PDB-format file for your ligand, say thiophenol, which looks like this:

ATOM 1 CG TP 1 -1.959 0.102 0.795

ATOM 2 CD1 TP 1 -1.249 0.602 -0.303

ATOM 3 CD2 TP 1 -2.071 0.865 1.963

ATOM 4 CE1 TP 1 -0.646 1.863 -0.234

ATOM 5 C6 TP 1 -1.472 2.129 2.031

ATOM 6 CZ TP 1 -0.759 2.627 0.934

ATOM 7 HE2 TP 1 -1.558 2.719 2.931

ATOM 8 S15 TP 1 -2.782 0.365 3.060

ATOM 9 H19 TP 1 -3.541 0.979 3.274

ATOM 10 H29 TP 1 -0.787 -0.043 -0.938

ATOM 11 H30 TP 1 0.373 2.045 -0.784

ATOM 12 H31 TP 1 -0.092 3.578 0.781

ATOM 13 H32 TP 1 -2.379 -0.916 0.901

(This file may be found at $AMBERHOME/AmberTools/test/antechamber/tp/tp.pdb). The
basic command to create a mol2 file for LEaP is just:

antechamber -i tp.pdb -fi pdb -o tp.mol2 -fo mol2 -c bcc

The output file will look like this:

@<TRIPOS>MOLECULE

TP

13 13 1 0 0

SMALL

bcc

@<TRIPOS>ATOM

1 CG -1.9590 0.1020 0.7950 ca 1 TP -0.132000

2 CD1 -1.2490 0.6020 -0.3030 ca 1 TP -0.113000

3 CD2 -2.0710 0.8650 1.9630 ca 1 TP 0.015900

4 CE1 -0.6460 1.8630 -0.2340 ca 1 TP -0.137000

5 C6 -1.4720 2.1290 2.0310 ca 1 TP -0.132000

6 CZ -0.7590 2.6270 0.9340 ca 1 TP -0.113000

7 HE2 -1.5580 2.7190 2.9310 ha 1 TP 0.136500

8 S15 -2.7820 0.3650 3.0600 sh 1 TP -0.254700
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9 H19 -3.5410 0.9790 3.2740 hs 1 TP 0.190800

10 H29 -0.7870 -0.0430 -0.9380 ha 1 TP 0.133500

11 H30 0.3730 2.0450 -0.7840 ha 1 TP 0.134000

12 H31 -0.0920 3.5780 0.7810 ha 1 TP 0.133500

13 H32 -2.3790 -0.9160 0.9010 ha 1 TP 0.136500

@<TRIPOS>BOND

1 1 2 ar

2 1 3 ar

3 1 13 1

4 2 4 ar

5 2 10 1

6 3 5 ar

7 3 8 1

8 4 6 ar

9 4 11 1

10 5 6 ar

11 5 7 1

12 6 12 1

13 8 9 1

@<TRIPOS>SUBSTRUCTURE

1 TP 1 TEMP 0 **** **** 0 ROOT

This command says that the input format is pdb, output format is Sybyl mol2, and the BCC
charge model is to be used. The output file is shown in the box titled .mol2. The format of this
file is a common one understood by many programs. However, to display molecules properly
in software packages other than LEaP and gleap, one needs to assign atom types using the ’-at
sybyl’ flag rather than using the default gaff atom types.

You can now run parmchk2 to see if all of the needed force field parameters are available:

parmchk2 -i tp.mol2 -f mol2 -o frcmod

This yields the frcmod file:

remark goes here

MASS

BOND

ANGLE

DIHE

IMPROPER

ca-ca-ca-ha 1.1 180.0 2.0 General improper \\

torsional angle (2 general atom types)

ca-ca-ca-sh 1.1 180.0 2.0 Using default value

NONBON

In this case, there were two missing dihedral parameters from the gaff.dat file, which were
assigned a default value. (As gaff.dat continues to be developed, there should be fewer and
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fewer missing parameters to be estimated by parmchk2.) In rare cases, parmchk2 may be
unable to make a good estimate; it will then insert a placeholder (with zeros everywhere) into
the frcmod file, with the comment "ATTN: needs revision". After manually editing this to take
care of the elements that "need revision", you are ready to read this residue into LEaP, either as
a residue on its own, or as part of a larger system. The following LEaP input file (leap.in) will
just create a system with thiophenol in it:

source leaprc.gaff

mods = loadAmberParams frcmod

TP = loadMol2 tp.mol2

saveAmberParm TP prmtop inpcrd

quit

You can read this into LEaP as follows:

tleap -s -f leap.in

This will yield a prmtop and inpcrd file. If you want to use this residue in the context of a larger
system, you can insert commands after the loadAmberPrep step to construct the system you
want, using standard LEaP commands.

In this respect, it is worth noting that the atom types in gaff.dat are all lower-case, whereas
the atom types in the standard AMBER force fields are all upper-case. This means that you
can load both gaff.dat and (say) parm99.dat into LEaP at the same time, and there won’t be
any conflicts. Hence, it is generally expected that you will use one of the AMBER force fields
to describe your protein or nucleic acid, and the gaff.dat parameters to describe your ligand;
as mentioned above, gaff.dat has been designed with this in mind, i.e., to produce molecular
mechanics descriptions that are generally compatible with the AMBER macromolecular force
fields.

The procedure above only works as it stands for neutral molecules. If your molecule is
charged, you need to set the -nc flag in the initial antechamber run. Also note that this procedure
depends heavily upon the initial 3D structure: it must have all hydrogens present, and the
charges computed are those for the conformation you provide, after minimization in the AM1
Hamiltonian. In fact, this means that you must have an reasonable all-atom initial model of
your molecule (so that it can be minimized with the AM1 Hamiltonian), and you may need to
specify what its net charge is, especially for those molecular formats that have no net charge
information, and no partial charges or the partial charges in the input are not correct. The
system should really be a closed-shell molecule, since all of the atom-typing rules assume this
implicitly.

Further examples of using antechamber to create force field parameters can be found in the
$AMBERHOME/test/antechamber directory. Here are some practical tips from Junmei Wang:

1. For the input molecules, make sure there are no open valences and the structures are
reasonable.

2. The Antechamber package produces two kinds of messages, error messages and informa-
tive messages. You may safely ignore those message starting with "Info". For example:
"Info: Bond types are assigned for valence state 1 with penalty of 1".
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3. Failures are most often produced when antechamber infers an incorrect connectivity. In
such cases, you can revise by hand the connectivity information in "ac" or "mol2" files.
Systematic errors could be corrected by revising the parameters in $AMBERHOME/-
dat/antechamber/CONNECT.TPL.

4. It is a good idea to check the intermediate files in case of a program failure, and you can
run separate programs one by one. Use the "-s 2" flag to antechamber to see details of
what it is doing.

5. Beginning with Amber 10, a new program called acdoctor is provided to diagnose pos-
sible problem of an input molecule. If you encounter failure when running antechamber
programs, it is highly recommended to let acdoctor perform a diagnosis.

6. By default, the AM1 Mulliken charges that are required for the AM1-BCC procedure are
computed using the sqm program, with the following keyword (which is placed inside the
&qmmm namelist):

qm_theory=’AM1’, grms_tol=0.0002, tight_p_conv=1, scfconv=1.d-10,

For some molecules, especially if they have bad starting geometries, convergence to these
tight criteria may not be obtained. If you have trouble, examine the sqm.out file, and try
changing scfconv to 1.d-8 and/or tight_p_conv to 0. You may also need to increase the
value of grms_tol. You can use the -ek flag to antechamber to change these, or just
manually edit the sqm.in file. But be aware that there may be something “wrong” with
your molecule if these problems arise; the acdoctor program may help.

5.3 Programs called by antechamber

The following programs are automatically called by antechamber when needed. Generally,
you should not need to run them yourself, unless problems arise and/or you want to fine-tune
what antechamber does.

5.3.1 atomtype

Atomtype reads in an ac file and assigns the atom types. You may find the default definition
files in $AMBERHOME/dat/antechamber: ATOMTYPE_AMBER.DEF (AMBER),
ATOMTYPE_GFF.DEF (general AMBER force field). ATOMTYPE_GFF.DEF is the default
definition file. It is pointed out that the usage of atomtype is not limited to assign force field
atom types, it can also be used to assign atom types in other applications, such as QSAR and
QSPR studies. The users can define their own atom type definition files according to certain
rules described in the above mentioned files.

atomtype -i input file name

-o output file name (ac)

-f input file format(ac (the default) or mol2)

-p amber or gaff or bcc or gas, it is suppressed by "-d" option
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-d atom type definition file, optional

-a do post atom type adjustment when ’-d’ is used

1: yes, 0: no (the default)

Example:

atomtype -i sustiva_resp.ac -o sustiva_resp_at.ac -f ac -p amber

This command assigns atom types for sustiva_resp.ac with amber atom type definitions. The
output file name is sustiva_resp_at.ac

5.3.2 am1bcc

Am1bcc first reads in an ac or mol2 file with or without assigned AM1-BCC atom types and
bond types. Then the bcc parameter file (the default, BCCPARM.DAT is in
$AMBERHOME/dat/antechamber) is read in. An ac file with AM1-BCC charges [101, 102] is
written out. Be sure the charges in the input ac file are AM1-Mulliken charges.

am1bcc -i input file name in ac format

-o output file name

-f output file format(pdb or ac, optional, default is ac)

-p bcc parm file name (optional))

-j atom and bond type judge option, default is 0)

0: No judgement

1: Atom type

2: Full bond type

3: Partial bond type

4: Atom and full bond type

5: Atom and partial bond type

Example:

am1bcc -i comp1.ac -o comp1_bcc.ac -f ac -j 4

This command reads in comp1.ac, assigns both atom types and bond types and finally performs
bond charge correction to get AM1-BCC charges. The ’-j’ option of 4, which is the default,
means that both the atom and bond type information in the input file is ignored and a full atom
and bond type assignments are performed. The ’-j’ option of 3 and 5 implies that bond type
information (single bond, double bond, triple bond and aromatic bond) is read in and only a
bond type adjustment is performed. If the input file is in mol2 format that contains the basic
bond type information, option of 5 is highly recommended. comp1_bcc.ac is an ac file with the
final AM1-BCC charges.

5.3.3 bondtype

bondtype is a program to assign six bond types based upon the read in simple bond types
from an ac or mol2 format with a flag of “-j part” or purely connectivity table using a flag of
“-j full”. The six bond types as defined in AM1-BCC [101, 102] are single bond, double bond,
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triple bond, aromatic single, aromatic double bonds and delocalized bond. This program takes
an ac file or mol2 file as input and write out an ac file with the predicted bond types. After the
continually improved algorithm and code, the current version of bondtype can correctly assign
bond types for most organic molecules (>99% overall and >95% for charged molecules) in our
tests.

Starting with Amber 10, bond type assignment is proceeded based upon residues. The
bonds that link two residues are assumed to be single bonded. This feature allows antechamber
to handle residue-based molecules, even proteins are possible. It also provides a remedy for
some molecules that would otherwise fail: it can be helpful to dissect the whole molecule into
residues. Some molecules have more than one way to assign bond types; for example, there
are two ways to alternate single and double bonds for benzene. The assignment adopted by
bondtype is purely affected by the atom sequence order. To get assignments for other resonant
structures, one may freeze some bond types in an ac or mol2 input file (appending ’F’ or ’f’ to
the corresponding bond types). Those frozen bond types are ignored in the bond type
assignment procedure. If the input molecules contain some unusual elements, such as metals,
the involved bonds are automatically frozen. This frozen bond feature enables bondtype to
handle unusual molecules in a practical way without simply producing an error message.

bondtype -i input file name

-o output file name

-f input file format (ac or mol2)

-j judge bond type level option, default is part

full full judgment

part partial judgment, only do reassignment according

to known bond type information in the input file

Example:

#! /bin/csh -fv

set mols = \‘/bin/ls *.ac\‘

foreach mol ($mols)

set mol_dir = $mol:r

antechamber -i $mol_dir.ac -fi ac -fo ac -o $mol_dir.ac -c mul

bondtype -i $mol_dir.ac -f ac -o $mol_dir.dat -j full

am1bcc -i $mol_dir.dat -o $mol_dir\_bcc.ac -f ac -j 0

end

exit(0)

The above script finds all the files with the extension of "ac", calculates the Mulliken charges
using antechamber, and predicts the atom and bond types with bondtype. Finally, AM1-BCC
charges are generated by running am1bcc to do the bond charge correction. More examples are
provided in $AMBERHOME/test/antechamber/bondtype and $AMBERHOME/test/antecham-
ber/chemokine.

5.3.4 prepgen

Prepgen generates the prep input file from an ac file. By default, the program generates a
mainchain itself. However, you may also specify the main-chain atoms in the main chain file.
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From this file, you can also specify which atoms will be deleted, and whether to do charge
correction or not. In order to generate the amino-acid-like residue (this kind of residue has one
head atom and one tail atom to be connected to other residues), you need a main chain file.
Sample main chain files are in $AMBERHOME/dat/antechamber.

prepgen -i input file name(ac)

-o output file name

-f output file format (car or int, default: int)

-m mainchain file name

-rn residue name (default: MOL)

-rf residue file name (default: molecule.res)

-f -m -rn -rf are optional

Examples:

prepgen -i sustiva.ac -o sustiva_int.prep -f int -rn SUS -rf SUS.res

prepgen -i sustiva.ac -o sustiva_car.prep -f car -rn SUS -rf SUS.res

prepgen -i sustiva.ac -o sustiva_int_main.prep -f int -rn SUS

-rf SUS.res -m mainchain_sus.dat

prepgen -i ala_cm2_at.ac -o ala_cm2_int_main.prep -f int -rn ALA

-rf ala.res -m mainchain_ala.dat

The above commands generate different kinds of prep input files with and without specifying a
main chain file.

5.3.5 espgen

Espgen reads in a gaussian (92,94,98,03) output file and extracts the ESP information. An
esp file for the resp program is generated.

espgen -i input file name

-o output file name

Example:

(1) espgen -i sustiva_g98.out -o sustiva.esp

(2) espgen -i ch3I.gesp -o ch3I.esp

Command (1) reads in sustiva_g98.out and writes out sustiva.esp, which can be used by the
resp program. Command (2) reads in a gesp file generated by Gaussian 09 and outputs the esp
file. Note that this program replaces shell scripts formerly found on the AMBER web site that
perform equivalent tasks.

5.3.6 respgen

Respgen generates the input files for two-stage resp fitting. Starting with Amber 10, the
program supports a single molecule with one or multiple conformations RESP fittings. Atom
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equivalence is recognized automatically. Frozen charges and charge groups are read in with
’-a’ flag. If there are some frozen charges in the additional input data file, a RESP charge file,
QIN is generated as well. Here are flags to respgen:

-i input file name(ac)

-o output file name

-l maximum path length (default is -1, i.e. the path can be any long)

-f output file format

resp1 - first stage resp fitting

resp2 - second stage resp fitting

iresp1 - first stage i_resp fitting

iresp2 - second stage i_resp fitting

-e equalizing atomic charge (default is 1)

0 not use

1 by atomic paths

2 by atomic paths and geometry (such as E/Z configuration)

-a additional input data (predefined charges, atom groups etc)

-n number of conformations (default is 1)

-w weight of charge constraint

the default values are 0.0005 for resp1/iresp1 and 0.001 for

resp2/iresp2

The following is a sample of additional respgen input file

//predefined charges in a format of (CHARGE partial_charge atom_ID atom_name)

CHARGE -0.417500 7 N1

CHARGE 0.271900 8 H4

CHARGE 0.597300 15 C5

CHARGE -0.567900 16 O2

//charge groups in a format of (GROUP num_atom net_charge),

//more than one group may be defined.

GROUP 10 0.00000

//atoms in the group in a format of (ATOM atom_ID atom_name)

ATOM 7 N1

ATOM 8 H4

ATOM 9 C3

ATOM 10 H5

ATOM 11 C4

ATOM 12 H6

ATOM 13 H7

ATOM 14 H8

ATOM 15 C5

ATOM 16 O2

Example:
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respgen -i sustiva.ac -o sustiva.respin1 -f resp1

respgen -i sustiva.ac -o sustiva.respin2 -f resp2

resp -O -i sustiva.respin1 -o sustiva.respout1 -e sustiva.esp -t qout_stage1

resp -O -i sustiva.respin2 -o sustiva.respout2 -e sustiva.esp

-q qout_stage1 -t qout_stage2

antechamber -i sustiva.ac -fi ac -o sustiva_resp.ac -fo ac -c rc -cf qout_stage2

respgen -i acetamide.ac -o acetamide.respin1 -f resp1 -e 2

respgen -i acetamide.ac -o acetamide.respin2 -f resp2 -e 2

The above commands first generate the input files (sustiva.respin1 and sustiva.respin2) for resp
fitting, then do two-stage resp fitting and finally use antechamber to read in the resp charges
and write out an ac file, sustiva_resp.ac. A more complicated example has been provided in
$AMBERHOME/test/antechamber/residuegen. The last two ’respgen’ commands generate resp
input files for acetamide discriminating the two amide hydrogen atoms.

5.4 Miscellaneous programs

The Antechamber suite also contains some utility programs that perform various tasks in
molecular mechanical calculations. They are listed in alphabetical order.

5.4.1 acdoctor

Acdoctor reads in all kinds of file formats applied in the antechamber program and
’diagnose’ possible reasons that cause antechamber failure. Molecular format is first checked
for some commonly-used molecular formats, such as pdb, mol2, mdl (sdf), etc. Then unusual
elements (elements other than C, O, N, S, P, H, F, Cl, Br and I) are checked for all the formats.
Unfilled valence is checked when atom types and/or bond types are read in. Those file formats
include ac, mol2, sdf, prepi, prepc, mdl, alc and hin. Acdoctor also applies a more stringent
criterion than that utilized by antechamber to determine whether a bond is formed or not. A
warning message is printed out for those bonds that fail to meet the standard. Then acdoctor
diagnoses if all atoms are linked together through atomic paths. If not, an error message is
printed out. This kind of errors typically imply that the input molecule has one or several bonds
missing. Finally, acdoctor tries to assign bond types and atom types for the input molecule. If
no error occurs during running bondtype and atomtype, presumably the input molecule should
be free from problems when running the other Antechamber programs. It is recommended to
diagnose your molecules with acdoctor when you encounter Antechamber failures.

Usage: acdoctor -i input file name

-f input file format

Example:

acdoctor -i test.mol2 -f mol2

The program reads in test.mol2 and checks the potential problem when running the Antecham-
ber programs. Errors and warning message are printed out. (Possbile file formats are listed
above in Section 5.1.1.
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5.4.2 parmcal

parmcal is an interactive program to calculate the bond length and bond angle parameters,
according to the rules outlined in Ref. [98].

Please select:

1. calculate the bond length parameter: A-B

2. calculate the bond angle parameter: A-B-C

3. exit

5.4.3 residuegen

It can be painful to prepare an amino-acid-like residues. In Amber 10 and later versions, the
program residuegen has been included. It facilitates residue topology generation. residuegen
reads in an input file and applies a set of antechamber programs to generate residue topologies
in prepi format. The program can be applied to generate amino-acid-like topologies for amino
acids, nucleic acids and other polymers as well. An example is provided below and the file
format of the input file is also explained.

Usage: residuegen input_file

Example:

residuegen ala.input

This command reads in ala.input and generate residue topology for alanine. The file format of
ala.input is explained below.

#INPUT_FILE: structure file in ac format, generated from a Gaussian output

INPUT_FILE ala.ac

#CONF_NUM: Number of conformations utilized

CONF_NUM 2

#ESP_FILE: esp file generated from gaussian output with ’espgen’

# for multiple conformations, cat all CONF_NUM esp files onto ESP_FILE

ESP_FILE ala.esp

#SEP_BOND: bonds that separate residue and caps, input in a format of

# (Atom_Name1 Atom_Name2), where Atom_Name1 belongs to residue and

# Atom_Name2 belongs to a cap; must show up two times

SEP_BOND N1 C2

SEP_BOND C5 N2

#NET_CHARGE: net charge of the residue

NET_CHARGE 0

#ATOM_CHARGE: predefined atom charge, input in a format of

# (Atom_Name Partial_Charge); can show up multiple times.

ATOM_CHARGE N1 -0.4175

ATOM_CHARGE H4 0.2719

ATOM_CHARGE C5 0.5973

ATOM_CHARGE O2 -0.5679

#PREP_FILE: prep file name
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PREP_FILE: ala.prep

#RESIDUE_FILE_NAME: residue file name in PREP_FILE

RESIDUE_FILE_NAME: ala.res

#RESIDUE_SYMBOL: residue symbol in PREP_FILE

RESIDUE_SYMBOL: ALA

5.5 New Development of Antechamber And GAFF

One important of functions of Antechamber is to assign AM1-BCC charges for organic
molecules. Openeye’s Quacpak module can also assign AM1-BCC charges. The careful users
may find that the charges assigned by the two programs are only marginally different (the largest
charge difference is smaller than 0.05) in most cases. The difference is probably rooted from
the difference of AM1 Mulliken charges. In unusual cases, large discrepancy occurs (the largest
charge difference is larger than 0.1). Recently, we have systematically studied 585 marketed
drugs using the both packages and the result is presented below. As the general AMBER force
field is tightly related to the antechamber package, the new development of the GAFF is also
summarized here.

5.5.1 Extensive Test of AM1-BCC Charges

Three methods, namely Antechamber/Mopac (Mulliken charges are calculated by Mopac),
Antechamber/Sqm (Mulliken charges are calculated by sqm) and Openeye’s Quacpak have been
applied to assign the AM1-BCC charges for the 585 drug molecules. The first two methods
give essentially similar charges for all the cases and the average charge difference is 0.005.
The Quacpak, on the other hand, has an average charge difference of 0.015 to Antecham-
ber/Mopac. When compared to RESP charges, the average charge differences are 0.102 and
0.105 for Antechamber/Mopac and Quacpak, respectively. In AM1-BCC, five BCC parame-
ters were adjusted in order to improve agreement with the experimental free energies of sol-
vation. Adjustments were made to bonds of amine nitrogen-H and amine nitrogen-tetravalent
carbon.[101, 102] As a consequence, the average largest charge differences between AM1-BCC
and RESP charges are very big: 0.441 for Antechamber/Mopac and 0.452 for Quacpak.

There are 71 molecules (12%) having the largest charge difference larger than 0.1 between
Antechamber/Mopac and Quacpak. In comparison with the RESP charges, the average charge
differences of the 71 molecules are 0.107 and 0.129 for Antechamber/Mopac and Quacpack,
respectively. As to the average largest charge differences, the corresponding values are 0.444
and 0.522. It is clearly that Antechamber/Mopac-bcc has a similar average charge differences to
RESP for the whole data set and the 71-molecule subset (0.102 vs 0.107), in contrast, Quacpac
has a much larger average charge difference for the 71 molecules (0.129) than that of the whole
data set (0.105). The similar trend is observed for the average largest charge difference as well
(0.441 vs 0.444 for Antechamber/Mopac and 0.452 vs 0.522 for Quacpac).

5.5.2 New Development of GAFF

We have modified some parameters according to users’ feedback. We would like to thank
users who provide us nice feedback/suggestion, especially David Mobley and Gabriel Rocklin.
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This version (GAFF1.4) is a meta-version between gaff1.0 and gaff2.0 and the following is the
major changes:

1. All the sp2 carbon in a AR2 ring (such as pyrrole, furan, pyrazole) are either ’cc’ or ’cd’
atom types (not ’c2’ any more). This is suggested by Gabriel Rocklin from UCSF. This
modification improves the planarity of multiple-ring systems

2. New van der Waals parameters have been developed for ’br’ and ’i’ atom types. The
current parameters can well reproduce the experimental density data of CH3Br (1.6755,
20 degree) and CH3I (2.2789, 20 degree): 1.642 for CH3Br and 2.25 for CH3I, in contrast,
the old parameters give 1.31 and 1.84, respectively.[107]

3. New van der Waals parameters have been suggested by David Mobley for ’c1’, ’cg’ and
’ch’ atom types.[108]

4. We have performed B3LYP/6-31G* optimization for 15 thousands marketed or experi-
mental drugs/bio-actives. Reliable bond length and bond angle equilibrium parameters
were obtained by statistics: each bond length parameter must show up at least five times
and has a rmsd smaller than 0.02 Å; each bond angle parameter must show up at least five
times and has a rmsd smaller than 2.5 degrees. Those new parameters not showing up in
old gaff were directly added into gaff 1.4; and some low-quality gaff parameters which
show up less than five times or have large rmsd values (>0.02 Å for bond length and
>5 degrees for bond angles) were replaced with those newly generated. In summary, 59
low quality bond stretching parameters were replaced and 56 new parameters were intro-
duced; 437 low quality bond bending parameters were replaced and 618 new parameters
were introduced.

5.6 Metal Center Parameter Builder (MCPB)

5.6.1 Introduction

The Metal Center Parameter Builder (MCPB) program provides a means to rapidly build,
prototype, and validate MM models of metalloproteins. It uses the bonded plus electrostatics
model to expand existing pairwise additive force fields. It was developed by Martin Peters at
the University of Florida in the lab of Kenneth Merz Jr. MCPB is described fully Ref. [100].

Why is it desirable to model metalloprotein systems using MM models and more precisely
within the bonded plus electrostatic model? Structure/function and dynamics questions that are
not currently attainable using QM or QM/MM based methods due to unavailability of parame-
ters or system size can be answered. Force fields have been developed for zinc, copper, nickel,
iron and platinum containing systems using the bonded plus electrostatics model.

Incorporating metals into protein force fields can seem a daunting task due to the plethora
of QM Hamiltonians, basis sets and charge models to choose from which the parameters are
created. It was also generally carried out by hand without extensive validation for specific
metalloproteins. MCPB was developed to remove the latter and create a framework in which
to test various methods, basis sets and charges models in the creation of metalloprotein force
fields.
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The MCPB program was built using the MTK++ Application Program Interface (API). For
more information regarding MTK++ and MCPB please see the MTK++ manual: $AMBER-
HOME/doc/MTKpp.pdf A more extensive description of metalloproteins and the theory within
MCPB can be found in sections 10 to 12 of the MTK++ manual.

5.6.2 Running MCPB

MCPB takes two command-line arguments. One is the control file, which is required and
chosen with the -i flag. The other is the log file, which is optional and chosen with the -l flag.
A full listing of all the commands used by MCPB can be obtained with the -f flag.

MCPB: Semi-automated tool for metalloprotein parametrization

usage: MCPB [flags] [options]

options:

-i script file

-l log file

flags:

-h help

-f function list

Full details of a metalloprotein parametrization procedure using MCPB can be found in section
15.10 of the user manual. This example describes the active site parametrization of a di-zinc
system (PDB ID: 1AMP). The parametrization is broken down into stages since several MCPB
operations rely on the output of external packages such as Gaussian and RESP. Most of the
steps are carried out using MCPB but some require user input and instruction.
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6 amberlite: Some AmberTools-Based
Utilities

Romain M. Wolf
Novartis Institutes for Biomedical Research, NIBR, Basle, Switzerland

AMBER "Lite" is a small set of utilities making use of the free AMBER Tools package (cur-
rently for version 1.4 or higher). The main focus is on the preparation of files for MM(GB)(PB)/SA-
type simulations. The utilities can be used as delivered or they can serve as a starting point for
further development. Examples are included to illustrate the concepts or to test the correct
functioning of the installation. The text also contains a (very) condensed introduction to some
AMBER file preparation concepts.

The AMBER Lite package (© Novartis Institutes for Biomedical Research, Basel, Switzer-
land) is free software under the GNU General Public License (GPL), as are the parts on which
the package builds, namely the Amber tools ptraj, leap, antechamber, sqm, pbsa and the NAB
package.

Users are free to modify the tools according to their needs. Strange or obviously wrong be-
havior should be communicated to the author (at romain.wolf@novartis.com or romain.wolf@gmail.com).
Feedback (positive or negative) is welcome although I cannot guarantee continuous support. I
will do my best to answer questions, correct bugs, or add features if they seem useful and if my
time allows it.

6.1 Introduction

For many standard simulation tasks, only a limited number of tools within the AMBER
package are required. Furthermore, the full set of routines can be confusing for new or casual
users. The constantly enhanced and updated AMBER tutorials certainly offer an excellent entry
point. The set of tools described hereafter should present another initiation, based entirely on
the freely available portions of AMBER code. The emphasis in the AMBER Lite tools is on the
MM(GB)(PB)/SA approach to compute (relative) free energies of interaction between ligands
and receptors, a major task in structure-based drug discovery. The tools are simple enough to
be understood, modified, and enhanced.

One section (Appendix 6.8.1) is dedicated to the preparation of PDB files prior to use them
with AMBER. In my own experience, this is a critical part in setting up simulations. Scan-
ning through the AMBER Mail Reflector, I find many reported problems and questions which
originate from "bad" or badly prepared PDB starting files.

Another section (Appendix 6.9) gives a brief introduction on AMBER "masks" and NAB
"atom expressions", used to select parts of molecular structures. Users should also read in detail
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the corresponding information in original AMBER documentations. Wrong partial selections
are tricky because they may often go unnoticed, i.e., everything seems to run OK but the results
are totally flawed.

6.1.1 Installation

Python (version 2.4 or newer) and a C-compiler for generating the binary executables of
NAB-based applications must be available.

The AMBER Tools package (version 1.3 or better 1.4) must be installed and the envi-
ronment variable pointing to its main directory ($AMBERHOME) must be set correctly. The
$AMBERHOME/bin subdirectory must be in the executables path ($PATH). If the AMBER Tools
installation passes the tests that are delivered with that package, the utilities described in this
document should also work.

The Python scripts do not require special packages or modules other than those included in
(most?) standard Python distributions. They have only been tested on UNIX-like systems like
Linux and Mac OSX, but not under MS-Windows.

The AMBER Lite distribution has the following file structure:

amberlite/ is the root folder;

../python contains the Python scripts;

../src contains the NAB source files (extension ".nab");

../bin should eventually contain all binary NAB applications and also soft links to the
Python scripts in the ../python subfolder so that only this single folder has to be
added to the global $PATH variable;

../doc is for documentation and contains this manual and the GPL license text;

../examples and its subfolders contain the files used as examples in Appendix C of this
manual.

The simplest first-time installation procedure is to expand the file amberlite.tgz, go to the gen-
erated amberlite directory, and execute the install.py script. The script will check that the
AMBERHOME environment variable is set and that all required AMBER Tools executables
are found in the path. It will then create a ’bin’ subdirectory, compile the NAB sources, put the
resulting binaries into the bin subdirectory and also make symbolic links to the python scripts
in the same directory.

You must finally add the resulting bin directory to your PATH environment variable.

6.1.2 Python Scripts

The following Python scripts are currently included:

pytleap prepares AMBER parameter-topology (PRM) files, AMBER coordinates (CRD) files
and corresponding PDB files for proteins, organic ligands (or peptides), and receptor/li-
gand complexes, using as input PDB files (for proteins and peptides) or SDF files for
organic molecules. It is basically a wrapper around tleap and antechamber.
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pymdpbsa is a full analysis tool for MD(GB,PB)/SA computations, given an MD trajectory
(or a single PDB file) of a receptor-ligand complex and the individual PRM files for the
complex, the receptor, and the ligand.

The Python scripts take command line options many of which assume default values. If the
default values apply, these options can be omitted. Most options are of the form --option

value where value can be a filename, an integer, a float, or a special string (to be included in
quotes). Typing just the executable name or followed by --help lists the options and exits.

Common errors, like e.g. missing files, are captured by the scripts which also always check
that the AMBERHOME environment variable is set and that all required binary executables are
available and in the execution path.

The pymdpbsa script creates a temporary subdirectory of the current working directory.
Computations are executed in this temporary folder and all output is stored there also. When
finished, the resulting data are copied back to the starting directory. By default, the temporary
directory is not removed. The user can explicitly request its automatic removal via the --clean
option. Alternatively, it can be removed manually later. Temporary directories have names
which make them easy to identify and all have the extension .tmpdir (see details later).

6.1.3 NAB Applications

The NAB applications are written in NAB language, which is "C" with numerous additional
functions specific to computational chemistry problems. NAB works as a pre-compiler, gen-
erating C-code from the NAB source which is then processed through the default C-compiler.
NAB functionality has much in common with the "big" AMBER modules, but there are also
some notable differences:

The NAB applications cannot handle explicit solvent and periodic boundaries but work only
with implicit solvation models. The possibilities to use restraints on atoms are also more limited
and use a notation different from the AMBER ’mask’ scheme (explained later). Otherwise, they
deliver results which are fully compatible with original AMBER simulations under identical
conditions.

The NAB applications presented here use the same parameter-topology files as AMBER
modules like, e.g., sander, but they read coordinates (initial atom positions) from PDB files and
not from AMBER-specific coordinate (CRD) files. The only output format for MD trajectories
is the "binpos" format which can be read by various other packages or can also be converted to
other formats via the ptraj utility included in AMBER Tools.

The following NAB-based tools are currently included:

ffgbsa returns the AMBER energy (MM + GB polar solvation + "non-polar" solvent-accessible
surface term) of a system, given its PRM and PDB file.

minab is a crude conjugate-gradient minimizer using PRM and PDB files as input and gener-
ating a PDB file with the refined coordinates.

mdnab is a molecular dynamics routine with a minimum of user-specified options which takes
PRM and PDB files as input and writes out the MD trajectory in the "binpos" format.
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These NAB applications are single-line commands taking a number of arguments (which makes
it easy to incorporate them into other scripts). In contrast to the Python scripts, they do not use
the (more) convenient --option scheme, but require the command line arguments in the
correct order. Entering just the name of the application without arguments lists a help which
shows and explains the arguments to be used.

There is no extensive exception handling in the NAB applications. User errors are punished
by simple crashes of the applications!

Users who want to modify NAB applications must edit the source, re-compile it into a NAB
binary (using the command nab source.nab -o binary_name), and then copy the binary
into a directory of their executable path.

6.2 Coordinates and Parameter-Topology Files

Simulations with AMBER modules require defined data and control files. The error-free
generation of these files is often a discouraging hurdle for beginners or users who do not use
AMBER regularly.

At least two data file types are required: a coordinates (CRD) file for AMBER modules (or
PDB files for NAB applications) with atom positions and a parameter-topology (PRM) file
containing all force field data required for the system. The two file types must have the same
number of atoms and all atoms in the same sequential order. Not respecting this fundamental
rule leads to severe flaws. The separation of coordinates and topology has the advantage that the
same topology file can be used for various different starting coordinates. However, any change
in the coordinate file that alters also the number of atoms or even their sequential order is not
allowed. This is a frequent source of error and re-using PRM files created some time in the past
under not well documented conditions is strongly discouraged.

The current tool delivered with AMBER to prepare coordinate (CRD or PDB) and parameter-
topology (PRM) files is called leap (tleap for the terminal variant and xleap for the graphics
variant).

Since leap is not particularly user-friendly, a Python script pytleap (see section 6.3) has been
prepared which runs the terminal version of leap in the background and does not require a direct
interaction with leap itself, at least for simple tasks like preparing a protein or a receptor-ligand
complex for simulations with implicit solvent.

For small organic molecules, pytleap first invokes antechamber [109] before passing them
through leap, allowing the usage of the gaff force field[98] for organics without directly inter-
fering with antechamber itself.

The Appendix 6.8 (page 178) gives a short outline of the most important preparation steps
required on the raw data (mostly PDB files) before using any AMBER-related tools. Those
recipes may not be the most elegant ones but they work in most cases and help avoid common
problems.
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6.3 pytleap: Creating Coordinates and Parameter-
Topology Files

pytleap calls the tleap and/or antechamber utilities in the background. It is invoked by a
single command line with a set of options and eventually creates the files required for an AM-
BER simulation, starting from a PDB file (protein) and/or an SDF file (ligand). The script is
especially useful to set up receptor-ligand complexes for simulations using MM(GB)(PB)/SA
and related techniques, but can also be used for isolated proteins or ligands.

Proteins (or peptides) are read as PDB files in pytleap. Other formats are not supported. Be
sure to have a "clean" PDB file as described in Appendix 6.8.

The SDF format for small organic ligands is chosen for reasons of compatibility. SDF files
can be written by most standard molecular modeling packages and contain the information
required by the antechamber package to generate the files for AMBER simulations. The format
is simple and includes the connectivity with bond orders. Note that the SDF file of the ligand
must have all hydrogens included. Also, the formal charge on the ligand (if any) is not read
from the SDF file but must be explicitly specified (see later). For charge calculations, we use
the sqm semi-empirical QM routine from AMBER Tools instead of MOPAC. After some tests,
we have opted for less severe gradient requests then those used by default in antechamber to
speed up the partial charges generation for ligands: grms_tol is set to 0.05. We include the
peptide bond correction by setting peptide_corr=1.

To generate AMBER files for a protein-ligand complex, prepare the protein in PDB and the
low-molecular-weight ligand in SDF, i.e., save both components in distinct files (and make sure
that the protein PDB file does not contain the ligand anymore). In the case of protein-peptide
(or protein-protein) complexes, you must also separate the two entities, in this case into distinct
PDB files, since individual parameter-topology files have to be generated for the complex and
for each component separately if MM(GB)(PB)SA computations are envisaged later.

Obviously, the geometry of the entire complex must be reflected in the coordinates of
the respective files. pytleap will only combine the protein and the ligand into a single structure,
assuming that the ligand fits the target in a desired way. It will of course not "dock"!

6.3.1 Running pytleap

Note: Since pytleap and the modules called by it read or write temporary files with defined
names, it is wise to run one single instance of pytleap in a directory. Not respecting this rule
will lead to confusion and errors!

Typing pytleap without any arguments (or followed by --help) results in the following
output:� �
--------------------------------------------

pytleap version 1.2 (December 2010)

--------------------------------------------

Usage: pytleap [options]

Options:
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-h, --help show this help message and exit

--prot=FILE protein PDB file (no default)

--pep=FILE peptide PDB file (no default)

--lig=FILE ligand MDL (SDF) file (no default)

--cplx=FILE name for complex files (no default)

--ppi=FILE name for protein-peptide complex files (no default)

--chrg=INTEGER formal charge on ligand (default: 0)

--rad=STRING radius type for GB (default: mbondi)

--disul=FILE file with S-S definitions in protein (no default)

--sspep=FILE file with S-S definitions in peptide (no default)

--pfrc=STRING protein (peptide) force field (default: ff03.r1)

--lfrc=STRING ligand force field (default: gaff)

--ctrl=FILE leap command file name (default: leap.cmd)� �
The command line options are presented here below:

--prot filename uses the PDB file filename as the protein structure. The PDB file must be
"clean", according to the rules outlined in the Appendix 6.8.1. The leap module adds
hydrogens with correct names (and also missing heavy atoms, if any), attributes the cor-
rect partial charges and AMBER atom types,1 and eventually writes out the files for the
protein as mentioned in section 6.3.2.

--pep filename reads a (clean) PDB file filename as the peptide structure. There is no dif-
ference to the --prot option except that a second (separate) peptide (or protein) can be
read in and combined later with the structure read via --prot to a protein-peptide (or
protein-protein) complex (see --ppi below).

--lig filename uses the SDF file filename as the ligand structure. The ligand file must in-
clude all hydrogens. The structure is processed through antechamber that generates
various files required by tleap to build the PRM file for the ligand. Inside antechamber,
the ligand becomes a molecule (residue) with the name "LIG". This name is then taken
over by leap and appears as such in the resulting PRM and PDB files. The name "LIG"
is the default name for a ligand in the pymdpbsa (section 6.7). See also option --chrg

when using the --lig option. Note: We assume here that a ligand is a single-residue
low-molecular-weight organic molecule.

--cplx filename (no extension!) will generate the AMBER files PRM, CRD and a PDB file
of the complex of the protein and the ligand read in with the --prot and --lig options.
When generating AMBER files for the complex, the files for the individual protein and
ligand are always generated also. They are useful when running MM(GB)(PB)/SA com-
putations later (section 6.7). This option only makes sense when both the --prot and
--lig options are also chosen.

--ppi filename works the same as --cplx, except that it generates a complex between two
units supposed to be clean proteins (peptides), not requiring any intervention of an-
techamber. Furthermore, --cplx and --ppi cannot be used in the same run, i.e., we

1Charges and atom types will correspond the chosen force field parameter set and the libraries going with them.
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can only deal with either a protein/organic-ligand complex or a protein/protein (or pro-
tein/peptide) complex.

--chrg integer must be used if an organic ligand read from an SDF file is formally charged
(even if the charge is also given in the SDF file). For neutral ligands, this option can be
omitted. For charged ligands however, it is required! Enter it as an integer reflecting the
correct total charge of the ligand. The computation of partial charges via the AM1-BCC
method[101, 102] will fail if the formal charge on the ligand does not make sense with
the chemical structure including all hydrogens and pytleap will quit.

--rad radius_type is used to choose the atomic radii for Generalized-Born. The default
radius type is the "modified Bondi" option to be used with the GB option gb set to 1. For
gb = 2 or 5, the original AMBER documentation suggests the radius type mbondi2. For
gb = 7 or 8, use the radius type bondi.

--disul and --sspep filename are used to generate disulfide bonds. Disulfide bridges must
be prepared in the original PDB file by renaming the involved cysteine residues from
CYS to CYX (see 6.8.2.2). The filename in this option must relate to a file that contains
pairwise integer numbers of cysteine residue names to be connected (one pair per line!).
These numbers must correspond to the ones in the original PDB file!2 See the example
in section 6.10.1. We consider that this explicit formation of disulfide bonds is to be
preferred over "automatic" S-S bond formation, be it by using Sγ distances or by relying
on CONECT records in PDB files. NOTE: --disul applies to the file read in via --prot

while --sspep is applied to the molecule read in via –pep. If both proteins (peptides)
have disulfide bonds, you must use separate definition files for the respective S-S links!

--sspep: see above.

--pfrc filename specifies the force field parameter set for the protein. Since AMBER can use
different force fields, this option allows to choose among them. The selection actually
does not call the parameter file itself but a leap command file that initializes it. These
special leap files all have a name leaprc.xxxx and are retrieved when the AMBERHOME

environment variable is set correctly. You must only specify the xxxx part of the name!
Thus, ff99 selects the parm99 parameter set, while the default ff03.r1 selects the latest
parm03 force field with the correct charges for N- and C-terminal residues also. Make
sure to have this file (with the full name leaprc.ff03.r1 included in the directory where all
default leap command files are kept.3

--lfrc filename selects the force field for the ligand. At this point, the default gaff force field
is the only reasonable choice in most cases and you can omit this (default) option.

--ctrl filename can be used to change the default name of the leap command file generated
by pytleap (default leap.cmd). In general, this is not necessary, except if you would like

2In ’weird’ PDB files where insertions and deletions get special names, trying to keep a ’standard’ numbering of
residues for the main protein of a family, much can go wrong. In these cases, it is best to renumber the residues
sequentially in the PDB file before referring to residue numbers.

3The full path to this place is $AMBERHOME/dat/leap/cmd.
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to keep this particular file and protect it from being overwritten by the default name the
next time you use pytleap in the same directory.

NOTE: This version of pytleap does not offer the possibility to add solvent and counter-ions.
It would be straightforward to add these options to the script if you are familiar with leap.
Alternatively, you could use the leap.cmd (or alike) created by pytleap, edit it with a standard
editor to add specific leap commands, and then resource it through tleap (e.g., with tleap -f

leap.cmd).

6.3.2 Output from pytleap

Output from pytleap varies with the chosen command line options (see 6.3.1). Coordinate
(CRD) files, parameter-topology (PRM) files and a corresponding PDB file are always gener-
ated. Hydrogen names in the output PDB files are "wrapped", making these files readable also
by elder software packages which require this format. Note that the actual atom names in the
PRM file are unwrapped. This has no consequence on computations. However, special residue
names like HIE, HID, HIP, CYX, etc., are kept and may lead to flawed representations of the
PDB files in software packages which do not recognize these residue names. The ambpdb rou-
tine included with AMBER Tools can be used to regenerate "standard" residue names if you
need them.

Files generated by pytleap have a ’.leap.’ string in their name to identify them as "created
by leap". You should always use the corresponding *.leap.* files (or copies of them) for
simulations! This guarantees that the CRD, PDB, and PRM files are compatible, having the
same number and sequence of atoms.

In addition, a file leap.cmd is left over. This is the file that was generated by pytleap and run
through leap. The file leap.out is the output from leap, with the messages that would have
been generated by running leap interactively. Finally, the leap.log file is the standard log from
leap.

A special SYBYL MOL2 file is created when running pytleap on a ligand (i.e., a low-
molecular-weight organic compound which is processed through antechamber). This file has
the format of a generic MOL2 file, apart from the fact that atom types are not SYBYL but gaff
atom types. The name of this file is filename.ac.mol2, with .ac. marking it as a file gener-
ated by antechamber.4 The partial charges are those from the AM1-BCC method.[101, 102]

Some additional files may be left over when antechamber is invoked. One important file
is the *.leap.frcmod file containing additional parameters which are not in the original gaff
parameter file. They are generated based on equivalences, "guessing", or empirical rules de-
scribed the gaff paper.[98] The frcmod file can also be used as a quality check for the ligand
parameters. Large frcmod files with many "guessed" parameters (especially for torsion angles)
should be considered carefully.

Finally, the input and output files of the semi-empirical tool sqm are left. The ouput file
(sqm.out) might be useful for debugging if the partial charges seem totally inadequate despite
the correct usage of the --chrg option (if required).

4Opening this MOL2 file in a standard software that can read MOL2 files may lead to strange results because the gaff
atom types do not reflect chemical elements as standard SYBYL MOL2 files with TRIPOS force field atom types.
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6.3.3 Error Checking

If you have experience with the leap application, look at the leap.cmd file that was created via
pytleap. All the options that you have chosen should be represented as correct leap command
lines. Furthermore, the leap.output and leap.log files should not show any errors, at best some
warnings. If in doubt that the parameter-topology files have been correctly generated, look at
these warnings and decide if they are benign. Eventually, the NAB application ffgbsa described
below (section 6.4) can be used to run a single AMBER energy evaluation on the system. If the
results returned by ffgbsa look very strange for a supposedly reasonable structure, you probably
have a serious issue with your set of CRD, PDB, and PRM files.

6.4 Energy Checking Tool: ffgbsa

The NAB routine ffgbsa is an energy function called by the pymdpbsa application presented
later (section 6.7). It can also be used as a standalone routine to check the AMBER energy of a
molecular system and to test the correct working of a PDB/PRM file combination. It is
invoked as:

ffgbsa pdb prm gbflag saflag

The order in the command line input is compulsory! pdb is the PDB file of the system and
prm the related PRM file. gbflag is a flag to switch on one of the Generalized-Born (GB)
options in AMBER and can be 1, 2, or 5.5 Other values switch off GB and a simple distance-
dielectric function ε = ri j is used.

When saflag = 1, the solvent-accessible surface area (SASA) is also computed (via the
molsurf routine included with NAB) and returned in Å2, together with a SASA energy term
which is simply SASA ∗ 0.0072 in this case. The default cutoff for non-bonded interactions is
100 Å , i.e., virtually no cutoff for most systems. An example for the usage of ffgbsa is given
in section 6.10.2.

Remarks regarding the usage of molsurf :
The correct way to evaluate the SASA is to augment the radii of all atoms by the probe radius
(usually 1.4 Å) and then run molsurf with a probe of radius of zero. This is also the implemen-
tation in ffgbsa here. The atom radii values are given in the following table:

Note: In some rare cases molsurf fails to give back a valid surface area. Scripts calling
ffgbsa must be prepared to capture this. The pymdpbsa procedure described later catches such
instances and excludes value sets in which the error occurs from the statistical analysis (cf. end
of section 6.7.5.1).

6.5 Energy Minimizer: minab

The main purpose of this (very) simple minimizer is to refine a system prior to MD runs,
mainly to remove potential hotspots which might destabilize the MD initiation. Using it for
other purposes is at the discretion of the user.

5These values correspond to the "igb=" options in AMBER commands and stand for different implementations of the
GB scheme.
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Table 6.1: Atom Radii Used in molsurf
atom radius (Å) atom radius (Å)

C 1.70 H 1.20
N 1.55 O 1.50
S 1.80 P 1.80
F 1.47 Cl 1.75
Br 1.85 I 1.98

any other 1.50

The NAB routine minab uses the conjugate gradient minimizer of NAB to refine the energy
of a system. To circumvent cutoff problems,6 the cutoff for non-bonded interactions (vdW and
Coulomb) is set to 100 Å and that for GB is fixed to 15 Å. The non-bonded list is not updated
at all. The default for the gradient rms is set to 0.1.

For large systems, this is far from efficient. However, as stated above, the main purpose
of this routine is to get rid of hotspots prior to running MD and in general, a few hundred
iterations are sufficient to guarantee a decent structure for MD, especially when the MD starts
with a heat-up phase as used in the mdnab application described in section 6.6.

The minab routine is invoked by:

minab pdb prm pdbout gbflag niter [’restraints’ resforce]

Just typing minab without arguments gives a help screen. The explanation for the arguments
follows:

• pdb and prm are the PDB and corresponding PRM file of the system;

• pdbout becomes the PDB file of the refined system;

• gbflag is the GB flag which can be 1, 2, 5, 7, or 8 while any other value switches to
distance-dependent dielectrics (as in section 6.4);

• niter is the maximum number of iterations;

and for the optional arguments:

• restraints specifies residues or atoms to be tethered in their motion (NAB atom ex-
pression between quotes);

• resforce is a float specifying the restraint potential in kcal·mol−1·Å−2.

6The current cutoff scheme for non-bonded interactions in AMBER modules and NAB does not use a switching
function to smooth the cutoff. This can lead to problems every time the non-bonded list is updated. Thus a fairly
short cutoff distance with frequent list updates usually ends in line search problems before the required number of
iterations or the requested rms of the components of the gradient is reached.
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The restraints entry must be an atom expression according to the NAB rules outlined in
6.9.2. If for example all Cα atoms should be restrained, this entry would be ’::CA’. If the
restraint mask is given, the restraint potential resforce must also be specified.

Since minab is a simple command-line tool, it can be called by other routines or scripts where
a rough energy refinement is desired. The output (by default to the screen) can be captured for
later analysis into a file via a simple redirect (">").

6.6 Molecular Dynamics "Lite": mdnab

The NAB application mdnab has been written for simple molecular dynamics with a min-
imum number of settings required by the user. Its main purpose is to run moderately short
trajectories to be used e.g. for MM(GB)(PB)/SA applications.

Most settings are hardcoded and can only be changed by editing and re-compiling the source
mdnab.nab.

The following (non-mutable) defaults are used:
The cutoff for non-bonded interactions and GB is always 12 Å. An update of the nonbonded

list occurs every 25 steps. The integration step is 2 femtoseconds (using "rattle" to allow this
fairly large step). The temperature is controlled via Langevin dynamics with a friction factor
("gamma_ln") of 2 for the production phase. The production temperature is fixed at 300 K. And
mdnab always saves one frame per picosecond, independent of the length of the trajectory.

A heating and equilibration phase is automatically invoked prior to the actual production
trajectory recording: 100 steps from 50 to 100 K, 300 steps from 100 to 150 K, 600 steps from
150 to 200 K, 1000 steps from 200 to 250 K, 3000 steps from 250 to 300 K, and an additional
10000 steps at 300 K.7

mdnab is started by

mdnab pdb prm traj gbflag picosecs [’restraints’ resforce]

The command mdnab without arguments lists the possible arguments, the sequence of which
is compulsory. The command line arguments are similar to those in minab:

• pdb and prm are the PDB and corresponding PRM file of the system;

• traj is the name for the production phase trajectory which will be saved in the binary
"binpos" format (the extension .binpos is automatically attached);8

• gbflag is the GB flag which can be 1, 2, 5, 7, or 8 (as in section 6.4), or anything else to
switch off GB and use a distance-dependent dielectric function ε = ri j;

• picosecs is the total number of picoseconds to run the production phase;

with the optional arguments:
7Since these last 10000 steps at 300 K are run under identical conditions as subsequent the production phase, the user

can simply extend the "equilibration" by discarding all frames from the production phase up to the point where the
trajectory can be considered "stable" (noting that "stable" or "steady-state" are not well-defined terms anyway).

8This format can be read by various software packages like VMD, but can also be translated into other formats using
the AMBER utility ptraj.
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• restraints specifies atoms to be tethered in their motion (given as a NAB atom expres-
sion between quotes, see section 6.9.2);

• resforce is the restraint potential in kcal·mol−1·Å−2 which has to be given if a restraint
expression is specified.

While the trajectory is saved to the specified file name (the traj command line argument), the
full output goes to the screen. To capture the output for later inspection, use the UNIX "redirect"
(>) to a file and end the command line with a & (making mdnab a background job).

Note that only the production phase of the trajectory is recorded into the traj file. The
heat-up phases are only documented in the general output (to the screen or to a text file, if
redirected).

6.7 MM(GB)(PB)/SA Analysis Tool: pymdpbsa

6.7.1 Brief Overview on MM(GB)(PB)/SA Concepts

The original MM(GB)(PB)/SA procedure was developed in the late 1990’s and the user
should refer to some original papers on this subject.[110–113] The goal was to develop a rel-
atively fast molecular-mechanics (-dynamics) based method to evaluate free energies of inter-
actions. MM stands for Molecular Mechanics, PB for Poisson-Boltzmann, and SA for Surface
Area. You may also wish to refer to reviews summarizing many of the applications of this
model,[112, 114] as well as to papers describing some of its applications.[115–119]

The free energy for each species (ligand, receptor, or complex) is decomposed into a gas-
phase energy ("enthalpy"), a solvation free energy and an entropy term, as shown in equation
6.1.

G = Egas +Gsolv−T ·S (6.1)
= Ebat +EvdW +Ecoul +Gsolv,polar +Gsolv,nonpolar−T ·S (6.2)

where Ebat is the sum of bond, angle, and torsion terms in the force field, EvdW and Ecoul
are the van der Waals and Coulomb energy terms, Gsolv,polar is the polar contribution to the
solvation free energy and Gsolv,nonpolar is the nonpolar solvation free energy.

The sum Ebat + EvdW + Ecoul is the complete gas phase force field energy, the molecular
mechanics ("MM") part.

The polar solvation free energy Gsolv,polar can be evaluated via implicit solvation models like
Poisson-Boltzmann (PB) or Generalized-Born (GB). The nonpolar contribution Gsolv,nonpolar is
usually computed by a simple linear relation for a "cavity" term

Gsolv,nonpolar = γ ·SASA+ const. (6.3)

where SASA is the solvent-accessible surface and γ has the dimension of surface-tension.
Similarly, one could also use the volume enclosed by the SASA (SAV)

Gsolv,nonpolar = p ·SAV + const. (6.4)
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with p having the dimensions of pressure.
In a more sophisticated approach, Gsolv,nonpolar can be split into a repulsive ("cavity") and

an attractive ("dispersion") term, as described in detail in the 2007 paper of Ray Luo and
coworkers.[120]

The vibrational entropy can be evaluated, for example, via normal mode analysis. It has
become common practice in recent work to exclude the entropy terms from MM(GB)(PB)/SA
computations. This is acceptable when only relative free energies are computed to compare
similar ligands in similar receptors. Furthermore, the entropy computation is the fuzziest part
of the procedure and contributes to the largest fluctuations in the overall free energy when
evaluating it over a number of MD frames.

The free energy of interaction in the complex can then be evaluated as:

∆Gint = Gcomplex−Greceptor−Gligand (6.5)

In the early work, separate dynamics trajectories were recorded for all three species in ex-
plicit solvent. The solvent was then discarded, the free energy was evaluated according to the
procedure above for a number of frames for each species. Eventually, ∆G was calculated by

∆Gint = 〈Gcomplex〉tra j−〈Greceptor〉tra j−〈Gligand〉tra j (6.6)

where 〈Gi〉tra j is the average value for species i over all selected frames recorded during the
production phase of the MD trajectory.

In the meantime, the method has been implemented and used in many variants, all of which
have their advantages and disadvantages. The method presented hereafter is among the simplest
and cheapest in terms of CPU power. It is based on a single trajectory of the complex alone.
Each recorded frame is then split into receptor and ligand and equation 6.5 is applied to compute
the interaction energy of the frame. The final interaction energy is then the average over the ∆G
values of the selected frames. Also, the entropy is not evaluated at all.

6.7.2 Pitfalls and Error Sources

While the basic concepts are simple, there are many pitfalls. The initial idea was to compute
values for the free energy of binding close to experimentally observed ones, without further
tuning of parameters. However, since the computations of energy terms are based on force field
parameters (internal energy, van der Waals interactions, and vibrational entropy via normal-
mode analysis) and on concepts like atomic radii and partial charges (electrostatics and polar
solvation terms), discussions on the quality of parameters are inevitable.

An issue not discussed in enough detail in many papers reporting MM(GB)(PB)/SA (and
variants) is the quality of the MD trajectory. Unstable trajectories with unreasonably strong
fluctuations or important transitions (conformational changes, ligand pose variations, etc.) will
always yield questionable results. If such transitions happen, they must be checked carefully
before the results are used for MM(GB)(PB)/SA.

In the "one-trajectory" approach implemented here, there is an additional pitfall. Since both
the receptor and the ligand are only considered in the bound state, strain energy from distortions
in the complex is not evaluated. This may not be an issue for the receptor if there are no strong
induced-fit effects. For the ligand however, this can amount to a perceivable difference if the
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bound state adopts a conformation which is definitely higher than for the unbound ligand in
solution. Such "errors" may partially cancel when series of similar ligands are compared in the
same receptor. But it obviously adds to the fuzziness of the results. When in doubt, a trajectory
of the ligand alone (under identical conditions as for the complex) should be recorded to assess
the average energy of the ligand in the unbound state.

6.7.3 Some Technical Remarks on pymdpbsa

pymdpbsa uses ffgbsa (see section 6.4) or the stand-alone Poisson-Boltzmann solver pbsa
to evaluate energies. The tool ptraj is called to decompose the MD trajectory into individual
frames for the complex, the ligand, and the receptor.

Because various temporary files are generated during execution, pymdpbsa automati-
cally creates a subdirectory in which all calculations are run. This subdirectory (extension
.tmpdir) contains all temporary files and also the final results, copies of which are transferred
to the starting working directory upon completion. By default, the temporary directory is not
removed automatically.

The following files are necessary to run pymdpbsa on a receptor-ligand complex:

• a molecular dynamics trajectory file of the complex (any format that can be read by ptraj,
including Z-compressed ones and binary binpos files like those created by mdnab, see
section 6.6);

• three AMBER parameter-topology PRM files, one for the complex, one for the ligand
alone, and one for the receptor alone (as created by pytleap, see section 6.3);

6.7.4 Running pymdpbsa

Invoking pymdpbsa without any arguments (or with --help) will list all possible options.� �
---------------------------------------------------------

pymdpbsa version 0.6 (December 2010)

---------------------------------------------------------

Usage: pymdpbsa [options]

Options:

-h, --help show this help message and exit

--proj=NAME global project name

--traj=FILE MD trajectory file (default: traj.binpos)

--cprm=FILE complex prmtop file (default: com.prm)

--lprm=FILE ligand only prmtop file (default: lig.prm)

--rprm=FILE receptor only prmtop file (default: rec.prm)

--lig=STRING residue name of ligand (default: LIG)

--start=INT first MD frame to be used (default: 1)

--stop=INT last MD frame to be used (default: 1)

--step=INT use every [step] MD frame (default: 1)

--solv=INT 0 for no solvation term (eps=r)

1, 2, or 5 for GBSA

3 for PBSA
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4 for PBSA/dispersion (default: 1)

--clean clean up temporary files (default: no clean)� �
You only need to specify options that are different from the default. Thus, you can avoid

entering a lot of options by simply selecting file names like com.prm, rec.prm, and lig.prm for
the PRM files, calling the trajectory file traj.binpos, and by giving the ligand the residue name
LIG in your original structure file (the default if pytleap in section 6.3 was used).

--proj has to be followed by a the global name of the project and all output files will incor-
porate this string. The name of the temporary directory created will also start with the
project name (followed by sequence of random characters and the extension ’.tmpdir’).
When this options is omitted, the project name becomes None (not really useful for later
identification).

--traj is followed by the filename of the trajectory. As already mentioned, the trajectory file
can be any format which can be processed by the AMBER tool ptraj. If the trajectory file
name is traj.binpos, this option can be omitted.

--cprm, --lprm, --rprm are used to feed in the names for the PRM files of the complex, the
ligand, and the empty receptor. None of these PRM files is generated by pymdpbsa. They
must be specified by the user. If the pytleap utility (see section 6.3) has been used on a
complex, these three files should have been created. If you want to use default names,
rename these files to com.prm, rec.prm, and lig.prm.

--lig is used to specify the name of the ligand. This is the (up to 4 characters long) "residue"
name the ligand would have in a PDB file. If the complex has been prepared via pytleap,
the ligand name will probably be LIG (i.e., the default). Note that the ligand is supposed
to be one single residue in that case. Alternatively, the ligand can also be specified by its
residue number. Thus if the ligand is residue 281 in the PDB file of the complex, you may
specify --lig 281. This also allows to have multi-residue ligands like in protein-peptide
(protein-protein) complexes. If e.g. the ligand covers residues 134 to 156 in the overall
PDB file of the complex, you can specify --lig ’134-156’.9

--start, --stop, and --step set the first and last frame of the MD trajectory to be used for
evaluating the energy, and the step size (e.g., --step 5 means every fifth frame). By
default, these values are all 1, i.e., only the first frame is used. Thus, the free energy
of interaction for a single PDB file can be computed by specifying as ’trajectory’ (with
--traj) the name of the PDB file and neglecting the start/stop/step options.

--solv followed by an integer chooses the solvation option. The default is ’--solv 1’. For
values other than 1, 2, 3, 5, 7, and 8, the returned electrostatic energy term is evaluated
with a distant-dependent dielectric function ε = ri j with no additional polar solvation
correction. For values 1, 2, 5, 7, or 8, the corresponding GB variant (igb in AMBER)
is used with a nonpolar contribution of 0.0072 * SASA (where the solvent-accessible
surface SASA is computed via molsurf ); for solv = 3, GB is replaced by PB and the

9Using quotes to include more complex atom masks is a safe way to circumvent problems with the shell interpretation.
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non-polar solvation energy term is 0.005 * SASA + 0.86; for solv = 4, the polar solva-
tion free energy part is computed with PB, the nonpolar portion is evaluated by a "cavity"
term and a "dispersion term";[120] the detailed settings for this approach are identical to
those suggested in the original pbsa documentation; note that the ’--solv 4’ option is
experimental at this stage and not widely tested, ...use with care.

--clean removes the temporary directory, including all PDB or CRD files for the various MD
frames. By default, these files are kept. You might choose to keep the files for debugging
purposes in initial runs or for some graphics of overlays (since proteins are automatically
RMS-fitted to the Cα during the ptraj extraction). In any case, the relevant data are saved
to the working directory, even when the --clean option is used.

6.7.5 Details on Internal Workings and Output of pymdpbsa

The internal workings and the output of pymdpbsa vary depending on the --solv options.
In all cases, the ptraj tool is called to split the trajectory into individual frames. Since each
interaction energy evaluation requires three files (complex, receptor, ligand), the splitting of a
trajectory with N frames results in 3·N files.10

6.7.5.1 Distance-Dependent Dielectrics or Generalized Born

For --solv = 0, 1, 2,5,7, or 8, the ffgbsa routine is called to evaluate energy terms. Note:
options 7 and 8 are new ones (so use with care) and require the bondi radii (set with the
–rad option in pytleap). Since ffgbsa requires PDB files as coordinate input, the trajectory
is split into individual PDB files. These files are named according to the project, the part of
the structure (C for whole complex, R for receptor alone, L for ligand alone), and the frame
number.

Thus a file TEST.R.pdb.45 would be the PDB file of the empty receptor corresponding to
frame 45 of the trajectory of the project named TEST.

Each run creates four tables with energy values returned by ffgbsa: one for the ligand, one
for the receptor, one for the complex, and one for the interaction energies. The tables inherit
the name of the project, followed by L, or R, or C, or D, (ligand, receptor, complex, and energy
difference) and the extension ".nrg". These tables are simple text files and can be used as
input for plotting routines, e.g., to check possible drifts or strong fluctuations. An excerpt of a
*.D.nrg output is shown next:� �
10 -56.84 0.00 -55.30 -61.67 67.98 -7.85

20 -58.67 -0.00 -52.84 -68.51 70.51 -7.83

...

...

90 -57.21 0.00 -56.83 -52.23 59.57 -7.72

100 -59.20 0.00 -57.10 -41.51 47.27 -7.86� �
10The splitting into ligand and receptor is performed by separate ptraj calls. Depending on the part to be written

out, the ptraj command "strip" followed by an AMBER mask is used to remove the rest of the structure. Thus
for example, if the ligand is a residue called LIG, the ligand alone is obtained with the strip mask "’:*&!:LIG’"
meaning "strip off all residues but not the residue named LIG".
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The first column is the frame number, followed by the total energy, the internal force field
term (stretch, bend, and torsion terms), the van der Waals term, the Coulomb term, the Generalized-
Born term, and the solvent-accessible surface term. Note that the internal force field term must
be zero (within the limits of precision) in the *.D.nrg tables because we use a single trajectory
and do not account for distortions in the receptor or the ligand. The corresponding columns in
the respective C, R, and L tables will not be zero. In the special case --solv 0, the GB column
has also zero values only.

The final evaluation summary is stored in a file with the project name and the extension
".sum". The summary shows averages and corresponding standard deviations and mean errors
for all energy terms. All values are given in kcal·mol−1. The header lines show additional
information useful for later documentation. An example is shown below:� �
=======================================================================

Summary Statistics for Project SOLV5

Frames : 10 to 100 (every 10)

Solvation : GB (--solv=5)

Trajectory File : traj.binpos

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

=======================================================================

-----Ligand Energies---------------------------------------------------

Etot = -169.82 ( 3.62, 1.14) Ebat = 64.78 ( 4.69, 1.48)

Evdw = 20.51 ( 2.25, 0.71) Ecoul = -192.35 ( 1.61, 0.51)

EGB = -68.33 ( 1.51, 0.48) Esasa = 5.56 ( 0.06, 0.02)

-----Receptor Energies-------------------------------------------------

Etot = -4045.29 ( 31.63, 10.00) Ebat = 4157.74 ( 37.50, 11.86)

Evdw = -756.47 ( 15.16, 4.79) Ecoul = -4863.38 ( 94.96, 30.03)

EGB = -2681.64 ( 91.98, 29.09) Esasa = 98.45 ( 0.54, 0.17)

-----Complex Energies--------------------------------------------------

Etot = -4276.73 ( 34.61, 10.94) Ebat = 4222.53 ( 39.39, 12.46)

Evdw = -791.58 ( 14.82, 4.69) Ecoul = -5110.62 (102.32, 32.36)

EGB = -2693.26 ( 97.49, 30.83) Esasa = 96.20 ( 0.56, 0.18)

-----Interaction Energy Components-------------------------------------

Etot = -61.62 ( 2.90, 0.92) Ebat = -0.00 ( 0.01, 0.00)

Evdw = -55.62 ( 1.43, 0.45) Ecoul = -54.89 ( 12.81, 4.05)

EGB = 56.70 ( 11.87, 3.75) Esasa = -7.81 ( 0.09, 0.03)

=======================================================================� �
For --solv = 0, 1, 2, 5, 7, or 8, the solvent-accessible surface is computed via the NAB

subroutine molsurf in ffgbsa. The surface returned by ffgbsa is multiplied by a surface tension
of 0.0072 to yield the "nonpolar" free energy component in kcal/mol. For details about the calls
to molsurf, see section 6.4.

As mentioned before, the molsurf routine is generally robust, but has shown problems in
some rare cases. Since the pymdpbsa script requires the output from molsurf (called via ffgbsa),
we have built in a catch for these rare cases. If molsurf should fail, the returned surface value is
set to zero for that frame and pymdpbsa emits a warning. In later statistical evaluations, frames
with this problem are excluded from the evaluation, i.e., average values and standard deviations
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relate to "healthy" frames only.

6.7.5.2 Poisson-Boltzmann

For --solv = 3 or 4, the pbsa routine is called. This is done by generating a temporary input
(control) file for pbsa called pbsasfe.in. The output of pbsa goes to pbsasfe.out. Both files
are left over after the run and can be used to verify that everything went correctly.

Since pbsa requires CRD files, the trajectory is split into AMBER restart files rather then
PDB files. The name giving is the same as for the PDB files (see 6.7.5.1) except that the "pdb"
part in filenames is changed to "crd".

The script eventually calls pbsa by:
pbsa -O -i pbsasfe.in -o pbsasfe.out -p prmfile -c crdfile

The generated output tables are named as for the non-PB settings in section 6.7.5.1. However,
the content of the tables varies slightly:� �
10 5.85 -55.31 -61.69 92.17 -40.36 71.02

20 2.61 -52.83 -68.54 92.79 -38.97 70.16

...

...

90 -1.51 -56.83 -52.21 78.21 -40.25 69.57

100 0.35 -57.10 -41.55 67.08 -39.25 71.16� �
The first column is the frame number, followed by the total energy, the van der Waals term,

the Coulomb term, the Poisson-Boltzmann term, the solvent-accessible surface ("cavity") term,
and the "dispersion term" (which is zero if the option --solv=3 was used).

The final evaluation summary is stored in a file with the project name and the extension
".sum". This file is similar to that shown in section 6.7.5.1 except that some specific terms vary.
An example is shown here:� �
=======================================================================

Summary MDPBSA Statistics for Project SOLV4

Solvation : PB+SAV+DISP (--solv=4)

Frames : 10 to 100 (every 10)

Trajectory File : traj.binpos

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

=======================================================================

-----Ligand Energies---------------------------------------------------

Etot = 32.16 ( 2.27, 0.72) Evdw = -4.64 ( 1.92, 0.61)

Ecoul = 106.04 ( 1.70, 0.54) Epb = -72.46 ( 1.37, 0.43)

Ecav = 53.22 ( 0.36, 0.11) Edisp = -49.99 ( 0.43, 0.14)

-----Receptor Energies-------------------------------------------------

Etot = -17754.52 ( 38.42, 12.15) Evdw = -1662.84 ( 8.07, 2.55)

Ecoul = -14139.19 (122.39, 38.70) Epb = -2662.75 ( 90.70, 28.68)

Ecav = 1848.33 ( 6.20, 1.96) Edisp = -1138.08 ( 5.39, 1.70)

-----Complex Energies--------------------------------------------------

Etot = -17719.32 ( 40.29, 12.74) Evdw = -1723.10 ( 8.18, 2.59)
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Ecoul = -14088.04 (126.86, 40.12) Epb = -2652.15 ( 94.66, 29.93)

Ecav = 1862.08 ( 6.73, 2.13) Edisp = -1118.11 ( 5.69, 1.80)

-----Interaction Energy Components-------------------------------------

Etot = 3.04 ( 4.12, 1.30) Evdw = -55.62 ( 1.43, 0.45)

Ecoul = -54.90 ( 12.81, 4.05) Epb = 83.06 ( 12.49, 3.95)

Ecav = -39.47 ( 0.88, 0.28) Edisp = 69.96 ( 0.84, 0.27)

=======================================================================� �
6.7.6 Using pymdpbsa for Single-Point Interaction Energy

Since ptraj can read a single coordinate set (frame) as a "trajectory", pymdpbsa can also be
used to generate the free energy of interaction for an isolated PDB or CRD file of a receptor-
ligand complex. Just specify for the "trajectory" (--traj) the name of the single PDB or CRD
file and leave the --start, --step and --stop options to their default of 1. Any of the --solv
options can be used.

Obviously, the PRM files for the complex, the receptor, and the ligand, must be available also
and must be specified if their names are different from the default.

In the single-point case, the output looks the same as for the multiple-frame evaluations. The
tables have only one line (record) and the statistical data like standard deviation or standard
error in the .sum file are all zero of course.

6.7.7 Remark Concerning Poisson-Boltzmann Options --solv 3 and
--solv 4

The PB option has more adjustable parameters than the GB variants. The --solv 3 option
uses the following settings for calling pbsa:� �
&cntrl

ntx=1, imin=1, igb=10, inp=1,

/

&pb

epsout=80.0, epsin=1.0, space=0.5, bcopt=6, dprob=1.4,

cutnb=0, eneopt=2,

accept=0.001, sprob=1.6, radiopt=0, fillratio=4,

maxitn=1000, arcres=0.0625,

cavity_surften=0.005, cavity_offset=0.86

/� �
This command sequence is generated in pymdpbsa in the function pbsacontrol_solv3. Users
who want to try different settings can change this code section of pymdpbsa to their gusto. Read
the original pbsa documentation before doing so, however.

The --solv 4 option to compute interaction energies is highly experimental. Users should
read the original paper of Ray Luo et coworkers[120] before using this option. The command
sequence generated by pymdpbsa is found in the source code in the function pbsacontrol_solv4:� �
&cntrl

ntx=1, imin=1, igb=10, inp=2
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/

&pb

npbverb=0, istrng=0.0, epsout=80.0, epsin=1.0,

radiopt=1, dprob=1.6,

space=0.5, nbuffer=0, fillratio=4.0,

accept=0.001, arcres=0.25,

cutnb=0, eneopt=2,

decompopt=2, use_rmin=1, sprob=0.557, vprob=1.300,

rhow_effect=1.129, use_sav=1,

cavity_surften=0.0378, cavity_offset=-0.5692

/� �
6.8 Appendix A: Preparing PDB Files

The only required or useful data in a PDB file to set up AMBER simulations are: atom names,
residue names, and maybe chain identifiers (if more than one chain is present), and the coor-
dinates of heavy atoms. Non-protein structures (especially low-molecular-weight ligands) will
cause problems, with the exception of water and some ions which are automatically recognized
if their names in the PDB file correspond to the internal names in the AMBER libraries.

NOTE: Recent changes in leap are supposed to handle some of the hurdles (like generation
of disulfide bonds) described below "automatically". I have not tested these options intensively.
I suppose that they can be relied on in most cases but I still recommend to follow the recipes
given below to be on the safe side.

6.8.1 Cleaning up Protein PDB Files for AMBER

This is a crucial step in the preparation and many potential problems and subsequent
errors depend on this step!

Analyze the PDB file visually in any viewer that can represent (and maybe modify) the file.
Alternatively, use a text editor. Delete all parts which are judged irrelevant for the simulation.
Be aware that anything not protein or water can be expected to cause trouble later.

If the x-ray unit cell in the PDB file contains more than one image, choose the entity you
want to use and delete the other(s).

If there is a ligand, save it as an MDL standard data file (SDF). Many software packages
are able to do this directly. You may also save the ligand in PDB format and then use some
other tools later to convert it into a decent SDF file (including correct bond order and all
hydrogens). It is crucial to keep the coordinates of its heavy atoms at their original location.
Then delete it from the PDB file. The ligand must treated separately later.

Delete all water molecules that are not considered relevant. Some waters might be essential
for ligand binding. If those waters are kept, they should be made part of the receptor (as distinct
"residues"), not of the ligand. leap recognizes water if the residue name is WAT or HOH. In
later simulations, they may have to be tethered (more or less strongly) to their original positions
to prevent them from "evaporating".
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Apply the same delete procedure to ions, co-factors, and other stuff that has no special rele-
vance for the planned simulation.

Get rid off all protein (or peptide) hydrogens that are explicitly expressed in the PDB
file. The AMBER leap utility adds hydrogens automatically with predefined names. Having
hydrogens in PDB files with names that leap does not recognize within its residue libraries leads
to a total mess.

Eventually, remove also all connectivity records. These are mostly referring to ligands, or,
in some cases, to disulfide links. The latter should be explicitly re-connected (see later) without
relying on connectivity records in the PDB file.

The final PDB file of the protein should only contain unique locations11 for heavy atoms of
amino acids (and maybe oxygens of specific water molecules). Missing atoms in amino acids
are mostly allowed since leap can rebuild them if the residue names are correct and if the
atoms already present have correct names also.

Make use of "TER" records to separate parts in the PDB file which are not connected
covalently. This is especially important in protein structures in which parts are missing (gaps).
Not separating the loose ends by a "TER" record may lead to strange (and wrong) behavior in
leap or later in the simulations. Apply the same rule to individual water molecules which you
want to keep and separate each water by a "TER" record.

6.8.2 Special Residues, Name Conventions, Chain Terminations

Tautomeric and protonation states are not rendered in PDB files. If a defined state for a
residue is required, its name in the PDB file must reflect the choice. The following subsections
deal with these cases. Important: if you change a residue name in a PDB file, make sure to
change it for all atoms of that residue!

Note also that PDB files written out by leap will keep the "special" names, which sometimes
leads to annoying effects in software packages which are not prepared for amino acids called
HIE, HIP, CYX, and alike. You might consider to change these names back to the standard prior
to using these PDB files in other software packages. You can also use the ambpdb AMBER
utility to do that (see the original AMBER documentation for details on this tool).

6.8.2.1 Histidine: HID, HIE, HIP

Histidine can exist in three forms (δ , ε , and protonated). The PDB file must reflect the choice
of the user. In the current versions of leap command files included with AMBER, ε-histidine
is the default, i.e., a "HIS" residue in a PDB file will be translated automatically to HIE (for
ε-histidine). If the residue is called "HID" in the PDB file, the resulting residue for AMBER
will become δ -histidine, while "HIP" will yield the protonated form.

6.8.2.2 Cysteine: CYS, CYX

Cysteine can exist in free form or as part of a disulfide bridge. PDB residues named "CYS"
are automatically converted into a free cysteine with a SH side chain end. If the cysteine is

11In some PDB files, the same amino acid may be represented by different states (conformations). You must decide
which unique location you want to use later in the simulations.
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known to be in a S-S bridge, the residue name in the PDB file must be "CYX". In that case,
no hydrogen is automatically added to the side chain which ends in a bare sulfur. However, S-S
bonds to pairing cysteines are not automatically made but must be specified by the user. The
pytleap Python script described in section 6.3 takes care of this through a special command line
option and a file specifying which residues are to be connected (page 165).

6.8.2.3 Protonation: ASH, GLH, LYN

Sometimes the usually charged residues aspartate "ASP", glutamate "GLU", and lysine
"LYS" might have to be used in their uncharged form. The residue names must then be changed
to "ASH", "GLH", and "LYN", respectively. A neutral form of arginine is not foreseen in AM-
BER (as the pKa of arginine is around 12, it is always considered protonated).

6.8.2.4 Terminals: ACE, NHE, NME

There are special N- and C-terminal cap residues which can be used to neutralize the N-
and C-terminal in peptide chains when the defaults (NH+

3 for the N-terminal and COO− for the
C-terminal) are not appropriate.

The "ACE" residue [−C(= O)−CH3] can be used to cap the N-terminal. The PDB entry of
the capping residue ACE (this name is compulsory) must be:� �
ATOM 1 CH3 ACE resnumber x y z

ATOM 2 C ACE resnumber x y z

ATOM 3 O ACE resnumber x y z� �
Note the atom name "CH3" for this special carbon! Another name is not allowed! Hydro-

gens should be omitted. They are automatically added if the residue name and the heavy atom
names are correct.

For capping the C-terminal, two possibilities are given. The first one is a simple NH2 termi-
nation giving [C(= O)−NH2]. This residue must be called "NHE" in the PDB file and consists
of a single atom to be named N:� �
ATOM 1 N NHE resnumber x y z� �

The second possible C-terminal cap is NH−CH3, resulting in [C(= O)−NH−CH3] at the
C-terminal. Its entry in the PDB file must have the residue name "NME" and has the following
PDB entry:� �
ATOM 1 N NME resnumber x y z

ATOM 2 CH3 NME resnumber x y z� �
As above for "ACE", the atom name for the carbon must be "CH3"! "NHE" and "NME"

residues are automatically completed with hydrogens. Do not enter them explicitly.
Important: The "ACE" residue should be the first residue in a chain (strand) while "NHE"

or "NME" should be the last. If cap residues are used to terminate gaps in incomplete protein
chains, they must appear at the exact gap location, respecting N-terminal and C-terminal order.
Gaps must be separated by a "TER" record in the PDB file. See section 6.8.3.
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6.8.3 Chains, Residue Numbering, Missing Residues

AMBER preparation modules assume that residues in a PDB file are connected and appear
sequentially in the file. If not covalently connected (i.e., linked by an amide bond), the residues
must be separated by "TER" records in the PDB file. Thus for example, a protein consisting
of two chains should have a "TER" record after the final residue of the first chain. Similarly,
if residues are missing (e.g., not detected in x-ray, or cut by the user), the gap should also be
separated by a "TER" record. Terminal residues will be charged by default. If the user wants to
avoid this (especially for gaps), these residues should be capped (by ACE and NHE or NME).

In general, leap and tools calling it refer to the original input residue numbers. Thus,
residues are numbered (rather "named") according to the original PDB file for special com-
mands like the disulfide connections.

Important: In some PDB files, residue numbers are not following a simple sequential
scheme. There may be added ’numbers’ if the residue numbering should globally reflect that of
a ’mother’ protein of a whole family. In such cases, you may encounter residue numberings like
e.g. 11.. 12.. 12A.. 12B.. 13.. etc, where 12A and 12B are insertions. This may lead to serious
trouble when trying to refer to residue ’numbers’ or ’names’. The safest way to avoid trouble
is then to renumber the residues sequentially (without insertion or deletion letters) before using
them in any tool that requires a precise reference to a residue name/number.

In output files from leap and related tools, residues will always be numbered starting from
1, irrespective of the original numbering. Gaps are not considered either. Thus if a protein chain
runs from 21 to 80, with residues 31 to 40 (i.e., 10 residues) missing, the final numbering of
residues will run from 1 to 50.

Important: The final residue numbers are the ones that must be used in later simulations
to refer to individual residues via AMBER masks or NAB atom expressions. For example,
if a protein chain with residues from 30 to 110 is prepared for AMBER simulations, the final
numbering will go from 1 to 81. If the original residues 35 to 40 should be fixed or tethered, the
actual residues to be specified are 6 to 11. This can lead to serious errors. So be careful about
residue numbers. The script pytleap described later will always generate a new PDB file with
exact AMBER residue numbering and atom names. This PDB file should be used as reference
throughout all subsequent AMBER simulations. Above all, when using atom masks or atom
expressions (see Appendix 6.9), always check that they really refer to the desired atoms before
running lengthy simulations. Fixing or tethering wrong atoms are a common error which
may easily go unnoticed.

6.9 Appendix B: Atom and Residue Selections

There are two standards to select atoms and residues in AMBER-related routines: the AM-
BER "mask" notation, used by all original AMBER modules, and the NAB "atom expres-
sions", which work only with NAB-compiled applications.

Users who only use the NAB routines presented in this document may skip to section 6.9.2.
Those who intend to use original AMBER routines should also become familiar with the AM-
BER masks notations.
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6.9.1 Amber Masks

A "mask" is a notation which selects atoms or residues for special treatment. A frequent usage
is fixing or tethering selected atoms or residues during minimization or molecular dynamics.

The following lines are partially copied from the original AMBER documentation. For more
details, refer to the entire section of that documentation describing the ambmask utility.12

The "mask" selection expression is composed of "elementary selections". These start with
":" to select by residues, or "@" to select by atoms. Residues can be selected by numbers (given
as numbers separated by commas, or as ranges separated by a dash) or by names (given as a
list of residue names separated by commas). The same holds true for atom selections by atom
numbers or atom names. In addition, atoms can be selected by AMBER atom type, in which
case "@" must be immediately followed by "%". The notation ":*" means all residues and "@*"
means all atoms. The following examples show the usage of this syntax.

6.9.1.1 Residue Number List Examples� �
:1-10 = "residues 1 to 10"

:1,3,5 = "residues 1, 3, and 5"

:1-3,5,7-9 = "residues 1 to 3 and residue 5 and residues 7 to 9"� �
6.9.1.2 Residue Name List Examples� �
:LYS = "all lysine residues"

:ARG,ALA,GLY = "all arginine and alanine and glycine residues"� �
6.9.1.3 Atom Number List Examples

Note that these masks use the actual sequential numbers of atoms in the file. This is tricky
and a serious source of error. You must know these numbers correctly. Using the atom numbers
of a PDB file written out by an AMBER tool is an appropriate way to avoid pitfalls. Do not use
the original atom numbers from the raw PDB file you started with.� �
@12,17 = "atoms 12 and 17"

@54-85 = "all atoms from 54 to 85"

@12,54-85,90 = "atom 12 and all atoms from 54 to 85 and atom 90"� �
6.9.1.4 Atom Name List Examples

Atom names follow the standard names in PDB files for heavy atoms. For hydrogen atom
names with more than 3 characters, the choice may be critical since some AMBER tools13 wrap
hydrogen atom names in the PDB files they write out, but internally use the "unwrapped" name

12The utility ambmask is not part of the free Amber Tools but is available only together with the full AMBER package.
13Even that is not consistent because NAB-compiled routines use the unwrapped notation.
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version. For example, the second hydrogen atom at the first Cγ (e.g., in isoleucine) would be
called HG12, but in the official PDB notation, it would be 2HG1. Since it very rarely (actually
never) makes sense to fix individual hydrogen atoms in side chains, we do not worry about this.
Even in ligand names, hydrogens are generally not the first choice of selection when fixing or
tethering parts of the ligand.� �
@CA = all atoms with the name CA (i.e., all C-alpha atoms)

@CA,C,O,N,H = all atoms with names CA or C or O or N or H

(i.e., the entire protein backbone)� �
6.9.1.5 Atom Type List Examples

This last mask type is only used by specialists and mentioned here for completeness. It allows
the selection of AMBER atom types and requires detailed knowledge of AMBER force fields.� �
@%CT = all atoms with the force field type CT

(the standard sp3 aliphatic carbon)

@%N*,N3 = all atoms with the force field type N* or N3

(N* is a special sp2 nitrogen, N3 is an sp3 nitrogen)� �
Note that in the above example, N* is actually an atom type. The * is not a wild card meaning

"all N-something types"!

6.9.1.6 Logical Combinations

The selections above can be combined by various logical operators, including selections like
"all atoms within a certain distance from...". The use of such combinations goes beyond this
introductory script. Interested users should refer to the original AMBER documentation.

6.9.2 "Atom Expressions" in NAB Applications

NAB applications do not use the AMBER mask scheme outlined in the previous sections.
They use simpler (but less powerful) selection criteria. The scheme is:

chains(or "strands"):residues:atoms

For example, A:GLU:CA would select all Cα carbons of all glutamate residues in chain A. A
plain :: would select all atoms in all residues and all chains (not very useful). ::H* would select
all hydrogen atoms in any chain and any residue, the * being a wild card for any sequence of
characters. Similarly, ::*C* would select all atoms which contain at least one "C" character,
i.e., the wild card can be used in any position. The ? can be used as a wild card for a single
character. Thus, ::H? would select any atom starting with H plus one additional character (e.g.,
HC, H1, HN, but not HG11).

The wild card can also be used in residue names. :A*: would select all alanines, asparagines,
and arginines.

Selections can be combined separated by a vertical bar "|". :1-3,ALA:C*|:2-5:N* would
select all carbon atoms in residues 1 to 3, in all alanines and all nitrogen atoms in all residues
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from 2-5. If you would like to tether all Cα atoms of a protein and the oxygen atom of explicit
water molecules (with residue names ’WAT’), you would use ::CA|:WAT:O*.

Output from NAB applications always tells how many atoms have been selected for a special
treatment. If you are not sure that your selection is correct, this number might at least be a hint.
If you run a simulation with a protein having 200 residues and want to tether all Cα carbons,
::CA should result in 200 selected atoms (provided that all residues have a well-defined CA
atom, which they should).

6.10 Appendix C: Examples and Test Cases

6.10.1 Example 1: Generating AMBER Files for Crambin with Disulfide
Bonds

In crambin (1CRN.pdb, ...amberlite/examples/CRN), there are 3 disulfide bonds connect-
ing CYS3 to CYS40, CYS2 to CYS32, and CYS16 to CYS26. In the PDB file, these residues
must all be changed from CYS to CYX. Then a text file (e.g. sslinks) should be created that
looks like this:� �
3 40

2 32

16 26� �
In the CRN examples subfolder, the file 1crnx.pdb is the modified 1CRN.pdb file with the

six cysteines above changed to CYX in their residue name. Also, everything has been removed
except the ATOM records. Since we create explicitly the disulfide bonds via the bond command
in leap, the connectivity records have been discarded also.

The correct command should be (assuming defaults for most settings):

pytleap --prot 1crnx.pdb --disul sslinks

where sslinks specifies the text file containing the numbers of the residues to be S-S linked (one
pair per line). Now the disulfide bonds are recognized and registered in the PRM file, i.e., all
bonded interactions for −CH2−S−S−CH2− are correctly computed.

The file leap.cmd generated by pytleap shows the bonding between the corresponding SG
atoms in the three disulfide linkages on lines 2 to 5:� �
set default pbradii mbondi

prot = loadpdb 1crnx.pdb

bond prot.3.SG prot.40.SG

bond prot.4.SG prot.32.SG

bond prot.16.SG prot.26.SG

saveamberparm prot 1crnx.leap.prm 1crnx.leap.crd

savepdb prot 1crnx.leap.pdb

quit� �
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Figure 6.1: The 3 S-S links in 1crn.pdb

6.10.2 Example 2: Energy Minimization of the Crambin Structure

6.10.2.1 Starting Energy

We can use the files 1crnx.leap.prm and 1crnx.leap.pdb which were created in section
6.10.1 to evaluate the AMBER energy terms in the unrefined crambin structure with the
Generalized-Born option 1 and the SASA (nonpolar) energy:

ffgbsa 1crnx.leap.pdb 1crnx.leap.prm 1 1

The result is:� �
Reading parm file (1crnx.leap.prm)

title:

mm_options: cut=100

mm_options: rgbmax=100

mm_options: diel=C

mm_options: gb=1

iter Total bad vdW elect nonpolar genBorn frms

ff: 0 -813.56 611.05 -92.09 -980.60 0.00 -351.91 1.52e+01

sasa: 3079.71

Esasa = 0.0072 * sasa = 22.17� �
In this output, the line starting with "ff:" lists the total energy of the system and the com-

ponents (bad = bond-angle-dihedral combined energy, i.e., the sum of the bonded terms). The
line starting with "sasa:" gives the solvent-accessible surface in Å2. The final line is the result
from SASA multiplied by a surface tension of 0.0072. All energies are in kcal·mol−1.14

This procedure is a good (although rough) health check of the PRM/PDB (and correspond-
ing PRM/CRD) file pairs prior to using them in longer simulations. If the starting structure
file is considered of good quality (no major steric bumps) but some of the values reported by

14Note that the "nonpolar" term in the main energy components line is 0.00 because we compute this term separately.
The "nonpolar" term in NAB applications can also include other terms (e.g., restraints) and is sometimes misleading.
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Figure 6.2: Starting (green) and refined (orange) coordinates of 1CRN. Disulfide bonds in the
refined structure are shown in CPK mode.

ffgbsa look weird, there might be a serious error in the PRM file. If the coordinate file and the
parameter-topology file are incompatible, e.g., different number of atoms or different order of
atoms, ffgbsa will give very strange results in most cases (or fail completely).

6.10.2.2 Energy Minimization with minab

The structure refinement via conjugate gradient minimization can be carried out by the
command (all on one line):

minab 1crnx.leap.pdb 1crnx.leap.prm crambin.min.pdb 1 1000

> crambin.min.out &

We use the GB option 1 and request a maximum of 1000 steps. No restraints are applied. The
refined coordinates go to the PDB file crambin.min.pdb. The output of minab is redirected
to the text file crambin.min.out. The final ’&’ puts the process into the background. The
minimization can be followed interactively by the command tail -f crambin.min.out

The last lines of the output are:� �
------------------------------

initial energy: -814.840 kcal/mol

final energy: -1093.158 kcal/mol
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Figure 6.3: Left side: original structure 1OUK.pdb with ligand (red), sulfate (yellow) and water
molecules (blue); right side: final structure p38.pdb with the N- and C-terminal
caps.

minimizer finished after 619 iterations

refined coordinates written to crambin.min.pdb

------------------------------� �
Figure 6.2 shows the initial (green) and refined (orange) structure of crambin. The disulfide

bonds in the refined structure are shown in CPK mode to emphasize that the S-S links have
been correctly assigned. If this were not the case, the respective sulfur atoms would drift apart
because of non-bonded interactions.

6.10.3 Example 3: Preparation of a Complex between P38 MAP Kinase
and Ligand

6.10.3.1 Cleaning Up PDB Entry 1OUK.pdb for Usage with AMBER

In the ...amberlite/examples/P38 directory, the PDB file 1OUK.pdb (P38 MAP kinase
with inhibitor) is included in its original version. The structure (see Figure 6.3) contains a ligand
(red), a sulfate ion (yellow), and a number of water molecules (blue). The file p38.pdb (also in-
cluded in ...amberlite/examples/P38) was created from this PDB file by cutting off a large
part of the protein and deleting everything except the heavy atoms. The resulting "nonnatural"
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Figure 6.4: The final complex structure com.leap.pdb: The ACE cap becomes residue 1, the
NME cap is residue 216, and the ligand is residue LIG 217

N- and C-terminal were then completed by ACE and NME caps, respectively.15 The resulting
PDB file is "clean" for leap and passes without errors. The ligand was processed separately
into SDF format (file lig.sdf in ...amberlite/examples/P38) including all hydrogens and
bond orders. This file is ready to be processed via antechamber before re-complexing it with
the protein (see later).

6.10.3.2 Generating AMBER Files for a P38/Ligand Complex

We re-use as a receptor the reduced and corrected PDB file from section 6.10.3.1, p38.pdb.
For the ligand, we use the lig.sdf file, containing the ligand with its heavy-atoms coordinates
from the original pdb file 1OUK.pdb and hydrogen atoms added via any other software that can
handle this kind of problem. Note that the ligand has a formal charge of +1.

The following command line will create the PRM, CRD, and PDB files for the empty re-
ceptor, the ligand, and the complex; partial charges on the ligand will be computed via the
AM1-BCC method;[101, 102] the complex will be named com:

15This can be done by any modeling software which allows building, but make sure that the final atom and residue
names in the cap residues are those described in section 6.8.2.4.
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pytleap --prot p38.pdb --lig lig.sdf --chrg 1 --cplx com

The longest part in the execution time is the processing of the ligand via the sqm tool to get
the AMB1-BCC charges. During execution, various temporary files appear in the working
directory. They result from the different modules called in antechamber. Most are removed
when antechamber has finished.

The resulting AMBER files are called *.leap.prm, *.leap.crd, and *.leap.pdb, respec-
tively. One set of files is generated for the ligand (lig), the receptor (p38), and the complex
(com).16

Among the various other files left over, lig.leap.frcmod might be the most relevant to
inspect since it contains parameters which were used in addition to those explicitly present in
the gaff parameter set.

The file lig.ac.mol2 is the MOL2 for the ligand containing the gaff atom types and the
AM1-BCC partial charges. This file can be read by a variety of software packages but the
atom elements will not be recognized because atom types are not original TRIPOS atom types,
indicating the chemical element.

In the resulting complex, the ligand has the residue name LIG and the residue number 217.
The N- and C-terminal caps ACE and NME get residue numbers 1 and 216.

6.10.4 Example 4: Interaction Energy between P38 and Ligand in the
Unrefined (Original) Complex

We use the files generated in example 3 (section 6.10.3.2). In order to make use of the de-
fault settings in the command line options, we copy the respective files to the default names
proposed by pymdpbsa: Make copies (or symbolic links) of com.leap.prm, p38.leap.prm, and
lig.leap.prm to com.prm, rec.prm, and lig.prm. Also, make a copy (or symbolic link) of com.leap.pdb
to com.pdb.

Now the command

pymdpbsa --proj RAWPDB --traj com.pdb

computes the interaction energy. As "trajectory" (--traj) we specify the single complex PDB
file com.pdb. We call the project "RAWPDB" and leave all other input options at their default,
i.e., we also use the default GB option 1.

A subdirectory RAWPDB_xxxxxx.tmpdir is generated, where xxxxxx is a random sequence
of characters. This temporary directory can be removed since the relevant output files are copied
to the directory in which pymdpbsa was started. We could also have used the additional com-
mand line option --clean to remove the temporary directory automatically.

The output of interest is the summary file RAWPDB.sum (see also 6.7.5.1 and 6.7.5.2):� �
=======================================================================

Summary Statistics for Project RAWPDB

Frames : 1 to 1 (every 1)

Solvation : GB (--solv=1)

16Note that we use the *.leap.* name giving to underline that these files have been generated via leap. This is useful
to avoid confusion, especially for the PDB or CRD files which must correspond to the respective PRM files.
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Trajectory File : com.pdb

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

=======================================================================

-----Ligand Energies---------------------------------------------------

Etot = -127.64 ( 0.00, 0.00) Ebat = 117.53 ( 0.00, 0.00)

Evdw = 3.79 ( 0.00, 0.00) Ecoul = -183.01 ( 0.00, 0.00)

EGB = -71.71 ( 0.00, 0.00) Esasa = 5.76 ( 0.00, 0.00)

-----Receptor Energies-------------------------------------------------

Etot = -4072.40 ( 0.00, 0.00) Ebat = 2653.90 ( 0.00, 0.00)

Evdw = 657.95 ( 0.00, 0.00) Ecoul = -4409.58 ( 0.00, 0.00)

EGB = -3068.98 ( 0.00, 0.00) Esasa = 94.31 ( 0.00, 0.00)

-----Complex Energies--------------------------------------------------

Etot = -4250.68 ( 0.00, 0.00) Ebat = 2771.43 ( 0.00, 0.00)

Evdw = 608.82 ( 0.00, 0.00) Ecoul = -4636.90 ( 0.00, 0.00)

EGB = -3086.27 ( 0.00, 0.00) Esasa = 92.24 ( 0.00, 0.00)

-----Interaction Energy Components-------------------------------------

Etot = -50.64 ( 0.00, 0.00) Ebat = 0.00 ( 0.00, 0.00)

Evdw = -52.92 ( 0.00, 0.00) Ecoul = -44.31 ( 0.00, 0.00)

EGB = 54.42 ( 0.00, 0.00) Esasa = -7.83 ( 0.00, 0.00)

=======================================================================� �
6.10.5 Example 5: Minimization of P38 Complex with minab and Resulting

Interaction Energy

We minimize the P38/ligand complex prepared in section 6.10.3. We use the (renamed) PDB
file com.pdb, the corresponding PRM file com.prm, gb = 1 and a maximum of 500 iterations.
We tether Cα atoms with a force constant of 1.0 kcal·mol−1·Å−2. The refined coordinates are
written to com.min.pdb. We redirect the output to a file minab.out.

For the command line

minab com.pdb com.prm com.min.pdb 1 500 ’::CA’ 1.0 > minab.out &

the output file minab.out would be:� �
Reading parm file (com.prm)

title:

mm_options: cut=100.000000

mm_options: nsnb=501

mm_options: diel=C

mm_options: gb=1

mm_options: rgbmax=15.000000

mm_options: wcons=1.000000

mm_options: ntpr=10

constrained 214 atoms using expression ::CA
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constrained 214 atoms from input array

iter Total bad vdW elect nonpolar genBorn frms

ff: 0 -4378.52 2771.43 608.82 -4636.90 0.00 -3121.87 3.31e+01

ff: 10 -5630.74 2669.08 -446.65 -4721.49 0.11 -3131.79 4.86e+00

{...more like this cut from this demo output...}

ff: 490 -6861.80 2521.23 -1205.14 -5170.41 16.59 -3024.07 1.67e-01

ff: 500 -6862.46 2521.87 -1205.86 -5170.56 16.23 -3024.15 1.41e-01

------------------------------

initial energy: -4378.522 kcal/mol

final energy: -6862.463 kcal/mol

minimizer stopped because number of iterations was exceeded

refined coordinates written to com.min.pdb

------------------------------� �
The minimization did not reach the requested default rms of the components of the gradient

of 0.1, but stopped after the required 500 iterations.
The final line reminds that the refined structure has been saved into the PDB file com.min.pdb.

Note that the energy term listed here under "nonpolar" is actually the energy stemming from
the restraints, in this example tethering all Cα atoms.

We can now repeat the interaction energy computation on the refined complex, using the
same settings as for the raw PDB file in section 6.10.4:

pymdpbsa --proj REFINEDPDB --traj com.min.pdb

with --traj now specifying the refined PDB file com.min.pdb. The resulting summary REFINEDPDB.sum
is:� �
=======================================================================

Summary Statistics for Project MINPDB

Frames : 1 to 1 (every 1)

Solvation : GB (--solv=1)

Trajectory File : com.min.pdb

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

=======================================================================

-----Ligand Energies---------------------------------------------------

Etot = -210.13 ( 0.00, 0.00) Ebat = 34.74 ( 0.00, 0.00)

Evdw = 15.06 ( 0.00, 0.00) Ecoul = -195.36 ( 0.00, 0.00)

EGB = -70.16 ( 0.00, 0.00) Esasa = 5.61 ( 0.00, 0.00)

-----Receptor Energies-------------------------------------------------

Etot = -6470.57 ( 0.00, 0.00) Ebat = 2487.56 ( 0.00, 0.00)

Evdw = -1160.97 ( 0.00, 0.00) Ecoul = -4904.64 ( 0.00, 0.00)

EGB = -2988.22 ( 0.00, 0.00) Esasa = 95.70 ( 0.00, 0.00)

-----Complex Energies--------------------------------------------------

Etot = -6750.93 ( 0.00, 0.00) Ebat = 2522.30 ( 0.00, 0.00)

Evdw = -1205.93 ( 0.00, 0.00) Ecoul = -5170.51 ( 0.00, 0.00)
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EGB = -2990.31 ( 0.00, 0.00) Esasa = 93.52 ( 0.00, 0.00)

-----Interaction Energy Components-------------------------------------

Etot = -70.25 ( 0.00, 0.00) Ebat = 0.00 ( 0.00, 0.00)

Evdw = -60.02 ( 0.00, 0.00) Ecoul = -70.51 ( 0.00, 0.00)

EGB = 68.07 ( 0.00, 0.00) Esasa = -7.79 ( 0.00, 0.00)

=======================================================================� �
6.10.6 Example 6: Generate MD Trajectory for the P38-Ligand Complex

with mdnab

We use mdnab to run a 100 picoseconds MD trajectory of P38 complex, using as starting
geometry the refined complex com.min.pdb from the previous section:

mdnab com.min.pdb com.prm com 1 100 ’::CA’ 1.0 > md.out &

The trajectory will go to the file com.binpos, specified as the third command line argument
(the extension ".binpos" is appended automatically). We tether the Cα atoms with the same
force as for the minimization in 6.10.5 through the last two arguments ’::CA’ and 1.0. The
GB option ’1’ is used (fourth argument for the mdnab command).

The file md.out will start with:� �
Reading parm file (com.prm)

title:

mm_options: cut=12.000000

mm_options: nsnb=25

mm_options: diel=C

mm_options: gb=1

mm_options: rgbmax=12.000000

mm_options: rattle=1

mm_options: dt=0.002000

mm_options: ntpr=101

mm_options: ntpr_md=10

mm_options: ntwx=0

mm_options: zerov=0

mm_options: tempi=50.000000

mm_options: temp0=100.000000

mm_options: gamma_ln=20.000000

mm_options: wcons=1.000000

constrained 214 atoms using expression ::CA� �
The last two lines shown above indicate that all Cα atoms (214 in this case) have indeed

been tethered with a force constant wcons=1.000000. It is important to verify this line to make
sure that the atom selection on the command line (in this case ’::CA’) had the desired effect,
especially if more complex expressions are used.

The output file md.out then continues through the heat-up and equilibration stages. Then the
time is reset to zero and the production phase begins. The final lines in the example above are:
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� �
...

...

md: 49500 99.000 2137.72 -4563.14 -2425.42 302.35

md: 50000 100.000 2084.67 -4519.03 -2434.36 294.84

trajectory with 100 picoseconds was written to com.binpos...� �
confirming that 50000 steps (i.e. 100 picoseconds with a stepsize of 2 femtoseconds) have

been recorded and written to the trajectory file com.binpos.

6.10.7 Example 7: Running pymdpbsa on the P38/Ligand Complex
Trajectory

If we have previously renamed all PRM files to the expected defaults, since the ligand is
called "LIG" by default in pytleap, and since we want the default GB 1 option, we only enter
the project name P38. We use every tenth frame from the total 100-frames production phase of
the trajectory, so that --start 10, --stop 100, and --step 10 are used.

The command line is:

pymdpbsa --proj P38 --traj com.binpos --start 10 --stop 100 --step10&

The summary of the results goes into the file P38.sum and is shown below.� �
=======================================================================

Summary Statistics for Project P38

Frames : 10 to 100 (every 10)

Solvation : GB (--solv=1)

Trajectory File : com.binpos

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

=======================================================================

-----Ligand Energies---------------------------------------------------

Etot = -171.86 ( 3.80, 1.20) Ebat = 65.11 ( 3.96, 1.25)

Evdw = 19.74 ( 2.06, 0.65) Ecoul = -191.30 ( 2.13, 0.67)

EGB = -71.04 ( 0.68, 0.22) Esasa = 5.62 ( 0.05, 0.01)

-----Receptor Energies-------------------------------------------------

Etot = -4246.59 ( 39.66, 12.54) Ebat = 4156.11 ( 34.62, 10.95)

Evdw = -772.67 ( 20.92, 6.61) Ecoul = -4921.45 ( 38.73, 12.25)

EGB = -2804.11 ( 27.70, 8.76) Esasa = 95.53 ( 0.57, 0.18)

-----Complex Energies--------------------------------------------------

Etot = -4478.81 ( 40.64, 12.85) Ebat = 4221.22 ( 36.59, 11.57)

Evdw = -806.44 ( 22.34, 7.07) Ecoul = -5161.88 ( 42.37, 13.40)

EGB = -2825.07 ( 30.74, 9.72) Esasa = 93.36 ( 0.60, 0.19)

-----Interaction Energy Components-------------------------------------

Etot = -60.36 ( 3.30, 1.04) Ebat = -0.00 ( 0.01, 0.00)

Evdw = -53.51 ( 3.65, 1.15) Ecoul = -49.14 ( 12.02, 3.80)
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EGB = 50.08 ( 10.21, 3.23) Esasa = -7.80 ( 0.12, 0.04)

=======================================================================� �
The numbers in parentheses after the actual energy values are the standard deviation and the

standard error of the mean (SEM). Note that the energy term Ebat (the sum of the bond, angle,
and torsion terms) for the interaction energy is zero (or almost so, because of rounding errors).
This is the obvious consequence of the single-trajectory approach because we neglect any strain
in the ligand or the receptor. The strain would have to be evaluated by running three distinct
trajectories (i.e., also for the free ligand and the empty receptor).

A directory P38_xxxxxx.tmpdir has been created which contains all files used for the com-
putation, including the individual structures of each frame. You can savely remove this directory
if you are only interested in the actual results, i.e., the summary file *.sum and the *.X.nrg

tables, where X can be C (for complex), R (for receptor), L (for ligand), and D (for the actual
∆E and ∆G values).

194



7 sqm: Semi-empirical quantum
chemistry

AmberTools now contains its own quantum chemistry program, called sqm. This is code
extracted from the QM/MM portions of sander, but is limited to “pure QM” calculations. A
principal current use is as a replacement for MOPAC for deriving AM1-bcc charges, but the
code is much more general than that. Right now, it is limited to carrying out single point calcu-
lations and energy minimizations (geometry optimizations) for closed-shell systems. It supports
a wide variety of semi-empirical Hamiltonians, including many recent ones. An external elec-
tric field generated by a set of point charges can be included for single point calculations. Our
plan is to add capabilities to subsequent versions. The major contributors are as follows:

• The original semi-empirical support was written by Ross Walker, Mike Crowley, and
Dave Case,[121] based on public-domain MOPAC codes of J.J.P. Stewart.

• SCC-DFTB support was written by Gustavo Seabra, Ross Walker and Adrian Roitberg,[122]
and is based on earlier work of Marcus Elstner.[123, 124]

• Support for third-order SCC-DFTB was written by Gustavo Seabra and Josh Mcclellan.

• Various SCF convergence schemes were added by Tim Giese and Darrin York.

• The PM6 Hamiltonian was added by Andreas Goetz and dispersion and hydrogen bond
corrections were added by Andreas Goetz and Kyoyeon Park.

• The extension for MNDO type Hamiltonians to support d orbitals was written by Tai-
Sung Lee, Darrin York and Andreas Goetz.

• The charge-dependent exchange-dispersion corrections of vdW interactions[125] was
contributed by Tai-Sung Lee, Tim Giese, and Darrin York.

• The ability of reading user-defined parameters was added by Tai-Sung Lee and Darrin
York.

7.1 Available Hamiltonians

Available MNDO-type semi-empirical Hamiltonians are PM3,[126] AM1,[127] RM1,[128]
MNDO,[129] PDDG/PM3,[130] PDDG/MNDO,[130] PM3CARB1,[131], PM3-MAIS[132,
133], MNDO/d[134–136], AM1/d (Mg from AM1/d[137] and H, O, and P from AM1/d-
PhoT[138]) and PM6[139].
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Support is also available for the Density Functional Theory-based tight-binding (DFTB)
Hamiltonian,[122, 140, 141] as well as the Self-Consistent-Charge version, SCC-DFTB.[123]
DFTB/SCC-DFTB also supports approximate inclusion of dispersion effects,[142] as well as
reporting CM3 charges [143] for molecules containing only the H, C, N, O, S and P atoms and
third-order corrections[144].

The elements supported by each QM method are:

• MNDO: H, Li, Be, B, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Cd, Sn, I, Hg, Pb

• MNDO/d: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, Pb

• AM1: H, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, I, Hg

• AM1/d: H, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ge, Br, I, Hg

• PM3: H, Be, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te,
I, Hg, Tl, Pb, Bi

• PDDG/PM3: H, C, N, O, F, Si, P, S, Cl, Br, I

• PDDG/MNDO: H, C, N, O, F, Cl, Br, I

• RM1: H, C, N, O, P, S, F, Cl, Br, I

• PM3CARB1: H, C, O

• PM3-MAIS: H, O, Cl

• PM6: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd,
Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi

• DFTB/SCC-DFTB: (Any atom set available from the www.dftb.org website)

The PM6 implementation has not been extensively tested for all available elements. Please
check your results carefully, possibly by comparison to other codes that implement PM6, in
particular if transition metal elements are present. SCF convergence may be more difficult to
achieve for transition metal elements with partially filled valence shells.

If the PM6 Hamiltonian is used in a QM/MM simulation with sander using electrostatic
embedding (see Amber manual) or if an electric field of external point charges is used, then the
electrostatic interactions between QM and MM atoms are modeled using the MNDO type core
repulsion function for interactions between QM and MM atoms. Parameters for the exponents
α of the QM atoms are taken from PM3 (a default value of five is used for the exponents α of
the MM atoms as is the case for MNDO, AM1 and PM3). Since PM3 does not have parameters
for all elements that are supported by PM6, the missing exponents were defined in an ad hoc
manner (see the source code in $AMBERHOME/AmberToosl/src/sqm/qm2_parameters.F90,
variable alp_pm6). The magnitude of the coefficients α is probably not critical for the accuracy
of QM/MM calculations but this should be tested on a case by case basis. This does not affect
QM calculations with sqm.
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The DFTB/SCC-DFTB code was originally based on the DFT/DYLAX code by Marcus El-
stner et al., but has since been extensively re-written and optimized. In order to use DFTB
(qm_theory=DFTB) a set of integral parameter files are required. These are not distributed
with Amber and must be obtained from the www.dftb.org website and placed in the $AM-
BERHOME/dat/slko directory. Dispersion parameters for H, C, N, O, P and S are available
in the $AMBERHOME/dat/slko/DISPERSION.INP_ONCHSP file, and CM3 parameters for
the same atoms are in the $AMBERHOME/dat/slko/CM3_PARAMETERS.DAT file. Param-
eters for two parametrizations of the third-order SCC-DFTB terms, namely SCC-DFTB-PA
and SCC-DFTB-PR are distributed with Amber in the files DFTB_3RD_ORDER_PA.DAT and
DFTB_3RD_ORDER_PR.DAT, located in the same directory.

7.2 Charge-dependent exchange-dispersion corrections of
vdW interactions

The sqm program provides a new charge-dependent energy model consisting of van der Waals
(vdW) and polarization interactions between the quantum mechanical (QM) and molecular me-
chanical (MM) regions in a combined QM/MM calculation. vdW interactions are commonly
treated using empirical Lennard-Jones (L-J) potentials, whose parameters are often chosen
based on the QM atom type (e.g., based on hybridization or specific covalent bonding envi-
ronment). This strategy for determination of QM/MM nonbonding interactions becomes te-
dious to parametrize and lacks robust transferability. Problems occur in the study of chemical
reactions where the “atom type” is a complex function of the reaction coordinate. This is partic-
ularly problematic for reactions, where atoms or localized functional groups undergo changes
in charge state and hybridization.

In sqm, this charge-dependent energy model was implemented based on a scaled overlap
model for repulsive exchange and attractive dispersion interactions that is a function of atomic
charge. The model is chemically significant since it properly correlates atomic size, softness,
polarizability, and dispersion terms with minimal one-body parameters that are functions of the
atomic charge[125].

This “Charge-dependent exchange-dispersion corrections of vdW interactions” can be in-
voked by the “qxd=.true.” switch in the sqm namelist. Note that this model currently does not
have any effect on pure quantum calculations through sqm, the qxd correction is only added to
QM/MM interactions in SANDER. The default values of qxd parameters are set to reproduce
the regular L-J interactions of typical atom types (HC for H, C* for C, N for N, OW for O,
and parameters for F and Cl are optimized[125]) when the charge dependence parameters are
zero. There are eight qxd parameters (symbols used in the reference[125] are indicated in the
parentheses): qxd_s (s), qxd_z0 (ζ (0)), qxd_zq (ζq), qxd_d0 (α1), qxd_dq (3×B), qxd_q0
(α2), qxd_qq (3×B), and qxd_neff (Ne f f (0)). All parameters can be modified through external
user-defined parameter files (see the usage of ’parameter_file’ in Section 7.4).
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7.3 Dispersion and hydrogen bond correction

An empirical dispersion and hydrogen bonding correction is implemented for the MNDO
type Hamiltonians AM1 and PM6[145]. The empirical dispersion correction follows the for-
malism for DFT-D[146] and consists of a physically sound r−6 term that is damped at short
distances to avoid the short-range repulsion which can be written as

Edis =−s6 ∑
i j

fdamp(ri j,R0
i j)C6,i jr−6

i j , (7.1)

where ri j is the distance between two atoms i and j, R0
i j is the equilibrium van der Waals

(vdW) separation derived from the atomic vdW radii, C6,i j the dispersion coefficient, and s6 a
general scaling factor. The damping function is given as

fdamp(ri j,R0
i j) =

[
1+ exp

(
−α

ri j

sRR0
i j
−1

)]−1

. (7.2)

Bondi vdW radii[94] are used and for a pair of unlike atoms we have

R0
i j =

R0
ii

3
+R0

j j
3

R0
ii

2
+R0

j j
2 . (7.3)

For the C6 coefficients the following equation is used,

C6,i j = 2
(C2

6,iiC
2
6, j jNeff,iNeff, j)

1/3

(C6,iiN2
eff, j)

1/3 +(C6, j jN2
eff,i)

1/3 , (7.4)

where the Slater-Kirkwood effective number of electrons Neff,i and the C6 coefficients can easily
be found in the literature[146].

An empirical hydrogen bonding correction[145] that is transferable among different semiem-
pirical Hamiltonians and has been parametrized for use with the dispersion correction described
above is also available. This correction does not make the assumption of a specific acceptor/hy-
drogen/donor binding situation. Instead it considers the hydrogen bond as a charge-independent
atom- atom term between two atoms capable of serving as an acceptor or donor (for example,
O, N) and weights this by a function that accounts for the steric arrangement of the two atoms
and the favorable positioning of a hydrogen atom inbetween. A damping function corrects for
long- and short-range behavior,

EH−bond =
CAB

r2
AB

fgeom fdamp, (7.5)

fgeom = cos(θA)
2 cos(φA)

2 cos(ψA)
2 cos(φB)

2 cos(φB)
2 cos(ψB)

2 fbond, (7.6)

fbond = 1− 1
1+ exp[−60(rXH/1.2−1)]

, (7.7)

fdamp =

(
1

1+ exp[−100(rAB/2.4−1)]

)(
1− 1

1+ exp[−10(rAB/7.0−1)]

)
, (7.8)
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CAB =
CA +CB

2
. (7.9)

Here, CA and CB are the atomic hydrogen bonding correction parameters and the (torsion)
angles in the function fgeom are defined similarly to an earlier hydrogen bond correction[147].

The hydrogen bond correction can be used both for single point energy calculations or geom-
etry optimizations with SQM and for molecular dynamics simulations with SANDER. How-
ever, we do not recommend the use for molecular dynamics at present since cutoffs needed to
be implemented for the calculation of fgeom of equation (7.6). This and some other conditional
evaluations give rise to discontinuities in the potential energy surface and thus make this method
unattractive for MD simulations.

7.4 Usage

The sqm program uses the following simple command line:

sqm [-O] -i <input-file> -o <output-file>

As in other Amber programs, the “-O” flag allows the program to over-write the output file.
An example input file for running a simple minimization is shown here:

Run semi-empirical minimization

&qmmm

qm_theory=’AM1’, qmcharge=0,

/

6 CG -1.9590 0.1020 0.7950

6 CD1 -1.2490 0.6020 -0.3030

6 CD2 -2.0710 0.8650 1.9630

6 CE1 -0.6460 1.8630 -0.2340

6 C6 -1.4720 2.1290 2.0310

6 CZ -0.7590 2.6270 0.9340

1 HE2 -1.5580 2.7190 2.9310

16 S15 -2.7820 0.3650 3.0600

1 H19 -3.5410 0.9790 3.2740

1 H29 -0.7870 -0.0430 -0.9380

1 H30 0.3730 2.0450 -0.7840

1 H31 -0.0920 3.5780 0.7810

1 H32 -2.3790 -0.9160 0.9010

The &qmmm namelist contains variables that allow you to control the options used. Following
that is one line per atom, giving the atomic number, atom name, and Cartesian coordinates (free
format). The variables in the &qmmm namelist are these:

qm_theory Level of theory to use for the QM region of the simulation (Hamiltonian). De-
fault is to use the semi-empirical Hamiltonian PM3. Options are AM1, RM1,
MNDO, PM3-PDDG, MNDO-PDDG, PM3-CARB1, MNDO/d (same as MN-
DOD), AM1/d (same as AM1D), PM6, and DFTB. The dispersion correction can
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be switched on for AM1 and PM6 by choosing AM1-D* and PM6-D, respectively.
The dispersion and hydrogen bond correction will be applied for AM1-DH+ and
PM6-DH+.

dftb_disper Flag turning on (1) or off (0) the use of a dispersion correction to the DFTB/SCC-
DFTB energy. Requires qm_theory=DFTB. It is assumed that you have the file
DISPERSION.INP_ONCHSP in your $AMBERHOME/dat/slko/ directory. This
file must be downloaded from the website www.dftb.org, as described in the begin-
ning of this chapter. Not available for the Zn atom. (Default = 0)

dftb_3rd_order Third order correctio to SCC-DFTB. Default=” (no third order correction).

= ’PA’ Use the SCC-DFTB-PA parametrization, which was developed for pro-
ton affinities. The parameters will be read from the $AMBERHOME/dat/s-
lko/DFTB_3RD_ORDER_PA.DAT file.

= ’PR’ Use the SCC-DFTB-PR parametrization, which was developed for phos-
phate hydrolysis reactions. The parameters will be read from the $AMBER-
HOME/dat/slko/DFTB_3RD_ORDER_PR.DAT file.

= ’READ’ Parameters will be read from the mdin file, in a separate
“dftb_3rd_order” namelist, which must have the same format as the files
above.

= ’filename’ Parameters will be read from the file specified by filename, in the
“dftb_3rd_order” namelist, which must have the same format as the files
above.

dftb_chg Flag to choose the type of charges to report when doing a DFTB calculation.

= 0 (default) - Print Mulliken charges

= 2 Print CM3 charges. Only available for H, C, N, O, S and P.

dftb_telec Electronic temperature, in K, used to accelerate SCC convergence in DFTB calcu-
lations. The electronic temperature affects the Fermi distribution promoting some
HOMO/LUMO mixing, which can accelerate the convergence in difficult cases.
In most cases, a low telec (around 100K) is enough. Should be used only when
necessary, and the results checked carefully. Default: 0.0K

dftb_maxiter Maximum number of SCC iterations before resetting Broyden in DFTB calcula-
tions. (default: 70 )

qmcharge Charge on the QM system in electron units (must be an integer). (Default = 0)

spin Multiplicity of the QM system. Currently only singlet calculations are possible
and so the default value of 1 is the only available option. Note that this option
is ignored by DFTB/SCC-DFTB, which allows only ground state calculations. In
this case, the spin state will be calculated from the number of electrons and orbital
occupancy.
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qmqmdx Flag for whether to calculate QM-QM derivatives analytically or pseudo numeri-
cally. The default (and recommended) option is to use ANALYTICAL QM-QM
derivatives.

= 1 (default) - Use analytical derivatives for QM-QM forces.

= 2 Use numerical derivatives for QM-QM forces. Note: the numerical derivative
code has not been optimised as aggressively as the analytical code and as such
is significantly slower. Numerical derivatives are intended mainly for testing
purposes.

verbosity Controls the verbosity of QM/MM related output. Warning: Values of 2 or higher
will produce a lot of output.

= 0 (default) - only minimal information is printed - Initial QM geometry and link
atom positions as well as the SCF energy at every ntpr steps.

= 1 Print SCF energy at every step to many more significant figures than usual.
Also print the number of SCF cycles needed on each step.

= 2 As 1 but also print info about memory reallocations, number of pairs per QM
atom. Also prints QM core - QM core energy, QM core - MM charge energy
and total energy.

= 3 As 2 but also print SCF convergence information at every step.

= 4 As 3 but also print forces onof the file QM atoms due to the SCF calculation
and the coordinates of the link atoms at every step.

= 5 As 4 but also print all of the info in kJ/mol as well as kcal/mol.

tight_p_conv Controls the tightness of the convergence criteria on the density matrix in the
SCF.

=0 (default) - loose convergence on the density matrix (or Mulliken charges, in
case of a SCC-DFTB calculation). SCF will converge if the energy is con-
verged to within scfconv and the largest change in the density matrix is within
0.05*sqrt(scfconv).

= 1 Tight convergence on density(or Mulliken charges, in case of a SCC-DFTB
calculation). Use same convergence (scfconv) for both energy and density
(charges) in SCF. Note: in the SCC-DFTB case, this option can lead to insta-
bilities.

scfconv Controls the convergence criteria for the SCF calculation, in kcal/mol. In order to
conserve energy in a dynamics simulation with no thermostat it is often necessary
to use a convergence criterion of 1.0d-9 or tighter. Note, the tighter the conver-
gence the longer the calculation will take. Values tighter than 1.0d-11 are not
recommended as these can lead to oscillations in the SCF, due to limitations in ma-
chine precision, that can lead to convergence failures. Default is 1.0d-8 kcal/mol.
Minimum usable value is 1.0d-14.
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pseudo_diag Controls the use of ’fast’ pseudo diagonalisations in the SCF routine. By default
the code will attempt to do pseudo diagonalisations whenever possible. However,
if you experience convergence problems then turning this option off may help. Not
available for DFTB/SCC-DFTB.

= 0 Always do full diagonalisation.

= 1 Do pseudo diagonalisations when possible (default).

pseudo_diag_criteria Float controlling criteria used to determine if a pseudo diagonalisation
can be done. If the difference in the largest density matrix element between two
SCF iterations is less than this criteria then a pseudo diagonalisation can be done.
This is really a tuning parameter designed for expert use only. Most users should
have no cause to adjust this parameter. (Not applicable to DFTB/SCC-DFTB cal-
culations.) Default = 0.05

diag_routine Controls which diagonalization routine should be used during the SCF procedure.
This is an advanced option which has no effect on the results but can be used to fine
tune performance. The speed of each diagonalizer is both a function of the number
and type of QM atoms as well as the LAPACK library that Sander was linked
to. As such there is not always an obvious choice to obtain the best performance.
The simplest option is to set diag_routine = 0 in which case Sander will test each
diagonalizer in turn, including the pseudo diagonalizer, and select the one that gives
optimum performance. This should ideally be the default behavior but this option
has not been tested on sufficient architectures to be certain that it will always work.
Not available for DFTB/SCC-DFTB.

= 0 Automatically select the fastest routine (recommended).

= 1 Use internal diagonalization routine (default).

= 2 Use lapack dspev.

= 3 Use lapack dspevd.

= 4 Use lapack dspevx.

= 5 Use lapack dsyev.

= 6 Use lapack dsyevd.

= 7 Use lapack dsyevr.

printcharges

= 0 Don’t print any info about QM atom charges to the output file (default)

= 1 Print Mulliken QM atom charges to output file every ntpr steps.

print_eigenvalues Controls printing of MO eigenvalues.

= 0 Do not print MO eigenvalues

= 1 Print MO eigenvalues at the end of a single point calculation or geometry
optimization (default)
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= 2 Print MO eigenvalues at the end of every SCF cycle (only NDDO methods,
not DFTB)

= 3 Print MO eigenvalues during each step of the SCF cycle (only NDDO methods,
not DFTB)

qxd Flag to turn on (=.true.) or off (=.false., default) the charge-dependent exchange-
dispersion corrections of vdW interactions[125].

parameter_file

= ’PARAM.FILE’ Read user-defined parameters from the file ’PARAM.FILE’.
The first three space-separated entries (case insensitive) of each line will
be interpreted as a user-modified parameter in the sequence of parameter
name, element name, and value. For example, a line contains “USS Cl -
111.6139480D0 “ will cause the USS parameter of the Cl element changed to
-111.6139480. A line beginning with “END” will stop the reading. This func-
tion currently only works for MNDO, AM1, PM3, MNDO/d, and AM1/d.
Also, when new nuclear core-core parameters (FN, in PM3, AM1, and
AM1/d) are re-defined, the number of FNN parameter sets (NUM_FN) also
needs to be defined. For example, if FNn3 (n = 1, 2, or 3) is defined, then
NUM_FN needs to be set to 3 or 4.

peptide_corr

= 0 Don’t apply MM correction to peptide linkages. (default)

= 1 Apply a MM correction to peptide linkages. This correction is of the form
Esc f = Esc f +htype(itype)sin2

φ , where φ is the dihedral angle of the H-N-C-O
linkage and htype is a constant dependent on the Hamiltonian used. (Recom-
mended, except for DFTB/SCC-DFTB.)

itrmax Integer specifying the maximum number of SCF iterations to perform before as-
suming that convergence has failed. Default is 1000. Typically higher values will
not do much good since if the SCF hasn’t converged after 1000 steps it is unlikely
to. If the convergence criteria have not been met after itrmax steps the SCF will
stop and the minimisation will proceed with the gradient at itrmax. Hence if you
have a system which does not converge well you can set itrmax smaller so less
time is wasted before assuming the system won’t converge. In this way you may
be able to get out of a bad geometry quite quickly. Once in a better geometry SCF
convergence should improve.

maxcyc Maximum number of minimization cycles to allow, using the xmin minimizer (see
Section 19.5) with the TNCG method. Default is 9999. Single point calculations
can be done with maxcyc = 0.

ntpr Print the progress of the minimization every ntpr steps; default is 10.

grms_tol Terminate minimization when the gradient falls below this value; default is 0.02
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ndiis_attempts Controls the number of iterations that DIIS (direct inversion of the iterative sub-
space) extrapolations will be attempted. Not available for DFTB/SCC-DFTB. The
SCF does not even begin to exhaust its attempts at using DIIS extrapolations until
the end of iteration 100. Therefore, for example, if ndiis_attempts=50, then DIIS
extrapolations would be performed at end of iterations 100 to 150. The purpose
of not performing DIIS extrapolations before iteration 100 is because the exist-
ing code base performs quite well for most molecules; however, if convergence
is not met after 100 iterations, then it is presumed that further iterations will not
yield SCF convergence without doing something different, i.e., DIIS. Thus, the im-
plementation of DIIS in SQM is a mechanism to try and force SCF convergence
for molecules that are otherwise difficult to converge. Default 0. Maximum 1000.
Minimum 0. Note that DIIS will automatically turn itself on for 100 attempts at the
end of iteration 800 even if you did not explicitly set ndiis_attempts to a nonzero
value. This is done as a final effort to achieve convergence.

ndiis_matrices Controls the number of matrices used in the DIIS extrapolation. Including only
one matrix is the same as not performing an extrapolation. Including an excessive
number of matrices may require a large amount of memory. Not available for
DFTB/SCC-DFTB. Default 6. Minimum 1. Maximum 20.

vshift Controls level shifting (only NDDO methods, not DFTB). Virtual orbitals can be
shifted up by vshift (in eV) to improve SCF convergence in cases with small HO-
MO/LUMO gap. Default 0.0 (no level shift).

errconv SCF tolerance on the maximum absolute value of the error matrix, i.e., the com-
mutator of the Fock matrix with the density matrix. The value has units of hartree.
The default value of errconv is sufficiently large to effectively remove this tolerance
from the SCF convergence criteria. Not available for DFTB/SCC-DFTB. Default
1.d-1. Minimum 1.d-16. Maximum 1.d0.

qmmm_int When running QM calculations in the sqm program, an electric field of external
point charges can be added. In this way, the electrostatic effect outside of the QM
region can be modeled, making the calculation a simplified QM/MM calculation
without QM/MM vdW’s contribution. Like QM/MM calculations (see AMBER
12 manual), the method to couple QM and MM electrostatic interactions for ex-
ternal charges and semiempirical Hamiltonians can be specified via the qmmm_int
namelist variable.

The current implementation limits use of external charges to only single point en-
ergy calculations. To run such a calculation, an additional field, which begins with
#EXCHARGES and ends with #END, is required to specify the external point
charges in the input. Each external point charge must include atomic number, atom
name, X, Y, Z coordinates and the charge in units of the electron charge. An exam-
ple input looks like:

single point energy calculation (adenine), with external charges (thymine)
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&qmmm

qm_theory = ’PM3’,

qmcharge = 0,

maxcyc = 0,

qmmm_int = 1,

/

7 N 1.0716177 -0.0765366 1.9391390

1 H 0.0586915 -0.0423765 2.0039181

1 H 1.6443796 -0.0347395 2.7619159

6 C 1.6739638 -0.0357766 0.7424316

7 N 0.9350155 -0.0279801 -0.3788916

6 C 1.5490760 0.0012569 -1.5808009

1 H 0.8794435 0.0050260 -2.4315709

7 N 2.8531510 0.0258031 -1.8409596

6 C 3.5646109 0.0195446 -0.7059872

6 C 3.0747955 -0.0094480 0.5994562

7 N 4.0885824 -0.0054429 1.5289786

6 C 5.1829921 0.0253971 0.7872176

1 H 6.1882591 0.0375542 1.1738824

7 N 4.9294871 0.0412404 -0.5567274

1 H 5.6035368 0.0648755 -1.3036811

#EXCHARGES

6 C -4.7106131 0.0413373 2.1738637 -0.03140

1 H -4.4267056 0.9186178 2.7530256 0.06002

1 H -4.4439282 -0.8302573 2.7695655 0.05964

1 H -5.7883971 0.0505530 2.0247280 0.03694

6 C -3.9917387 0.0219348 0.8663338 -0.25383

6 C -4.6136833 0.0169051 -0.3336520 0.03789

1 H -5.6909220 0.0269347 -0.4227183 0.16330

7 N -3.9211729 -0.0009646 -1.5163659 -0.47122

1 H -4.4017172 -0.0036078 -2.4004924 0.35466

6 C -2.5395897 -0.0149474 -1.5962357 0.80253

8 O -1.9416783 -0.0291878 -2.6573783 -0.63850

7 N -1.9256484 -0.0110593 -0.3638948 -0.58423

1 H -0.8838255 -0.0216168 -0.3784269 0.35404

6 C -2.5361367 0.0074651 0.8766724 0.71625

8 O -1.8674730 0.0112093 1.9120833 -0.60609

#END
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For many years, ptraj has been the workhorse for trajectory analysis in Amber. It is able
to perform many types of analyses and can process multiple trajectories. However, one of its
limitations is that all coordinates in a given ptraj run must correspond to a single topology file.
This prevents certain types of analysis, for example calculating the RMSD of a coordinate frame
to a reference frame with a different topology.

Cpptraj is a complimentary program to ptraj that can process trajectory files with different
topology files in the same run. Although certain parts of the ptraj code are used in cpptraj,
it is overall a completely new code base written primarily in C++ with an eye towards mak-
ing future code development and additions as easy as possible. In addition to reading multiple
topology files, cpptraj can read multiple reference structures, write multiple output files (for
which specific frames to be written can be specified), stripped topology files (currently useable
for visualization only), output multiple data sets to the same data file (e.g. two dihedral cal-
culations like phi and psi can be written to one file), and has native support for compressed
files along with many other improvements. The code is at least as fast as ptraj, and in many
cases is faster, particularly when processing NetCDF trajectories. In addition, several actions
have been parallelized with OpenMP to take advantage of multi-core machines for even more
speedup (see section 8.2.6). Currently all ptraj actions and analyses except for clustering are
implemented in cpptraj.

Cpptraj has been developed with an eye towards making it backwards-compatible with ptraj
input. In general, if a command in ptraj has been implemented in cpptraj it should produce
similar results, although the output format may be different. NOTABLE EXCEPTIONS are the
hbond and cluster commands, which are quite different (see command syntax for details).

For a description of ptraj, see chapter 9.

8.1 Running cpptraj

8.1.1 Command Line Syntax

cpptraj [-p <Top0>] [-i <Input0>] [-y <trajin>] [-x <trajout>] [-h | --help]

[-V | --version] [--defines] [-debug <#>] [--interactive] [--log <logfile>]

-p <Top0> Load <Top0> as a topology file. May be specified more

than once.

-i <Input0> Read input from <Input0>. May be specified more than

once.

-y <trajin> Read from trajectory file <trajin>; same as input

’trajin <trajin>’.
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-x <trajout> Write trajectory file <trajout>; same as input

’trajout <trajout>’.

-h | –help Print command line help and exit.

-V | –version Print version and exit.

–defines Print compiler defines and exit.

-debug <#> Set global debug level to <#>; same as input ’debug

<#>’.

–interactive Force interactive mode.

–log <logfile> Record commands to <logfile> (interactive mode

only). Default is ’cpptraj.log’.

For backwards compatibility with ptraj, the following syntax is also accepted:

cpptraj <Top> <Input>

Note that unlike ptraj, in cpptraj it is not required that a topology file be specified on the
command line as long as one is specified in the input file with the ’parm’ keyword. Multiple
topology/input files can be specified by use of multiple ’-p’ and ’-i’ flags.

The syntax of <input file> is similar to that of ptraj. Keywords specifying different com-
mands are given one per line. Lines beginning with ’#’ are ignored as comments. Lines can
also be continued through use of the ’\’ character.

8.1.2 Interactive mode

If run with ’–interactive’, no arguments, or no specified input file:

cpptraj

cpptraj --interactive

cpptraj <parm file>

cpptraj -p <parm file>

this brings up the interactive interface. This interface supports command history (via the up
arrow) and tab completion for file names. If no log file name has been given, all commands
used in interactive mode will be logged to a file named ’cpptraj.log’.

8.2 General Concepts

8.2.1 Important Differences from ptraj

The overall flow of cpptraj is similar to ptraj. First the run is set up via commands read
in from an input file or the interactive prompt. Trajectories are then read in one frame at a
time. Actions are performed on the coordinates stored in the frame, after which any output
coordinates are written. At the end of the run, any data sets generated are written.

Some of the most notable differences from ptraj are as follows:
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1. Cpptraj has many actions not implemented in ptraj:

a) nastruct: basic nucleic acid structure analysis

b) surf: calculate LCPO surface area.

c) molsurf: calculate Connolly surface area (same as $AMBERHOME/bin/molsurf).

d) jcoupling: calculate J-coupling values from dihedral angles.

e) rotdif: calculate rotational diffusion tensor

f) multidihedral: Calculate multiple dihedral angles.

g) makestructure: Automatically impose torsion values on specified dihedral angles.

h) symmrmsd: Perform symmetry-corrected RMSD calculation.

i) volmap: Grid data as a volumetric map, similar to the ’volmap’ command in VMD.

j) lie: Calculate linear interaction energy.

2. Several actions/analyses in cpptraj are OpenMP parallelized; see section 8.2.6 for more
details.

3. Any file read or written by cpptraj can be compressed (with the exception of binary
trajectories like NetCDF/DCD/TRX). So for example gzipped/bzipped topology files can
be read, and data files can be written out as gzip/bzip2 files. Compression is detected
automatically when reading, and is determined by the filename extension (.gz and .bz2
respectively) on writing.

4. If two actions specify the same data file with the ’out’ keyword, data from both actions
will be written to that data file.

5. Data files can be written in xmgrace format if the filename given has a ’.agr’ extension.
Data files can also be written in a contour map style readable by gnuplot if the filename
given has a ’.gnu’ extension.

6. Multiple output trajectories can be specified, and can be written during action processing
(as opposed to only after) via the outtraj command. In addition, output files can be
directed to write only specific frames from the input trajectories.

7. Multiple reference structures can be specified. Specific frames from trajectories may be
used as a reference structure.

8. The rmsd action allows specification of a separate mask for the reference structure. In
addition, per-residue RMSD can be calculated easily.

9. When stripping coordinates with the strip/closest actions, a fully-functional stripped
topology file can be written out.

10. Data files declared in actions using the “out” keyword can have their format altered some-
what (for example, the precision of the numbers can be changed). In addition, new data
files can be created from existing data sets.
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8.2.2 Actions and multiple topologies

Since cpptraj supports multiple topology files, actions are set up every time the topology
changes in order to recalculate things like what atoms are in a mask etc. Actions that are not
valid for the current topology are skipped for that topology. So for example given two
topology files with 100 residues, if the first topology file processed includes a ligand named
MOL and the second one does not, the action:

distance :80 :MOL out D_80-to-MOL.dat

will be valid for the first topology but not for the second, so it will be skipped as long as the
second topology is active.

8.2.3 Atom Mask Selection Syntax

The mask syntax is similar to ptraj. Note that the characters ’:’, ’@’, and ’*’ are reserved
for masks and should not be used in output file or data set names. All masks are case-sensitive.
Either names or numbers can be used. Masks can contain ranges (denoted with ’-’) and comma
separated lists. The logical operands ’&’ (and), ’|’ (or), and ’!’ (not) are also supported.

The syntax for elementary selections is the following:

:{residue numlist} e.g. [:1-10] [:1,3,5] [:1-3,5,7-9]

:{residue namelist} e.g. [:LYS] [:ARG,ALA,GLY]

@{atom numlist} e.g. [@12,17] [@54-85] [@12,54-85,90]

@{atom namelist} e.g. [@CA] [@CA,C,O,N,H]

Several wildcard characters are supported:

’*’ -- zero or more characters.

’?’ -- one character.

’=’ -- same as ’*’

The wildcards can also be used with numbers or other mask characters, e.g. ’:?0’ means
“:10,20,30,40,50,60,70,80,90”, ’:*’ means all residues and ’@*’ means all atoms.

Compound expressions of the following type are allowed:

:{residue numlist | namelist}@{atom namelist | numlist}

and are processed as:

:{residue numlist | namelist} & @{atom namelist | numlist}

e.g. ’:1-10@CA’ is equivalent to “:1-10 & @CA”.
More examples:

:ALA,TRP All alanine and tryptophan residues.

:5,10@CA CA carbon in residues 5 and 10.

:*&!@H= All non-hydrogen atoms (equivalent to "!@H=").
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@CA,C,O,N,H All backbone atoms.

!@CA,C,O,N,H All non-backbone atoms (=sidechains for proteins only).

:1-500@O&!(:WAT|:LYS,ARG) All backbone oxygens in residues 1-500 but not in water, lysine
or arginine residues.

Distance-based Masks

The syntax for selection by distance is ’<:’, ’>:’, (residue based), and ’<@’, ’>@’, (atom
based). The ’<’ character means within, and ’>’ means without, e.g.

[:11-17 <@ 2.4]

means all atoms within 2.4 A distance to :11-17. Selection by distance for everything but the
mask action requires defining a reference frame with reference. For example, to strip all
residues farther than 3.0 Å (i.e. not within 3.0 Å) from residue 4 using reference coordinates:

reference mol.rst7

trajin mol.crd

strip !(:4<:3.0)

Distance-based masks that update each frame are currently only supported by the mask action.

8.2.4 Ranges

For several commands some arguments are ranges (e.g. ’trajout onlyframes <range>’, ’nas-
truct resrange <range>’, ’rmsd perres range <range>’); THESE ARE NOT ATOM MASKS.
They are simple number ranges using ’-’ to specify a range and ’,’ to separate different ranges.
For example 1-2,4-6,9 specifies 1 to 2, 4 to 6, and 9, i.e. ’1 2 4 5 6 9’.

8.2.5 Parameter/Reference Tagging

Parameter and reference files may be ’tagged’ (i.e. given a nickname); these tags can then
be used in place of the file name itself. A tag in cpptraj is recognized by being bounded by
brackets (’[’ and ’]’). This can be particularly useful when reading in many parameter or
reference files. For example, when reading in multiple reference structures:

trajin Test1.crd

reference 1LE1.NoWater.Xray.rst7 [xray]

reference Test1.crd lastframe [last]

reference Test2.crd 225 [open]

rms Xray ref [xray] :2-12@CA out rmsd.dat

rms Last ref [last] :2-12@CA out rmsd.dat

rms Open ref [open] :2-12@CA out rmsd.dat

This defines three reference structures and gives them tags [xray], [last], and [open]. These
reference structures can then be referred to by their tags instead of their filenames by any action
that uses reference structures (in this case the RMSD action).

Similarly, this can be useful when reading in multiple parameter files:
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parm tz2.ff99sb.tip3p.truncoct.parm7 [tz2-water]

parm tz2.ff99sb.mbondi2.parm7 [tz2-nowater]

trajin tz2.run1.explicit.nc parm [tz2-water]

reference tz2.dry.rst7 parm [tz2-nowater] [tz2]

rms ref [tz2] !(:WAT) out rmsd.dat

This defines two parm files and gives them tags [tz2-water] and [tz2-nowater], then reads in a
trajectory associated with one, and a reference structure associated with the other. Note that
in the ’reference’ command there are two tags; the first goes along with the ’parm’ keyword
and specifies what parameter file the reference should use, the second is the tag given to the
reference itself (as in the previous example) and is referred to in the subsequent RMSD action.

8.2.6 OpenMP Parallelization

Some of the more time-consuming actions in cpptraj have been parallelized with OpenMP
to take advantage of machines with multiple cores. In order to use OpenMP parallelization
Amber should be configured with the ’-openmp’ flag. You can easily tell if cpptraj has been
compiled for OpenMP by calling ’cpptraj –defines’ and looking for ’-D_OPENMP’. The
following actions have been OpenMP parallelized:

closest

mask (distance-based masks only)

radial

rmsavgcorr

secstruct

surf

atomiccorr

watershell

2drms

cluster (pair-wise distance calculation only)

By default OpenMP cpptraj will use all available cores. Note that if the
OMP_NUM_THREADS environment variable is set it will force cpptraj to use however
many cores are specified by the variable.

8.3 Data Sets and Data Files

In cpptraj, most actions will generate one or more data sets which are available for further
processing via Analysis commands. For example, the ’distance’ command creates a data set
containing distances vs time. The data set can be named by the user simply by specifying a
non-keyword string as an additional argument. If no name is given, a default one will be
generated based on the action name and data set number. For example:

distance d1-2 :1 :2 out d1-2.dat

will create a data set named “d1-2”. If a name is not specified, e.g.:
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distance :1 :2 out d1-2.dat

the data set will be named “Dis_00000”.
Data files are created automatically by most commands, usually via the “out” keyword.

Data files can also be explicitly created with the ’write’ and ’create’ commands. Data files can
currently be written in one of three formats: standard data file, grace file, and gnuplot contour.
Data file simply has data in columns, like ptraj. Grace files can be read in by xmgrace.
Gnuplot contour files consist of a series of gnuplot commands followed by the actual data;
each set is printed to a row. The format is specified by the file suffix, so that ’filename.agr’ will
output in grace format, ’filename.gnu’ will output in gnuplot contour, and anything else is a
normal data file. The xmgrace/gnuplot output is particularly nice for the secstruct sumout and
rmsd perresout files. Any action using the “out” keyword will allow data sets from separate
commands to be written into the same file. For example, the commands:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat

dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat

will assign the “phi” and “psi” data sets generated from each action to the standard data output
file “phipsi.dat”:

#Frame phi psi

8.3.1 Data Set Selection Syntax

Many analysis commands can be used to analyze multiple data sets. The general format for
selecting data sets is:

<name>[<aspect>]:<index>

The ’*’ character can be used as a wild-card.

• <name>: The data set name, usually specified in the action (e.g. in ’distance d0 @1 @2’
the data set name is “d0”).

• <aspect>: Optional; this is set for certain data sets internally in order to easily select
subsets of data. The brackets are required. For example, when using ’hbond series’,
both solute-solute and solute-solvent hydrogen bond time series may be generated. To
select all solute-solute hydrogen bonds one would use the aspect “[solutehb]”; to select
solute-solvent hydrogen bonds the aspect “[solventhb]” would be used. Aspects are hard-
coded and are listed in the commands that use them.

• <index>: Optional; for actions that generate many data sets (such as ’rmsd perres’) an
index is used. Depending on the action, the index may correspond to atom #s, residue #s,
etc. A number range (comma and/or dash separated) may be used.

For example: to select all data sets with aspect “[shear]” named NA_00000:

NA_00000[shear]

To select all data sets with aspect “[stagger]” with any name, indices 1 and 3:

*[stagger]:1,3
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8.4 Coordinates as a Data Set (COORDS Data Sets)

Coordinate I/O tends to be the most time-consuming part of trajectory analysis. In addition,
many types of analyses (for example two-dimensional RMSD and cluster analysis) require us-
ing coordinate frames multiple times. To simplify this, trajectory coordinates may be saved as
a separate data set. Any action can then be performed on the COORDS data set with the crdac-
tion command. The crdout command can be used to write coordinates to an output trajectory
(similar to trajout).

There are several analyses that can be performed on COORDS data sets, either as part of the
normal analysis list or via the runanalysis command. Note that while these analyses can be
run on specified COORDS data sets, if one is not specified a default COORDS data set will be
created, made up of frames from trajin commands.

As an example of where this might be useful is in the calculation of atomic positional
fluctuations. Previously this required two steps: one to generate an average structure, then a
second to rms-fit to that average structure prior to calculating the fluctuations. This can now be
done in one pass with the following input:

parm topology.parm7

loadcrd mdcrd.nc

# Generate average structure PDB, @CA only

crdaction mdcrd.nc average avg.pdb @CA

# Load average structure PDB as reference

parm avg.pdb

reference avg.pdb parm avg.pdb

# RMS-fit to average structure PDB

crdaction mdcrd.nc rms reference @CA

# Calculate atomic fluctuations for @CA only

crdaction mdcrd.nc atomicfluct out fluct.dat bfactor @CA

8.4.1 crdaction

crdaction <crd set> <actioncmd> [<action args>] [crdframes <start>,<stop>,<offset>]

Perform action <actioncmd> on COORDS data set <crd set>. A subset of frames in the
COORDS data set can be specified with ’crdframes’. For example, to calculate RMSD for a
previously created COORDS data set named crd1 using frames 1 to the last, skipping every 10:

crdaction crd1 rmsd first @CA out rmsd-ca.agr crdframes 1,last,10

8.4.2 crdout

crdout <crd set> <filename> [<trajout args>] [crdframes <start>,<stop>,<offset>]
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Write COORDS data set <crd set> to trajectory named <filename>. A subset of frames in the
COORDS data set can be specified with ’crdframes’. For example, to write frames 1 to 10
from a previously created COORDS data set named “crd1” to separate PDB files:

crdout crd1 crd1.pdb multi crdframes 1,10

8.4.3 createcrd

createcrd [<name>] [ parm <name> | parmindex <#> ]

Create a COORDS data set named <name> for frames from trajin commands that are associated
with the specified topology.

8.4.4 loadcrd

loadcrd <filename> [parm <parm> | parmindex<#>] [<trajin args>] [<name>]

Immediately load trajectory <filename> as a COORDS data set named <name> (default base of
<filename>).

8.5 General Commands

Commands in cpptraj can be read in from an input file or from the interactive command
prompt. A ’#’ anywhere on a line denotes a comment; anything after ’#’ will be ignored no
matter where it occurs. A ’\’ allows the continuation of one line to another. For example, the
input:

# Sample input

trajin mdcrd # This is a trajectory

rms first out rmsd.dat \

:1-10

Translates to:

[trajin mdcrd]

[rms first out rmsd.dat :1-10]

If in interactive mode, ’help <command>’ can be used to get the associated keywords as well as
an abbreviated description of the command. Most commands have a corresponding test which
also serves as an example of how to use the command. See $AMBERHOME/AmberTool-
s/test/cpptraj/README for more details.

8.5.1 activeref

activeref <#>

Set which reference structure should be used when setting up distance-based masks for every-
thing but the ’mask’ action. Numbering starts from 0, so ’activeref 0’ selects the first reference
structure read in, ’activeref 1’ selects the second, and so on.
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8.5.2 clear

clear [{all | <type>}]

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Clear list of indicated type, or all lists if ’all’ specified. Note that when clearing actions or
analyses, associated data sets and data files are not cleared and vice versa.

• actions: Actions.

• analysis: Analyses.

• trajin: Input trajectories.

• trajout: Output trajectories.

• ref: Reference Coordinates.

• parm: Topology files.

• datafile: Data files.

• dataset: Data sets.

8.5.3 create (formerly ’datafile create’)

create <filename> <datasetname0> [<datasetname1> ...]

Add a new datafile to the datafile list using one or more existing data sets. In general, actions
which allow one to specify <dataset name> can be used to create a datafile. Data files created
in this way are only written at the end of coordinate processing or via the ’writedata’ command.

8.5.4 datafile

datafile <filename> <datafile arg>

Pass <datafile arg> to data file <filename>. See 8.8 on page 229 for more details.

8.5.5 debug | prnlev

debug [<type>] <#>

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Set the level of debug information to print. In general the higher the <#> the more information
that is printed. If <type> is specified only set the debug level for a specific area of cpptraj:

• actions: Set debug level for actions.

• analysis: Set debug level for analyses.
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• trajin: Set debug level for input trajectories.

• trajout: Set debug level for output trajectories.

• ref: Set debug level for reference coordinates/trajectories.

• parm: Set debug level for parameter files.

• datafile: Set debug level for data files.

• dataset: Set debug level for DataSets.

8.5.6 exit | quit

Exit normally.

8.5.7 gnuplot

gnuplot <args>

Call gnuplot (if it is installed on your system) with the given arguments.

8.5.8 go | run

Begin trajectory processing, followed by analysis and datafile write.

8.5.9 head | ls | pwd

Function just as their UNIX equivalents do; ’head’ lists the first few lines of a file, ’ls’ lists
the contents of a directory, and ’pwd’ prints the current working directory.

8.5.10 help

help {[<command>] | General | Action | Analysis | Topology | Trajectory}

By itself, list all commands known to cpptraj. If given with a command, print help for that com-
mand. Otherwise, list all commands of a certain category (General, Action, Analysis, Topology,
or Trajectory).

8.5.11 list

list <type>

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

List the currently loaded objects of <type>:

• actions: Actions.
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• analysis: Analyses.

• trajin: Input trajectories.

• trajout: Output trajectories.

• ref: Reference Coordinates.

• parm: Topology files.

• datafile: Data files.

• dataset: Data sets.

8.5.12 noexitonerror

noexitonerror

Normally cpptraj will exit if actions fail to initialize properly. If noexitonerror is specified,
cpptraj will attempt to continue past such errors. This is the default if in interactive mode.

8.5.13 noprogress

noprogress

Do not display read progress during trajectory processing.

8.5.14 precision (formerly ’datafile precision’)

precision {<filename> | <dataset arg>} [<width>] [<precision>]

Set the precision for all datasets in datafile <filename> or dataset(s) specified by <dataset arg>
to width.precision, where width is the column width and precision is the number of digits after
the decimal point. Note that the <precision> argument only applies to floating-point data sets.

For example, if one wanted to set the precision of the output of an Rmsd calculation to 8.3,
the input could be:

trajin ../run0.nc

rms first :10-260 out prec.dat

precision prec.dat 8 3

and the output would look like:

#Frame RMSD_00000

1 0.000

2 0.630
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8.5.15 readdata

readdata <filename>

Read data from file <filename> and store as datasets. Currently raw whitespace-delimited
column data and xmgrace files can be read. For raw data files, dataset legends will be read in if
the file has a header line (denoted by ’#’). Columns labeled ’#Frame’ are skipped. Datasets
will be stored as <filename>:<idx> where <idx> is the column data was read from or the
xmgrace set number. NOTE: explicit X values are currently not read in. For example, given
the file calc.dat:

#Frame R0 D1

1 1.7 2.22

would be read into two data sets, calc.dat:2 (which is R0) and calc.dat:3 (which is D1).

8.5.16 readinput

readinput <filename>

Read cpptraj commands from file <filename>.

8.5.17 runanalysis

runanalysis [<analysiscmd> [<analysis args>]]

Run given analysis command immediately and write any data generated. If no command is
given run any analysis currently set up. NOTE: When ’runanalysis’ is specified alone, data is not
automatically written; to write data generated with ’runanalysis’ use the ’writedata’ command
(this allows multiple analysis runs between output if desired).

8.5.18 select

select <mask>

Prints the number of selected atoms corresponding to the given mask, as well as the atom
numbers with format:

Selected= <#atom1> <#atom2> ...

This does not affect the state in any way, but is intended for use in scripts etc. for testing the
results of a mask expression.

8.5.19 selectds

selectds <dataset arg>

Show the results of a data set selection. Data set selection has the format:
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<name>[<aspect>]:<index>

Either the [<aspect>] or the <index> arguments may be omitted. A ’*’ can be used in place of
<name> or [<aspect>] as a wildcard. The <index> argument can be a single number or a range
separated by ’-’ and ’,’.

This command does not affect the state in any way, but is particularly useful in interactive
mode for determining the results of a dataset argument.

8.5.20 write

write <filename> <datasetname0> [<datasetname1> ...]

Write specified data set(s) to <filename>. This is like the ’create’ command except a data file is
not added to the data file list; it is written immediately.

8.5.21 writedata

Write any currently set up data files to disk.

8.5.22 xmgrace

xmgrace <args>

Call xmgrace (if it is installed on your system) with the given arguments.

8.6 Parameter File Commands

These commands control the reading and writing of parameter files.

8.6.1 parm

parm <filename> ([tag]) [bondsearch <offset>] [nobondsearch]

<filename>: Parameter file to read in; format is auto-detected.

([tag]): Optional tag (bounded in brackets) which can be referred

to in place of the parameter file name in order to simplify

references to the parameter file (see 8.2.5 on page 211 for

examples of how to use tags).

[bondsearch <offset>]: Optional; when searching for bonds via

geometry search (default for Topologies without bond

information) add <offset> to distances (default 0.2 Å).

Increase this if your system includes unusually long bonds.

[nobondsearch]: Optional; if specified do not search for bonds

via geometry if Topology does not include bond information.

May cause some actions to fail.

220



8.6 Parameter File Commands

Read in parameter file. Currently can read Amber topology, PDB, TRIPOS MOL2, and
Charmm PSF files.

IMPORTANT NOTES FOR PDB FILES

In some PDB files, certain atoms contain the (*) character in their name (e.g. C1* in a nucleic
acid backbone). Since in cpptraj (*) is a reserved character for atom masks all (*) in PDB atom
names are replaced with (’) to avoid issues with the mask parser. So in a structure with an atom
named C1*, to select it use the mask “@C1”’.

Sometimes PDB files can contain alternate coordinates for the same atom in a residue, e.g.:

ATOM 806 CA ACYS A 105 6.460 -34.012 -21.801 0.49 32.23

ATOM 807 CB ACYS A 105 6.054 -33.502 -20.415 0.49 35.28

ATOM 808 CA BCYS A 105 6.468 -34.015 -21.815 0.51 32.42

ATOM 809 CB BCYS A 105 6.025 -33.499 -20.452 0.51 35.38

If this is the case cpptraj will print a warning about duplicate atom names but will take no other
action. Both residues are considered ’CYS’ and the mask ’:CYS@CA’ would select both atom
806 and 809.

8.6.2 bondinfo

bondinfo [<mask>] [<parmindex>]

Print bond information for atoms in <mask> for parm <parmindex> (0, first parm loaded by
default) with format:

Atom <atom1> to <atom2> EQ=<eq> [K=<kb>]

where <atom1> and <atom2> are the atoms involved in the bond, <eq> is the equilibrium bond
length, and <kb> is the bond force constant (if Topology has bond parameters).

8.6.3 charge

charge [<parmindex>] <mask>

Print the total charge of atoms in <mask> for topology <parmindex> (0 by default).

8.6.4 molinfo

parmmolinfo [<parmindex>]

Print molecule information for atoms in <mask> for parm <parmindex> (0, first parm loaded
by default) with format:

Molecule <mol>, <natom> atoms, first residue <resname> [SOLVENT]
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where <mol> is the molecule number, <natom> is the number of atoms in the molecule, and
<resname> is the residue name of the first residue in the molecule. SOLVENT will be printed
if currently considered a solvent molecule.

8.6.5 parmbox

parmbox [<parmindex>] [x <xval>] [y <yval>] [z <zval>]

[alpha <a>] [beta <b>] [gamma <g>] [nobox]

[<parmindex>] Index of parm to modify starting from 0; default is

0.

[x <xval>] Box X length.

[y <yval>] Box Y length.

[z <zval>] Box Z length.

[alpha <a>] Box alpha angle.

[beta <b>] Box beta angle.

[gamma <g>] Box gamma angle.

[nobox] Remove box information.

Modify the box information for specified topology. Overwrites any box information if present
with specified values; any that are not specified will remain unchanged. Note that unlike the
’box’ action this command affect box information immediately. This can be useful for e.g.
removing box information from a parm when stripping solvent:

parm mol.water.parm7

parmstrip :WAT

parmbox nobox

parmwrite out strip.mol.nobox.parm7

8.6.6 parminfo

parminfo [<parmindex>] [<mask>]

Print out parm information for atoms in <mask> for the parm specified by <parmindex> (par-
mindex 0 i.e. the first parm if not specified). If no mask is given, general information about the
parameter file is printed.

8.6.7 parmstrip

parmstrip [<mask>] [<parmindex>]

Strip atoms in <mask> from parm specified by <parmindex> (0, first parm loaded by default).
Note that unlike the strip action, this permanently modifies the parm for all subsequent
commands. This command can be used to e.g. quickly created stripped Amber topology files:
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parm mol.water.parm7

parmstrip :WAT

parmwrite out strip.mol.parm7

8.6.8 parmwrite

parmwrite out <filename> [<parmindex>]

Write out parm specified by <parmindex> (0, first parm loaded by default) to <filename> in
Amber topology format.

8.6.9 resinfo

resinfo [<mask>] [<parmindex>]

Print residue information for atoms in <mask> for parm <parmindex> (0, first parm loaded by
default) with format:

Residue <resnum> <resname> first atom <atomnum> last atom <atomnum>

where <resnum> is the residue number, <resname> is the residue name, and <atomnum> are
the first and last atom numbers of the residue.

8.6.10 solvent

solvent [<parmindex>] <mask>

Set solvent for the given parm (default 0) based on <mask>.

8.7 Trajectory File Commands

These commands control the reading and writing of trajectory files. In cpptraj, trajectories
are always associated with a parameter file. If a parameter file is not specified, a trajectory file
will be associated with the first parameter file loaded by default. There are three trajectory types
in cpptraj: input, output, and reference.

8.7.1 trajin

trajin <filename> {[<start> [<stop> | last] [<offset>]]} | lastframe

[parm <parmfile> | parmindex <#>]

[ remdtraj {remdtrajtemp <Temperature> | remdtrajidx <#>}

[trajnames <file1>,<file2>,...,<fileN>] ]

<filename> Trajectory file to read in.
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Format Keyword(s) Extension
Amber Trajectory (none needed) .crd
Amber NetCDF netcdf .nc
Amber Restart restart .rst7

Amber NetCDF Restart ncrestart, restartnc .ncrst
Charmm DCD dcd, charmm .dcd

PDB pdb .pdb
Mol2 mol2 .mol2

Scripps Binpos binpos .binpos
Gromacs TRR trr .trr

Table 8.1: Input/output trajectory formats recognized by cpptraj.

<start> Frame to begin reading at (default 1).

<stop> | last Frame to stop reading at; if not specified or ’last’

specified, end of trajectory.

<offset> Offset for reading in trajectory frames (default 1).

lastframe Select only the final frame of the trajectory.

parm <parmfile> Topology filename/tag to associate with

trajectory (default first topology).

parmindex <#> Index of Topology to associate with trajectory

(default 0, first topology).

remdtraj Read <filename> as the first replica in a group of

replica trajectories.

remdtrajtemp <Temperature> | remdtrajidx <#> Use frames at

<Temperature> (for temperature replica trajectories) or

index <#> (for Hamiltonian replica trajectories);

multiple dimensions are comma-separated.

trajnames Do not automatically search for additional replica

trajectories; use comma-separated list of trajectory

names.

Read in trajectory specified by filename. See 8.1 for currently recognized file formats. If just
the <start> argument is given, all frames from <start> to the last frame of the trajectory will be
read. To read in a trajectory with offsets where the last frame # is not known, specify the last
keyword instead of a <stop> argument, e.g.

trajin Test1.crd 10 last 2

This will process Test1.crd from frame 10 to the last frame, skipping by 2 frames. To explicitly
select only the last frame, specify the lastframe keyword:

trajin Test1.crd lastframe
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Here is an example of loading in multiple trajectories which have difference topology files:

parm top0.parm7

parm top1.parm7

parm top2.parm7 [top2]

parm top3.parm7

trajin Test0.crd

trajin Test1.crd parm top1.parm7

trajin Test2.crd parm [top2]

trajin Test3.crd parmindex 3

Test0.crd is associated with top0.parm7; since no parm was specified it defaulted to the first
parm read in. Test1.crd was associated with top1.parm7 by filename, Test2.crd was associated
with top2.parm7 by its tag, and finally Test3.crd was associated with top3.parm7 by its index
(based on the order it was read in).

Replica Trajectory Processing

If the remdtraj keyword is specified the trajectory is treated as belonging to the lowest #
replica of a group of REMD trajectories. The remaining replicas can be either automatically
detected by following a naming convention of <REMDFILENAME>.X, where X is the replica
number, or explicitly specified in a comma-separated list following the trajnames keyword.
All trajectories will be processed at the same time, but only frames with a temperature
matching the one specified by remdtrajtemp or remdtrajidx will be processed. For example,
to process replica trajectories rem.001, rem.002, rem.003, and rem.004, grabbing only the
frames at temperature 300.0 (assuming that this is a temperature in the ensemble):

trajin rem.001 remdtraj remdtrajtemp 300

or

trajin rem.001 remdtraj remdtrajtemp 300 trajnames rem.002,rem.003,rem.004

Note that the remdout keyword is deprecated. For this functionality see the ensemble keyword.

8.7.2 ensemble

ensemble <file0> {[<start> [<stop> | last] [<offset>]]} | lastframe

[parm <parmfile> | parmindex <#>]

[trajnames <file1>,<file2>,...,<fileN>]

<file0> Lowest replica filename.

<start> Frame to begin reading ensemble at (default 1).

<stop> | last Frame to stop reading ensemble at; if not specified

or ’last’ specified, end of trajectories.
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<offset> Offset for reading in trajectory frames (default 1).

lastframe Select only the final frame of the trajectories.

parm <parmfile> Topology filename/tag to associate with

trajectories (default first topology).

parmindex <#> Index of Topology to associate with trajectories

(default 0, first topology).

trajnames Do not automatically search for additional replica

trajectories; use comma-separated list of trajectory names.

Read in and process trajectories as an ensemble. Similar to ’trajin remdtraj’, except instead of
processing one frame at a target temperature, process all frames. This means that action and
trajout commands apply to the entire ensemble. For example, to read in a replica ensemble,
convert it to temperature trajectories, and calculate a distance at each temperature:

parm ala2.99sb.mbondi2.parm7

ensemble rem.crd.000 trajnames rem.crd.001,rem.crd.002,rem.crd.003

trajout temp.crd

distance d1 out d1.ensemble.dat @1 @21

This will output 4 temperature trajectories named temp.crd.X, where X ranges from 0 to 3 with
0 corresponding to the lowest temperature, and d1.ensemble.dat containing 4 columns, each
corresponding to a temperature.

8.7.3 trajout

trajout <filename> [<fileformat>] [append] [nobox]

[parm <parmfile> | parmindex <#>] [onlyframes <range>] [title <title>]

[start <start>] [stop <stop>] [offset <offset>]

[ <Format Options> ]

<filename> Trajectory file to write to.

<fileformat> Keyword specifying output format (see table below).

If not specified format will be determined from extension,

otherwise default to Amber trajectory.

append If <filename> exists, frames will be appended to

<filename>.

nobox Do not write box coordinates to trajectory.

parm <parmfile> Topology filename/tag to associate with

trajectory (default first topology).

parmindex <#> Index of Topology to associate with trajectory

(default 0, first topology).

onlyframes <range> Write only the specified input frames to

<filename>.
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title <title> Output trajectory title.

start <start> Begin output at frame <start> (1 by default).

stop <stop> End output at frame <stop> (last frame by default).

offset <offset> Skip <offset> frames between each output (1 by

default).

File Format Options:

Options for pdb format: [model | multi] [dumpq] [chainid <ID>]

model (Default) Frames will be written to a single PDB file

separated by MODEL/ENDMDL keywords.

multi Each frame will be written to a separate file with the

frame # appended to <filename>.

dumpq PQR format; write charges (in units of e-) and GB radii

to occupancy and B-factor columns respectively.

chainid <ID> Write PDB file with chain ID <ID> (by default PDB

files are written without a chain ID).

Options for Amber format: [remdtraj] [highprecision]

remdtraj Write REMD header to trajectory that includes

temperature: ’REMD <Replica> <Step> <Total_Steps>

<Temperature>’. Since cpptraj has no concept of replica

number, 0 is printed for <Replica>. <Step> and

<Total_Steps> are set to the current frame #.

highprecision: (EXPERT USE ONLY) Write with 8.6 precision instead

of 8.3. Note that since the width does not change, the

precision of large coords may be lower than 6.

Options for NetCDF format: [remdtraj]

remdtraj Write replica temperature to trajectory.

Options for Restart/NetCDF Restart format: [remdtraj] [novelocity]

[time0 <initial time>] [dt <timestep>]

remdtraj Write replica temperature to restart.

novelocity Do not include velocity information.

time0 <initial time>, dt <timestep> Restart time will be calculated as

’<initial time> + currentSet) * <timestep>’.

Options for mol2 format: [single | multi]

single (Default) Frames will be written to a single Mol2 file

separated by MOLECULE keywords.

multi Each frame will be written to a separate file with the

frame # appended to <filename>.
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Write trajectory specified by filename in specified file format (Amber trajectory if none spec-
ified). See 8.1 for currently recognized output trajectory formats and their associated key-
word(s). Note that now the file type can be determined from the output extension if not specified
by a keyword. Multiple output trajectories of any format can be specified.

Frames will be written to the output trajectory when the parameter file being
processed matches the parameter file the output trajectory was set up with. So given the
input:

parm top0.parm7

parm top1.parm7 [top1]

trajin input0.crd

trajin input1.crd parm [top1]

trajout output.crd parm [top1]

only frames read in from input1.crd (which is associated with top1.parm7) will be written to
output.crd. The trajectory input0.crd is associated with top0.parm7; since no output trajectory is
associated with top0.parm7 no frames will be written when processing top0.parm7/input0.crd.

If onlyframes <range> is given, only input frames matching the specified range will be
written out. For example, given the input:

trajin input.crd 1 10

trajout output.crd onlyframes 2,5-7

only frames 2, 5, 6, and 7 from input.crd will be written to output.crd.

8.7.4 reference

reference <filename> [<frame#>]|lastframe [parm <parmfile> | parmindex <#>]

[average <stop> <offset>] ([tag])

<filename> File to read in as reference; any trajectory

recognized by ’trajin’ can be used.

<frame#> Frame number of file to use (default 1).

lastframe Use last frame of reference.

parm <parmfile> Topology filename/tag to associate with reference

(default first topology).

parmindex <#> Index of Topology to associate with reference

(default 0, first topology).

average <stop> <offset> Reference will be average of frames from

<filename> from <frame#> to <stop> (default last frame),

offset <offset> (default 1).

([tag]) Tag to give this reference file; BRACKETS MUST BE

INCLUDED.
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Read specified trajectory frame (1 if not specified) as reference coordinates. If the average
keyword is specified and <filename> contains more than 1 frame, the average structure of
<filename> will be stored as reference coordinates. Note that no RMS fitting is performed
during the averaging. When specifying the average keyword, <stop> and <offset> arguments
can be given to control which frames are averaged (similar to trajin). For example:

reference mdcrd.crd average 3 21 2

will calculate the average structure of mdcrd.crd from frames 2 to 20 with an offset of 2 and use
as a reference structure.

An optional tag can be given (bounded in brackets) which can be referred to in place of the
reference file name in order to simplify references to the reference file (see beginning of the
File Commands section for examples of how to use tags).

8.8 Data File Commands

There is a subsection of commands that can be used to either modify datafiles which have
been declared with an ’out’ keyword or to create new datafiles from declared datasets. Note
that these arguments can be specified to most actions that use the ’out’ keyword directly
without using the ’datafile’ keyword. For example, the ’time’ argument can be passed directly
to the output from a distance command:

distance d0 :1 :2 out d0.agr time 0.001

8.8.1 datafile noxcol

datafile <filename> noxcol

Prevent printing of indices (i.e. the #Frame column in most datafiles) for the specified datafile.
Useful e.g. if one would like a 2D plot such as phi vs psi. For example, given the input:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat

dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat

datafile noxcol phipsi.dat

Cpptraj will write a 2 column datafile containing only phi and psi, no frame numbers will be
written.

8.8.2 datafile invert

datafile <filename> invert

Normally, data is written out with X-values pertaining to frames (i.e. data over all trajectories is
printed in columns). This command flips that behavior so that X-values pertain to data sets (i.e.
data over all trajectories is printed in rows). This command currently has no effect on gnuplot
data files.
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8.8.3 datafile noheader

datafile <filename> noheader

Prevent printing of header line (e.g. ’#Frame D1’) at the beginning of data file specified by
<filename>.

8.8.4 datafile time

datafile <filename> time <step>

Equivalent to the ptraj argument ’time’ that could be specified with many actions. Multiplies
frame numbers (x-axis) by <step>.

8.8.5 datafile xlabel | ylabel

datafile <filename> {xlabel | ylabel} <label>

Set the x-axis label for the specified datafile to <label>. For regular data files this is the header
for the first column of data. If the data is at least 2-dimensional ’datafile ylabel <label>’ will
likewise set the y-axis label.

8.8.6 datafile xmin | ymin

datafile <filename> {xmin | ymin} <min>

Set the starting X coordinate value to <min>. If the data is at least 2-dimensional ’datafile ymin
<min>’ will likewise set the starting Y coordinate value.

8.8.7 datafile xstep | ystep

datafile <filename> {xstep | ystep} <step>

Multiply each frame number by <step> (x coordinates). If the data is at least 2-dimensional
’datafile ystep <step>’ will likewise multiply y coordinates by <step>.

8.9 Actions that Modify Topology/Coordinates

These commands modify the current topology and/or coordinates for every action that
follows them. For example, given a solvated system with water residues named WAT and the
following commands:

rmsd first :WAT out water-rmsd.dat

strip :WAT

rmsd first :WAT out water-rmsd-2.dat

the first ’rms’ command will be valid, but the second ’rms’ command will not since all residues
named WAT are removed from the state by the ’strip’ command.
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8.9.1 atommap

atommap <target> <reference> [mapout <filename>] [maponly]

[rmsfit [ rmsout <rmsout> ]]

<target> Reference structure whose atoms will be remapped.

<reference> Reference structure that <target> should be mapped

to.

mapout <filename> Write atom map to <filename> with format:

TargetAtomNumber TargetAtomName ReferenceAtomNumber

ReferenceAtomName

Target atoms that cannot be mapped to a reference atom are

denoted “---”.

maponly Write atom map but do not reorder atoms.

rmsfit Any input frames using the same topology as <target> will

be RMS fit to <reference> using whatever atoms could be

mapped.

rmsout <rmsout> If rmsfit specified, write resulting RMSDs

to <rmsout>.

Attempt to map the atoms of <target> to those of <reference> based on structural similarity.
This is useful e.g. when there are two files containing the same structure but with different
atom names or atom ordering. Both <target> and <reference> need to have been read in with a
previous reference command. The state will then be modified so that any trajectory read in with
the same parameter file as <target> will have its atoms mapped (i.e. reordered) to match those
of <reference>. If the number of atoms that can be mapped in <target> are less than those in
<reference>, the reference structure specified by <reference> will be modified to include only
mapped atoms; this is useful if for example the reference structure is protonated with respect to
the target. The rmsfit keyword is useful in cases where the atom mapping will not be complete
(e.g. two ligands with the same scaffold but different substituents).

For example, say you have the same ligand structure in two files, Ref.mol2 and Lig.mol2,
but the atom ordering in each file is different. To map the atoms in Lig.mol2 onto those of
Ref.mol2 so that Lig.mol2 has the same ordering as Ref.mol2:

parm Lig.mol2

reference Lig.mol2

parm Ref.mol2

reference Ref.mol2 parmindex 1

atommap Lig.mol2 Ref.mol2 mapout atommap.dat

trajin Lig.mol2

trajout Lig.reordered.mol2 mol2

8.9.2 autoimage

autoimage [<mask> | anchor <mask> [fixed <mask>] [mobile <mask>]]
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[origin] [firstatom] [familiar | triclinic]

[<mask> | anchor <mask>] Molecule to image around; this is the

molecule that will be centered. Default is first molecule.

[fixed <mask>] Molecules that should remain ’fixed’ to the anchor

molecule; default is all non-ion/non-solvent molecules.

[mobile <mask>] Molecules that can be freely imaged; default is

all ion/solvent molecules.

[origin] Center anchor at the origin; if not specified, center at

box center.

[firstatom] Image based on molecule first atom; default is to

image by molecule center of mass.

[familiar] Image to familiar truncated-octahedral shape; this is on

by default if the original cell is truncated octahedron.

[triclinic] Force general triclinic imaging.

Automatically center and image (by molecule) a trajectory with periodic boundaries. For most
cases just specifying ’autoimage’ alone is sufficient. The ’anchor’ molecule (default the
first molecule) will be centered; all ’fixed’ molecules will be imaged only if imaging brings
them closer to the ’anchor’ molecule; default for ’fixed’ molecules is all non-solvent non-ion
molecules. All other molecules (referred to as ’mobile’) will be imaged freely.

8.9.3 center

center [<mask>] [origin] [mass]

[<mask>] Center based on atoms in mask; default is all atoms.

[origin] Center to origin (0, 0, 0) instead of box center (X/2,

Y/2, Z/2).

[mass] Use center of mass instead of geometric center.

Move all atoms so that the center of the atoms in <mask> is centered at the specified location
(box center or origin). This command is not valid for topology files with no box information.

For example, to move all coordinates so that the center of mass of residue 1 is at the center
of the box:

center :1 mass

8.9.4 closest

closest <# to keep> <mask> [noimage] [first | oxygen] [closestout <filename>]

[outprefix <parmprefix>]

<# to keep> Number of solvent molecules to keep around <mask>
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<mask> Waters will be kept according to <mask>.

[noimage] Do not perform imaging; only recommended if trajectory

has previously been imaged.

[first | oxygen] Calculate distances between all atoms in <mask> and

the first atom of solvent only (recommended for standard

water models as it will increase speed of calculation).

[closestout <filename>] Write information on the closest solvent

molecules to <filename>.

[outprefix <prefix>] Write corresponding topology to file with name

prefix <prefix>.

DataSet Aspects:

[Frame] Frame number.

[Mol] Original solvent molecule number.

[Dist] Solvent molecule distance in Å.

[FirstAtm] First atom number of original solvent molecule.

Similar to the strip command, but modify coordinate frame and topology by keeping only the
specified number of closest solvent molecules to the region specified by the given mask. The
format of the closestout file is:

Frame Molecule Distance FirstAtom#

For example, to obtain the 10 closest waters to residues 1-268 by distance to the first atom of
the waters, write out which waters were closest for each frame to a file called
“closestmols.dat”, and write out the stripped topology with prefix “closest” containing only the
solute and 10 waters:

closest 10 :1-268 first closestout closestmols.dat outprefix closest

8.9.5 dihedralscan

dihedralscan resrange <range> <dihedral type> [{interval*|random}]

<dihedral type> = {phi psi chip omega alpha beta gamma

delta epsilon zeta nu1 nu2 chin}

Options for ’interval’:

<interval deg> [outtraj <filename> [<outfmt>]]

Options for ’random’:

[rseed <rseed>] [ check [cutoff <cutoff>] [rescutoff <rescutoff>]

[backtrack <backtrack>] [increment <increment>]

[maxfactor <max_factor>] ]

NOTE: THIS ACTION IS EXPERIMENTAL. USE WITH CAUTION.
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resrange <range> Residue range to search for dihedrals.

<dihedral type> One or more dihedral types to search for.

interval Rotate found dihedrals by <interval>. This is done in an

ordered fashion so that every combination of dihedral

rotations is sampled at least once.

random Rotate each found dihedral randomly.

Options for ’interval:

<interval deg> Amount to rotate dihedral by each step.

[outtraj <filename> [<outfmt>]] Write frame after each rotation to

<filename>, with format specified by <outfmt>.

Options for ’random’:

[rseed <rseed>] Random number seed.

[check] Check randomly rotated structure for clashes.

[cutoff <cutoff>] Atom cutoff for checking for clashes (default 0.8

Å).

[rescutoff <cutoff>] Residue cutoff for checking for clashes

(defualt 10.0 Å).

[backtrack <backtrack>] If a clash is encountered at dihedral N and

cannot be resolved, go to dihedral N-<backtrack> to try and

resolve the clash (default 4).

[increment <increment>] If a clash is encountered, first attempt

to rotate dihedral by increment to resolve it; if it cannot

be resolved by a full rotation the calculation will

backtrack (default 1).

[maxfactor <max_factor>] The maximum number of total attempted

rotations will be <max_factor> * <total # of dihedrals>

(default 2).

Rotate dihedrals in a structure randomly or by intervals.

8.9.6 image

image [origin] [center] [triclinic | familiar [com <commask>]] [<mask>]

[ bymol | byres | byatom ]

[origin] Image to coordinate origin (0.0, 0.0, 0.0); default is to

image to box center.

[center] For bymol/byres, image by center of mass; default is to

image by first atom position.

[triclinic] Force imaging with triclinic code.
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[familiar [com <commask>]] Image to truncated octahedron shape

(this is the default for truncated octahedral boxes). If

’com <commask>’ is given, image with respect to the center

of mass of atoms in <commask>.

[<mask>] Image atoms/residues/molecules in mask.

[bymol] Image by molecule (default).

[byres] Image by residue.

[byatom] Image by atom.

Note this command is intended for advanced use; for most cases the autoimage command
should be sufficient.

For periodic systems only, image molecules/residues/atoms that are outside of the box back
into the box. Currently both orthorhombic and non-orthorhombic boxes are supported. A
typical use of image is to move molecules back into the box after performing center. For
example, the following commands move all atoms so that the center of residue 1 is at the
center of the box, then image so that all molecules that are outside the box after centering are
wrapped back inside:

center :1

image

8.9.7 makestructure

makestructure <List of Args>

Apply dihedrals to specified residues using arguments found in <List of Args>, where an argu-
ment is 1 or more of the following arg types:

<sstype>:<res range> Apply SS type (phi/psi) to residue range.
<sstype> standard = alpha, left, pp2, hairpin, extended
<sstype> turn = typeI, typeII, typeVIII, typeI’, typeII, typeVIa1, typeVIa2, typeVIb
Turns are applied to 2 residues at a time, so resrange must be divisible by 4.

<custom ss>:<res range>:<phi>:<psi> Apply custom <phi>/<psi> to residue range.

<custom turn>:<res range>:<phi1>:<psi1>:<phi2>:<psi2> Apply custom turn <phi>/<psi>
pair to residue range.

<custom dih>:<res range>:<dih type>:<angle> Apply <angle> to dihedrals in range.
<dih type> = phi psi chip omega alpha beta gamma delta epsilon zeta nu1 nu2 chin

<custom dih>:<res range>:<at0>:<at1>:<at2>:<at3>:<angle>[:<offset>] Apply <angle> to
dihedral defined by atoms <at1>, <at2>, <at3>, and <at4>.
Offset -2=<at0><at1> in previous res,
Offset -1=<at0> in previous res,
Offset 0=All <atX> in single res,
Offset 1=<at3> in next res,
Offset 2=<at2><at3> in next res.
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ref:<range>:<refname>[:<ref range>] Apply dihedrals from residues <ref_range> in previ-
ously loaded reference structure <refname> to dihedrals in <range>.

8.9.8 principal

principal [<mask>] [dorotation] [mass] [out <filename>]

[<mask>] Mask of atoms used to determine principal axes (default

all).

[dorotation] Align coordinates along principal axes.

[mass] Mass-weight the calculation.

[out <filename>] Write resulting eigenvalues/eigenvectors to

<filename>.

Determine principal axes of each frame determined by diagonalization of the inertial matrix
from the coordinates of the specified atoms. At least one of dorotation or out must be specified.

8.9.9 rotate

rotate [<mask>] [x <xdeg>] [y <ydeg>] [z <zdeg>]

[<mask>] Rotate atoms in <mask> (default all).

[x <xdeg] Degrees to rotate around the X axis.

[y <xdeg] Degrees to rotate around the Y axis.

[z <xdeg] Degrees to rotate around the Z axis.

Rotate specified atoms around the X, Y, and/or Z axes.

8.9.10 runavg | runningaverage

runavg [window <window_size>]

Note that for backwards compatibility with ptraj “runningaverage” is also accepted.
Replaces the current frame with a running average over a number of frames specified by

window <window_size> (5 if not specified). This means that in order to build up the correct
number of frames to calculate the average, the first <window_size> minus one frames will not
be processed by subsequent actions. So for example given the input:

runavg window 3

rms first out rmsd.dat

the rms command will not take effect until frame 3 since that is the first time 3 frames are
available for averaging (1, 2, and 3). The next frame processed would be an average of frames
2, 3, and 4, etc.
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8.9.11 scale

scale x <sx> y <sy> z <sz> <mask>

Scale the X|Y|Z coordinates of atoms in <mask> by <sx>|<sy>|<sz>.

8.9.12 strip

strip <mask> [outprefix <name>]

Strip all atoms specified by <mask> from the frame and modify the topology to match. If
outprefix is specified, for every topology modified in this way a file <name>.<parmFilename>
Amber topology file will be written that matches the stripped system. These topologies are
fully-functional Amber topologies

For example, to strip all residues named WAT from the current topology:

strip :WAT

Note that stripping a system renumbers all atoms and residues, so for example after this
command:

strip :1

residue 1 will be gone, and the former second residue will now be the first, and so on.

8.9.13 trans | translate

translate [<mask>] [x <dx>] [y <dy>] [z <dz>]

Translate atoms in <mask> <dx> angstroms in the X direction, <dy> angstroms in the Y direc-
tion, and <dz> angstroms in the Z direction.

8.9.14 unstrip

unstrip

Requests that the original topology and frame be used for all following actions. This has the
effect of undoing any command that modifies the state (such as strip). For example, the
following code takes a solvated complex and uses a combination of strip, unstrip, and outtraj
commands to write out separate dry complex, receptor, and ligand files:

parm Complex.WAT.pdb

trajin Complex.WAT.pdb

# Remove water, write complex

strip :WAT

outtraj Complex.pdb pdb

# Reset to solvated Complex

unstrip
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# Remove water and ligand, write receptor

strip :WAT,LIG

outtraj Receptor.pdb pdb

# Reset to solvated Complex

unstrip

# Remove water and receptor, write ligand

strip :WAT

strip !(:LIG)

outtraj Ligand.pdb pdb

8.9.15 unwrap

unwrap [{reference | ref <refname> | refindex <#>}] [<mask>]

Under periodic boundary conditions, MD trajectories are not continuous if molecules are
wrapped(imaged) into the central unit cell. Especially, in sander, with iwrap=1, molecular tra-
jectories become discontinuous when a molecule crosses the boundary of the unit cell. This
command, unwrap processes the trajectories to force the masked molecules continuous by
translating the molecules into the neighboring unit cells. It is the opposite function of image,
but this command can also be used to place molecules side by side, for example, two strands of
a DNA duplex. However, this command fails when the masked molecules travel more than half
of the box size within a single frame.

If the optional argument “reference” is specified, then the first frame is unwrapped accord-
ing to the reference structure. Otherwise, the first frame is not modified.

As an example, assume that :1-10 is the first strand of a DNA duplex and :11-20 is the other
strand of the duplex. Then the following commands could be used to create system where the
two strands are not separated artificially:

unwrap :1-20

center :1-20 mass origin

image origin center familiar

8.10 Action Commands

Most actions in cpptraj function exactly the way they do in ptraj and are backwards-
compatible. Some commands have extra functionality (such as the per-residue rmsd function
of the rmsd action, or the ability to write out stripped topologies for visualization in the strip
action), while other actions produce slightly different output (like the hbond/secstruct actions).

8.10.1 angle

angle [<dataset name>] <mask1> <mask2> <mask3> [out <filename>] [mass]

Calculate angle (in degrees) between atoms in <mask1>, <mask2>, and <mask3>. If mass is
specified use the center of mass of atoms in the masks instead of geometric center.
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8.10.2 atomiccorr

atomiccorr [<mask>] out <filename>[cut <cutoff>] [min <min spacing>]

[byatom | byres]

<mask> Atoms to calculate motion vectors for.

out <filename> File to write results to.

cut <cutoff> Only print correlations with absolute value greater

than <cutoff>.

min <min spacing> Only calculate correlations for motion vectors

spaced <min spacing> apart.

byatom Default; calculate atomic motion vectors.

byres Calculate motion vectors for entire residues (selected

atoms in residues only).

Calculate average correlations between the motion of atoms in <mask>. For each frame, a
motion vector is calculated for each selected atom from its previous position to its current
position. For each pair of motion vectors Va and Vb, the average correlation between those
vectors is calculated as the average of the dot product of those vectors over all N frames.

AvgCorr(a,b) = ∑Va(i)·Vb(i)
N

8.10.3 atomicfluct

atomicfluct [out <filename>] [<mask>] [byres | byatom | bymask] [bfactor]

[start <start>] [stop <stop>] [offset <offset>]

out <filename> Write data to file named <filename>

[<mask>] Calculate fluctuations for atoms in <mask> (all if not

specified).

byres Output the average (mass-weighted) fluctuation by residue.

bymask Output the average (mass-weighted) fluctuation for all

atoms in <mask>.

byatom (default) Output the fluctuation by atom.

[bfactor] Calculate atomic positional fluctuations squared and

weight by 8
3 π2; this is similar but not necessarily

equivalent to the calculation of crystallographic B-factors.

[<start>] Frame to begin calculation at (default 1).

[<stop>] Frame to end calculation at (default last).

[<offset>] Frames to skip between calculations (default 1).
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Compute the atomic positional fluctuations for atoms specified in the <mask>. Note that RMS
fitting is not done implicitly. If you want fluctuations without rotations or translations (for
example to the average structure), perform an RMS fit to the average structure (best) or the
first structure (see rmsd) prior to this calculation. The units are (Å) for RMSF or Å2 × 8

3 π2 if
bfactor is specified.

So, to dump the mass-weighted B-factors for the protein backbone atoms C, CA, and N, by
residue use the command:

atomicfluct out back.apf @C,CA,N byres bfactor

To dump the RMSF or atomic positional fluctuations of the same atoms, use the command:

atomicfluct out backbone-atoms.apf @C,CA,N

8.10.4 average

average <filename> [<mask>] [start <start>] [stop <stop>] [offset <offset>]

[Trajout Args]

<filename> Write averaged coordinates to <filename>.

[<mask>] Average coordinates in <mask> (all atoms if not

specified).

[<start>] Frame to begin calculation at (default 1).

[<stop>] Frame to end calculation at (default last).

[<offset>] Frames to skip between calculations (default 1).

[Trajout args] Output trajectory format argument(s) (default Amber

Trajectory).

Calculate the average of input coordinates and write out to file named <filename> in any trajec-
tory format cpptraj recognizes (Amber Trajectory if not specified). If the number of atoms in
<mask> are less than the total number of atoms, the topology will be stripped to match <mask>
for output of this command only - the state will not be modified. Note that since coordinates
are being averaged over many frames, resulting structures may appear distorted. For example,
if one averages the coordinates of a freely rotating methyl group the average position of the
hydrogen atoms will be close to the center of rotation.

Any arguments that are valid for the trajout command are can be passed to this command in
order to control the format of the output coordinates. For example, to write out a PDB file
containing the averaged coordinates over all frames:

average test.pdb pdb

To write out a mol2 file containing only the averaged coordinates of residues 1 to 10 for frames
1 to 100:

average test.mol2 mol2 start 1 stop 100 :1-10
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8.10.5 avgcoord

avgcoord [<mask>] [mass] outfile <file> [magnitude]

For each frame, calculate the average X, Y, and Z coordinates over all atoms in <mask>. If the
mass keyword is specified the averages will be mass-weighted. Output is to the file specified
by outfile with format:

<Frame> <X component> <Y component> <Z component>

If the magnitude keyword is specified an additional column containing the magnitude of the
XYZ vector will be printed.

8.10.6 bounds

bounds [<mask>] [out <filename>]

Calculate the max/min coordinates (X,Y,Z) of atoms in <mask>.

8.10.7 box

box [x <xval>] [y <yval>] [z <zval>] [alpha <a>] [beta <b>] [gamma <g>]

[nobox] [truncoct]

[x <xval>] [y <yval>] [z <zval>] Change box length(s) to specified

value(s).

[alpha <a>] [beta <b>] [gamma <g>] Change box angle(s) to specified

value(s).

[nobox] Remove any existing box information.

[truncoct] Set box angles to truncated octahedron.

Modify box information during trajectory processing. Note that this will permanently modify
the box information for parm files during trajectory processing as well. It is possible to modify
any number of the box parameters (e.g. only the Z length can be modified if desired while
leaving all other parameters intact).

8.10.8 check | checkstructure

check [<mask>] [reportfile <report>] [noimage]

[offset <offset>] [cut <cut>] [nobondcheck]

[<mask>] Check structure of atoms in <mask> (all if not

specified).

[reportfile <report>] Write any problems found to <report> (STDOUT

if not specified).

[noimage] Do not image distances.

241



8 cpptraj

[offset <offset>] Report bond lengths greater than the equilibrium

value plus <offset> (default 1.0 Å)

[cut <cut>] Report atoms closer than <cut> (default 0.8 Å).

[nobondcheck] Check overlaps only.

Check the structure and report problems related to atomic overlap/unusual bond length.

8.10.9 cluster

Although the ’cluster’ command can still be specified as an action, it is now considered an
analysis. See 8.13.1 on page 272.

8.10.10 clusterdihedral

clusterdihedral [phibins <N>] [psibins <M>] [out <outfile>]

[dihedralfile <dfile> | <mask>]

[framefile <framefile>] [clusterinfo <infofile>]

[clustervtime <cvtfile>] [cut <CUT>]

Cluster frames in a trajectory using dihedral angles. To define which dihedral angles will be
used for clustering either an atom mask or an input file specified by the dihedralfile keyword
should be used. If dihedral file is used, each line in the file should contain a dihedral to be
binned with format:

ATOM#1 ATOM#2 ATOM#3 ATOM#4 #BINS

where the ATOM arguments are the atom numbers (starting from 1) defining the dihedral and
#BINS is the number of bins to be used (so if #BINS=10 the width of each bin will be 36º).
If an atom mask is specified, only protein backbone dihedrals (Phi and Psi defined using atom
names C-N-CA-C and N-CA-C-N) within the mask will be used, with the bin sizes specified by
the phibins and psibins keywords (default for each is 10 bins).

Output will either be written to STDOUT or the file specified by the out keyword. First,
information about which dihedrals were clustered will be printed. Then the number of clusters
will be printed, followed by detailed information of each cluster. The clusters are sorted from
most populated to least populated. Each cluster line has format

Cluster CLUSTERNUM CLUSTERPOP [ dihedral1bin, dihedral2bin ... dihedralNbin ]

followed by a list of frame numbers that belong to that cluster. If a cutoff is specified by cut,
only clusters with population greater than CUT will be printed.

If specified by the clustervtime keyword, the number of clusters for each frame will be
printed to <cvtfile>. If specified by the framefile keyword, a file containing cluster
information for each frame will be written with format

Frame CLUSTERNUM CLUSTERSIZE DIHEDRALBINID
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where DIHEDRALBINID is a number that identifies the unique combination of dihedral bins
this cluster belongs to (specifically it is a 3*number-of-dihedral-characters long number com-
posed of the individual dihedral bins).

If specified by the clusterinfo keyword, a file containing information on each dihedral and
each cluster will be printed. This file can be read by SANDER for use with REMD with a
structure reservoir (-rremd=3). The file, which is essentially a simplified version of the main
output file, has the following format:

#DIHEDRALS

dihedral1_atom1 dihedral1_atom2 dihedral1_atom3 dihedral1_atom4

...

#CLUSTERS

CLUSTERNUM1 CLUSTERSIZE1 DIHEDRALBINID1

...

8.10.11 contacts

contacts [ first | reference | ref <ref> | refindex <#> ] [byresidue]

[out <filename>] [time <interval>] [distance <cutoff>] [<mask>]

For each atom given in mask, calculate the number of other atoms (contacts) within the distance
cutoff. The default cutoff is 7.0 A. Only atoms in mask are potential interaction partners (e.g., a
mask @CA will evaluate only contacts between CA atoms). The results are dumped to filename
if the keyword “out” is specified. Thereby, the time between snapshots is taken to be interval.
In addition to the number of overall contacts, the number of native contacts is also determined.
Native contacts are those that have been found either in the first snapshot of the trajectory (if
the keyword “first” is specified) or in a reference structure (if the keyword “reference” is
specified). Finally, if the keyword “byresidue” is provided, results are output on a per-residue
basis for each snapshot, whereby the number of native contacts is written to filename.native.

8.10.12 diffusion

diffusion [<time_per_frame>] [<filename_root>] [<mask>] [average]

<time_per_frame> Time in-between each coordinate frame in ps;

default is 1.0.

<filename_root> File name root to use for each output file (see

description below). Default “diffusion”.

<mask> Mask of atoms to calculate diffusion for; default all

atoms.

average Only print average diffusion for atoms in mask; default

is to print diffusion for each individual atom.
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Compute mean square displacement plots for the atoms in <mask>. They are written to the
following files (units are displacements (in Å2) vs time in ps):

<filename_root>_x.xmgr Mean square displacement(s) in the X direction.

<filename_root>_y.xmgr Mean square displacement(s) in the Y direction.

<filename_root>_z.xmgr Mean square displacement(s) in the Z direction.

<filename_root>_a.xmgr Average mean square displacement(s).

<filename_root>_r.xmgr Total distance travelled.

To calculate diffusion constants, calculate the slope of the line(s) and multiply by 10.0/6.0; this
will give units of 1x10-5 cm2/s.

This command implicitly unfolds the trajectory (in periodic boundary simulations) only for
orthorhombic unit cells. This will fail if a coordinate moves more than 1/2 the box in a single
step.

8.10.13 dihedral

dihedral [<name>] <mask1> <mask2> <mask3> <mask4> [out <filename>] [mass]

[type {alpha|beta|gamma|delta|epsilon|zeta|chi|c2p|h1p|phi|psi|pchi}]

[range360]

Calculate dihedral angle (in degrees) between the planes defined by atoms in <mask1>,
<mask2>, <mask3> and <mask2>, <mask3>, <mask4>. If mass is specified use the center
of mass of atoms in the masks instead of geometric center. If range360 is specified the output
range will be from 0 to 360 instead of -180 to 180.

8.10.14 dipole

dipole <filename> <nx> <x_spacing> <ny> <y_spacing> <nz> <z_spacing>

<mask1> {origin | box} [max <max_percent>]

Same as grid (see below) except that dipoles of the solvent molecules are binned. Dumping is
to a grid in a format for Chris Bayly’s discern delegate program that comes with Midas/Plus.
Consult the code in Action_Dipole.cpp for more information and note that this command is
potentially obsolete.

8.10.15 distance

distance [<dataset name>] <mask1> <mask2> [out <filename>] [geom] [noimage]

Calculate distance between the center of mass of atoms in <mask1> to atoms in <mask2>. If
geom is specified use the geometric center instead. For periodic systems imaging is turned on
by default; the noimage keyword disables imaging.
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8.10.16 drmsd (distance RMSD)

drmsd [<dataset name>] [<mask> [<refmask>]] [out <filename>]

[ first | ref <reffilename> | refindex <#> |

reftraj <trajname> [parm <trajparm> | parmindex <parm#>] ]

Calculate the distance RMSD (i.e. the RMSD of all pairs of internal distances) between atoms
in the frame defined by <mask> (all if no <mask> specified) to atoms in a reference defined by
<refmask> (<mask> if <refmask> not specified). Both <mask> and <refmask> must specify
the same number of atoms, otherwise an error will occur. The Reference structure is defined by
one of the following keywords (of which only one should be specified):

• first: Use the first trajectory frame processed as reference.

• reference: Use the first previously read in reference structure (refindex 0).

• ref: Use previously read in reference structure specified by <reffilename>.

• refindex: Use previously read in reference structure specified by <#> (based on order
read in).

• reftraj: Use frames read in from <trajname> with associated parmfile specified by name
<trajparm> or index <parm#>; if parm is not specified the first parm read in is used.
Each frame from <trajname> is used in turn, so that frame 1 is compared to frame 1 from
<trajname>, frame 2 is compared to frame 2 from <trajname> and so on. If <trajname>
runs out of frames before processing is complete, the last frame of <trajname> continues
to be used as the reference.

Because this method compares pairs of internal distances and not absolute coordinates, it is not
sensitive to translations and rotations the way that a no-fit RMSD calculation is. It can be more
time consuming however, as (N2-N)/2 distances must be calculated and compared for both the
target and reference structures.

For example, to get the DRMSD of a residue named LIG to its structure in the first frame
read in:

drmsd :LIG first out drmsd.dat

8.10.17 grid

grid <filename> nx dx ny dy nz dz [origin] [negative] <mask>

[max <fraction>] [smoothdensity <value>] [invert] [madura <madura>]

<fraction>: Percent of max to write.

<madura>: Grid values lower than <madura> become flipped in

sign, exposes low density.

<value>: Used to smooth density.
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Create a grid representing the histogram of atoms in mask1 on the 3D grid that is "nx *
x_spacing by ny * y_spacing by nz * z_spacing angstroms (cubed). Either “origin” or “box”
can be specified and this states whether the grid is centered on the origin or half box. Note that
to provide any meaningful representation of the density, the solute of interest (about which the
atomic densities are binned) should be rms fit, centered and imaged prior to the grid call. If the
optional keyword “negative” is also specified, then these density will be stored as negative
numbers. Output is in the format of a XPLOR formatted contour file (which can be visualized
by the density delegate to Midas/Plus or Chimera or VMD or other programs). Upon dumping
the file, pseudo-pdb HETATM records are also dumped to standard out which have the most
probable grid entries (those that are 80% of the maximum by default which can be changed
with the max keyword, i.e., max .5 makes the dumping at 50% of the maximum).

Note that as currently implemented, since the XPLOR grids are integer based, the grid is
offset from the origin (towards the negative size) by half the grid spacing.

8.10.18 hbond

hbond [<dataset name>] [out <filename>] <mask> [angle <cut>] [dist <cut>] [series]

[donormask <dmask>] [donorhmask <dhmask>] [acceptormask <amask>]

[avgout <avgfilename>]

[solventdonor <mask>] [solventacceptor <mask>]

[solvout <sfilename>] [bridgeout <bfilename>]

out <filename> Write # of solute-solute hydrogen bonds (aspect

[UU]) vs time to this file. If searching for solute-solvent

hydrogen bonds, write # of solute-solvent hydrogen bonds

(aspect [UV]) and # of bridging solvent molecules (aspect

[Bridge]), as well as the residue # of the bridging solvent

and the solute residues being bridged with format ’<solvent

resnum>(<solute res1>+<solute res2>+...+),...’ (aspect

[ID]).

<mask> Atoms to search for solute hydrogen bond

donors/acceptors.

angle <acut> Angle cutoff for hydrogen bonds (default 135°). Can

be disabled by specifying -1.

dist <dcut> Distance cutoff for hydrogen bonds (default 3.0 Å).

series Save hydrogen bond formed (1.0) or not formed (0.0) per

frame for any detected hydrogen bond. Solute-solute

hydrogen bonds are saved with aspect [solutehb],

solute-solvent hydrogen bonds are saved with aspect

[solventhb].

donormask <dmask> Use atoms in <dmask> as solute donor heavy

atoms. If ’donorhmask’ not specified only atoms bonded to

hydrogen will be considered donors.

246



8.10 Action Commands

donorhmask <dhmask> Use atoms in <dmask> as solute donor

hydrogen atoms. Should only be specified if ’donormask’ is.

Should be a 1 to 1 correspondence between donormask and

donorhmask.

acceptormask <amask> Use atoms in <amask> as solute acceptor

atoms.

avgout <filename> Write solute-solute hydrogen bond averages to

<filename>.

solventdonor <sdmask> Use atoms in <sdmask> as solvent donors.

Can specify ions as well.

solventacceptor <samask> Use atoms in <samask> as solvent

acceptors. Can specify ions as well.

solvout <sfilename> Write solute-solvent hydrogen bond averages to

<sfilename>. If not specified and ’avgout’ is,

solute-solvent hydrogen bonds averages will be written to

that file.

bridgeout <bfilename> Write information on detected solvent

bridges to <bfilename>. If not specified, will be written

to same place as ’solvout’.

DataSet Aspects:

[UU] Number of solute-solute hydrogen bonds.

[UV] Number of solute-solvent hydrogen bonds.

[Bridge] Number of bridging solvent molecules.

[ID] String identifying bridging solvent residues and the solute

residues they bridge.

[solutehb] (series only) Time series for solute-solute hydrogen

bonds; 1 for present, 0 for not present.

[solventhb] (series only) Time series for solute-solvent hydrogen

bonds; 1 for present, 0 for not present.

Determine hydrogen bonds in each coordinate frame. Search solute for hydrogen bond donor
and acceptor atoms in the region specified by <mask> (all solute atoms if no mask specified),
following the simplistic criterion that “hydrogen bonds are FON”, i.e., hydrogens bonded to
F, O, and N atoms are considered. Hydrogen bonding atoms can also be specified with the
donormask and/or acceptormask keywords:

1. If just <mask> is specified donors and acceptors will be automatically determined from
<mask>.

2. If donormask is specified donors will be determined from <dmask> (only atoms bonded
to hydrogen will be considered valid). Acceptors will be automatically determined from
<mask>.
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3. If acceptormask is specified acceptors will be determined from <amask>. Donors will
be automatically determined from <mask>.

4. If both acceptormask and donormask are specified only <amask> and <dmask> will be
used; no searching will occur in <mask>.

The number of hydrogen bonds present at each frame will be determined and written to the file
specified by out. If the series keyword is specified the time series for each hydrogen bond (1
for present, 0 for not present) will also be saved for subsequent analysis; solute-solute hydrogen
bonds will be saved to ’<dataset name>[solutehb]’ and solute-solvent hydrogen bonds will be
saved to ’<dataset name>[solventhb]’.

Hydrogen bonds are considered to have the form:

Acceptor ... Hydrogen-Donor

and are determined via the distance between the heavy atoms and the angle between the accep-
tor, hydrogen, and donor atoms. Note that imaging is not employed when calculating distance
(since this makes the calculation orders of magnitude slower); if imaging is required an au-
toimage command should be performed prior to the hbond command to ensure atoms that will
hydrogen bond are not separated by periodic boundaries.

If avgout is specified the average of each hydrogen bond (sorted by population) formed over
the course of the trajectory is printed to <avgfilename>. The output file has the format:

Acceptor DonorH Donor Frames Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are the residue and atom name of the atoms involved in
the hydrogen bond, Frames is the number of frames the bond is present, Frac is the fraction
of frames the bond is present, AvgDist is the average distance of the bond, and AvgAng is the
average angle of the bond.

For example, to search for all hydrogen bonds within residues 1-22, writing the number of
hydrogen bonds per frame to “nhb.dat” and information on each hydrogen bond found to
“avghb.dat”:

hbond :1-22 out nhb.dat avgout avghb.dat

To search for all hydrogen bonds formed between donors in residue 1 and acceptors in residue
2:

hbond donormask :1 acceptormask :2 out nhb.dat avgout avghb.dat

If masks are specified with the solventdonor and/or solventacceptor keywords, solute-solvent
hydrogen bonds will also be tracked. The number of solute-solvent hydrogen bonds and
number of “bridging” solvent molecules (i.e. solvent that is hydrogen bonded to two or more
different solute residues at the same time) will also be printed to the file specified by out. If
solvout is specified the average of each solute-solvent hydrogen bond formed over the course
of the trajectory will be written to <sfilename> in a manner analogous to avgout. Note that for
solute-solvent hydrogen bonds the ’Frames’ column becomes ’Count’ since for any given
frame more than 1 solvent molecule can bind to the same place on solvent and vice versa. If
bridgeout is specified information on residues that were bridged by a solvent molecule over the
course of the trajectory will be written to <bfilename> with format:
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Bridge Res <N0:RES0> <N1:RES1> ... , <X> frames.

where ’<N0:RES0> ...’ is a list of residues that were bridged (residue # followed by residue
name) and <X> is the number of frames the residues were bridged.

8.10.19 jcoupling

jcoupling [<mask1>] [outfile <filename>]

Calculate J-coupling values for all dihedrals found within <mask1> (all atoms if no mask given).
In order to use this function, Karplus parameters for all dihedrals which will be calculated must
be loaded. By default cpptraj will use the data found in $AMBERHOME/dat/Karplus.txt; if this
is not found cpptraj will look for the file specified by the $KARPLUS environment variable.

In the Karplus parameter file each parameter set consists of two lines for each dihedral with
the format:

[<Type>]<Name1><Name2><Name3><Name4><A><B><C>[<D>]

<Resname1>[<Resname2>...]

The first line defines the parameter set for a dihedral. <Type> is optional; if not given the form
for calculating the J-coupling will be as described by Chou et al.[148]; if ’C’ the form will be
as described by Perez et al.[149]. The <NameX> parameters define the four atoms involved in
the dihedral. Each <NameX> parameter is 5 characters wide, starting with a plus ’+’, minus ’-’
or space ’ ’ character indicating the atom belongs to the next, previous, or current residue. The
remaining 4 characters are the atom name. The parameters <A>, <B>, <C>, and <D> are
floating point values 6 characters wide describing the Karplus parameters. For the ’C’ form A,
B, and C correspond to C0, C1, and C2; D is unused and should not be specified. The second
line is a list of residue names (4 characters each) to which the dihedral applies. For example:

C HA CA CB HB 5.40 -1.37 3.61

ILE VAL

Describes a dihedral between atoms HA-CA-CB-HB using the Perez et al. form with constants
C0=5.40, C1=-1.37, C2=3.61 applied to ILE and VAL residues.

Output is sent to <filename>. Each dihedral that is defined from <mask1> is printed along
with its calculated J-coupling value for each frame, e.g.:

#Frame 1

1 SER HA CA CB HB2 45.334742 4.024759

1 SER HA CA CB HB3 -69.437134 1.829510

...

First the frame number is printed, then for each dihedral: Residue number, residue name, atom
names 1-4 in the dihedral, the value of the dihedral, the J-coupling value.

249



8 cpptraj

8.10.20 lie

lie [<name>] <Ligand mask> [<Surroundings mask>] [out <filename>]

[noelec] [novdw] [cutvdw <cutoff>] [cutelec <cutoff>] [diel <dielc>]

DataSet Aspects:

[EELEC] Electrostatic energy (kcal/mol).

[EVDW] van der Waals energy (kcal/mol).

For each frame, calculate the non-bonded interactions between all atoms in <Ligand mask>
with all atoms in <Surroundings mask>. Electrostatic and van der Waals interactions will be
calculated for all atom pairs. A separate electrostatic and van der Waals cutoff can be ap-
plied, the default is 12.0 Angstroms for both. <dielc> is an optional dielectric constant. Either
the electrostatic or van der Waals calculations can be suppressed via the keywords noelec and
novdw, respectively.

The electrostatic interactions are calculated according to a simple shifting function shown
below. The data file will contain two data sets—one for electrostatic interactions and one for van
der Waals interactions. Periodic topologies and trajectories are required (i.e., explicit solvent is
necessary). The minimum image convention is followed.

Eelec = k
qiq j

ri j

(
1−

r2
i j

r2
cut

)2

8.10.21 mask

mask <mask> [maskout <filename>] [maskpdb <pdbname>]

For each frame determine all atoms that correspond to <mask>. This is most useful when using
distance-based masks, since the atoms in the mask are updated for every frame read in. If
maskout is specified information on all atoms in <mask> will be written to <filename>. If
maskpdb is specified a PDB file corresponding to <mask> will be written out every frame with
name “<pdbname>.frame#”.

For example, to write out all atoms within 3.0 Angstroms of residue 195 that are part of
residues named WAT to “Res195WAT.dat”, as well as write out corresponding PDB files:

mask “(:195<:3.0)&:WAT” maskout Res195WAT.dat maskpdb Res195WAT.pdb

8.10.22 molsurf

molsurf [<dataset_name>] [<mask>] [out <filename>]

[probe <probe_rad>] [offset <rad_offset>]

Calculate the Connolly surface area[150] of atoms in <mask> (default all atoms if no mask
specified) using routines from molsurf (originally developed by Paul Beroza) using the probe
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radius specified by probe (1.4 Å if not specified). This routine currently requires radius in-
formation to be present in the topology file. If offset is given <rad_offset> will be added to
radii.

8.10.23 multidihedral

multidihedral [<name>] <dihedral types> [resrange <range>] [out <filename>]

[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>] ...]

Offset -2=<at0><at1> in previous res, -1=<at0> in previous res,

0=All <atX> in single res,

1=<at3> in next res, 2=<at2><at3> in next res.

<dihedral types> = phi psi chip omega alpha beta gamma delta

epsilon zeta nu1 nu2 chin

DataSet Aspects:

[<dihedral type>] Aspect corresponds to the dihedral type name

(e.g. [phi], [psi], etc).

Calculate specified dihedral angle types for residues in given range. The search for dihedral
angles is based on standard Amber atom names. The resulting data sets will have aspect equal
to [<dihedral type>] and index equal to residue #. To differentiate the chi angle, chip is used
for proteins and chin for nucleic acids. For example, to calculate all phi/psi dihedrals for
residues 6 to 9:

multidihedral phi psi resrange 6-9 out PhiPsi_6-9.dat

8.10.24 nastruct

nastruct [resrange <range>] [naout <suffix>] [noheader]

[resmap <ResName>:{A,C,G,T,U} ...]

[hbcut <hbcut>] [origincut <origincut>]

[ reference | refindex <#> | ref <REF> ]

DataSet Aspects:

[shear] Base pair shear.

[strectch] Base pair stretch.

[stagger] Base pair stagger.

[buckle] Base pair buckle.

[prop] Base pair propeller.

[open] Base pair opening.

[hb] Number of hydrogen bonds between bases in base pair.

[major] Rough estimate of major groove width, calculated between

P atoms of each base.
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[minor] Rough estimate of minor groove width, calculated between

O4 atoms of each base.

[shift] Base pair step shift.

[slide] Base pair step slide.

[rise] Base pair step rise.

[title] Base pair step tilt.

[roll] Base pair step roll.

[twist] Base pair step twist.

[xdisp] Helical X displacement.

[ydisp] Helical Y displacement.

[hrise] Helical rise.

[incl] Helical inclination.

[tip] Helical tip.

[htwist] Helical twist.

Calculate basic nucleic acid (NA) structure parameters for all residues in the range specified
by resrange (or all NA residues if no range specified). Residue names are recognized with the
following priority: standard Amber residue names DA, DG, DC, DT, RA, RG, RC, and RU; 3
letter residue names ADE, GUA, CYT, THY, and URA; and finally 1 letter residue names A,
G, C, T, and U. Non-standard/modified NA bases can be recognized by using the resmap
keyword. For example, to make cpptraj recognize all 8-oxoguanine residues named ’8OG’ as
a guanine-based residue:

nastruct naout nastruct.dat resrange 274-305 resmap 8OG:G

The resmap keyword can be specified multiple times, but only one mapping per unique residue
name is allowed. Note that resmap may fail if the residue is missing heavy atoms normally
present in the specified base type.

Base pairs can either be determined each frame, or one time from a reference structure; the
reference keyword uses the first reference read in, the refindex keyword specifies reference
structure by index (starting from 0) and ref specifies reference by filename/tag. Base pairing
is determined first by base reference axis origin distance (cutoff is 2.5 Å or the value specified
by origincut), then by Watson-Crick hydrogen bonding (cutoff 3.5 Å or the value specified by
hbcut). Base pair parameters will only be written for determined base pairs. Note that currently
only anti-parallel Watson-Crick base-pairs are recognized; future releases will include support
for recognizing more types of base pairs.

The procedure used to calculate NA structural parameters is the same as 3DNA[151], with
algorithms adapted from Babcok et al.[152] and reference frame coordinates from Olson et
al.[153]. Given the same base pairs are determined, cpptraj nastruct gives the exact same num-
bers as 3DNA.

Calculated NA structure parameters are written to three separate files, the suffix of which is
specified by naout. Base pair parameters (shear, stretch, stagger, buckle, propeller twist, and
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opening) are written to BP.<suffix>, along with the number of WC hydrogen bonds detected.
Base pair step parameters (shift, slide, rise, tilt, roll, and twist) are written to BPstep.<suffix>,
and helical parameters (X-displacement, Y-displacement, rise, inclination, tip, and twist) are
written to Helix.<suffix>. If noheader is specified a header will not be written to the output
files.

8.10.25 pairwise

pairwise [<name>] [<mask>] [out <filename>] [cuteelec <cut>] [cutevdw <cutv>]

[ref <reffilename> | refindex <ref#>] [cutout <cutmol2name>]

[<name>] Data set name; van der Waals energy will get aspect

[EVDW] and electrostatic energy will get aspect [EELEC].

[<mask>] Atoms to calculate energy for.

[cuteelec <cut>] If comparing to a reference, only report delta

EELEC > |<cut>| (default 1.0 kcal/mol).

[cutevdw <cutv>] If comparing to a reference, only report delta

EVDW > |<cutv>| (default 1.0 kcal/mole).

[ref <reffilename> | refindex <#>] Compare energies to specified

reference.

[cutout <cutmol2name>] If comparing to a reference, write out mol2

containing only atom pairs which satisfy cuteelec and

cutevdw.

DataSet Aspects:

[EELEC] Electrostatic energy in (kcal/mol).

[EVDW] van der Waals energy in (kcal/mol).

Calculate pairwise (i.e. non-bonded) energy (in kcal/mol) for atoms in <mask>. This calcula-
tion does use an exclusion list but is not periodic.

8.10.26 outtraj

outtraj <filename> [ trajout args ] [maxmin <datasetname> min <min> max <max>]...

The outtraj command is similar in function to trajout, and takes all of the same arguments.
However, instead of writing a trajectory frame after all actions are complete outtraj writes the
trajectory frame at its position in the action stack. For example, given the input:

trajin mdcrd.crd

trajout output.crd

outtraj BeforeRmsd.crd

rms R1 first :1-20@CA out rmsd.dat

outtraj AfterRmsd.crd
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three trajectories will be written: output.crd, BeforeRmsd.crd, and AfterRmsd.crd. The out-
put.crd and AfterRmsd.crd trajectories will be identical, but the BeforeRmsd.crd trajectory will
contain the coordinates of mdcrd.crd before they are RMS-fit.

The maxmin keyword can be used to control what frames are written based on the values of
previously defined dataset(s). For example, to only print out structures with an RMSD
between 0.0 and 1.0 in NetCDF format:

trajin mdcrd.crd

rms R1 first :1-20@CA

outtraj Rmsd_0.0-1.0.nc netcdf maxmin R1 min 0.0 max 1.0

If maxmindata <file> is specified, the #s of the saved frames will be written to <file>.

8.10.27 pucker

pucker [<dataset name>] <mask1> <mask2> <mask3> <mask4> <mask5> [mass]

[out <filename>] [range360] [amplitude] [altona | cremer] [offset <offset>]

Calculate the pucker (in degrees) for atoms in <mask1>, <mask2>, <mask3>, <mask4>,
<mask5> using the method of Altona & Sundarlingam[154, 155] (default, or if altona spec-
ified), or the method of Cremer & Pople[156] if cremer is specified.

If the amplitude keyword is given, amplitudes will be calculated instead of the pseudoro-
tation. If mass is specified use the center of mass of atoms in the masks instead of geometric
center.

By default, pucker values are wrapped to range from -180 to 180 degrees. If the range360
keyword is specified values will be wrapped to range from 0 to 360 degrees.

Note that the Cremer & Pople convention is offset from Altona & Sundarlingam convention
(with nucleic acids) by +90.0 degrees; the offset keyword will add an offset to the final value
and so can be used to convert between the two. For example, to convert from Cremer to Altona
specify “offset 90”.

To calculate nucleic acid pucker specify C1’ first, followed by C2’, C3’, C4’ and O4’. For
example, to calculate the sugar pucker for nucleic acid residues 1 and 2 using the method of
Altona & Sundarlingam, with final pseudorotation values ranging from 0 to 360:

pucker p1 :1@C1’ :1@C2’ :1@C3’ :1@C4’ :1@O4’ range360 out pucker.dat

pucker p2 :2@C1’ :2@C2’ :2@C3’ :2@C4’ :2@O4’ range360 out pucker.dat

8.10.28 radgyr | rog

radgyr [name>] [<mask>] [out <filename>] [mass] [nomax] [tensor]

[<name>] Data set name.

[<mask>] Atoms to calculate radius of gyration for; default all

atoms.

[out <filename>] Write data to <filename>.
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[mass] Mass-weight radius of gyration.

[nomax] Do not calculate maximum radius of gyration.

[tensor] Calculate radius of gyration tensor, output format ’XX

YY ZZ XY XZ YZ’.

DataSet Aspects:

[Max] Max radius of gyration.

[Tensor] Radius of gyration tensor; format ’XX YY ZZ XY XZ YZ’.

Calculate the radius of gyration of specified atoms. For example, to calculate only the
mass-weighted radius of gyration (not the maximum) of the non-hydrogen atoms of residues 4
to 10 and print the results to “RoG.dat”:

radgyr :4-10&!(@H=) out RoG.dat mass nomax

8.10.29 radial

radial <output_filename> <spacing> <maximum> <mask1> [<mask2>] [noimage]

[density <density> | volume] [center1] [<name>]

[intrdf <file>] [rawrdf <file>]

<output_filename> File to write RDF to, required.

<spacing> Bin spacing, required.

<maximum> Max bin value, required.

<mask1> Atoms to calculate RDF for, required.

<mask2> (Optional) If specified calculate RDF of atoms in

<mask1> to atoms in <mask2>.

[noimage] Do not image distances.

[density <density>] Use density value of <density> for

normalization (default 0.033456 molecules Å−3).

[volume] Determine density for normalization from average volume

of input frames.

[center1] Calculate RDF from geometric center of atoms in <mask1>

to all atoms in <mask2>.

[<name>] Name radial dataset.

[intrdf <file>] Calculate integral of RDF (using trapezoid rule) and

write to <file> (can be same as <output_filename>).

[rawrdf <file>] Write raw (non-normalized) RDF values to <file>.

DataSet Aspects:

[int] (intrdf only) Integral of RDF.
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[raw] (rawrdf only) Raw (non-normalized) RDF values.

Calculate the radial distribution function (RDF, aka pair correlation function) of atoms in
<mask1> to atoms in <mask2> (or <mask1> if a second mask is not given). If the center1 key-
word is given, the RDF of all atoms in <mask2> to the geometric center of atoms in <mask1>
is calculated.

The RDF is essentially a histogram of the number of particles found as a function of distance
R, normalized by the expected number of particles at that distance, which is calculated from:

Density∗
([

4π

3 (R+dR)3
]
−
[ 4π

3 dR3
])

where dR is equal to the bin spacing. Some care is required by the user in order to normalize
the RDF correctly. The default density value is 0.033456 molecules Å−3, which corresponds
to a density of water approximately equal to 1.0 g mL−1. To convert a standard density in
g mL−1, multiply the density by 0.6022

Mr
, where Mr is the mass of the molecule in atomic mass

units. Alternatively, if the volume keyword is specified the density is determined from the
average volume of the system over all Frames.

Note that correct normalization of the RDF depends on the number of atoms in each mask;
if multiple topology files are being processed that result in changes in the number of atoms in
each mask, the normalization will be off.

8.10.30 randomizeions

randomizeions <mask> [around <mask> by <distance>] [overlap <value>]

[noimage] [seed <value>]

This can be used to randomly swap the positions of solvent and single atom ions. The
“overlap” specifies the minimum distance between ions, and the “around” keyword can be
used to specify a solute (or set of atoms) around which the ions can get no closer than the
distance specified. The optional keywords “noimage” disable imaging and “seed” update the
random number seed. An example usage is

randomizeions @Na+ around :1-20 by 5.0 overlap 3.0

The above will swap Na+ ions with water getting no closer than 5.0 Å from residues 1 – 20 and
no closer than 3.0 Å from any other Na+ ion.

8.10.31 rmsd | rms

rmsd [<name>] [<mask> [<refmask>]] [out <filename>] [nofit | norotate] [mass]

[ first | reference | ref <reffilename> | refindex <#> |

reftraj <trajname> [parm <trajparm> | parmindex <parm#>] ]

[ perres perresout <perresfile> [perresavg <avgfile>]

[range <resRange>] [refrange <refRange>]

[perresmask <additional mask>] [perrescenter] [perresinvert] ]
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[<name>] Output data set name.

[<mask>] Mask of atoms to calculate RMSD for; if not specified,

calculate for all atoms.

[<refmask>] Reference mask; if not specified, use <mask>.

[out <filename>] Output data file name.

[nofit] Do not perform best-fit RMSD.

[norotate] If calculating best-fit RMSD (default), translate but

do not rotate coordinates.

[mass] Mass-weight the RMSD calculation.

Reference keywords:

first Use the first trajectory frame processed as reference.

reference Use the first previously read in reference structure

(refindex 0).

ref <name> Use previously read in reference structure specified

by filename/tag.

refindex <#> Use previously read in reference structure specified

by <#> (based on order read in).

reftraj <trajname> Use frames read in from <trajname> as

references. Each frame from <trajname> is used in turn, so

that frame 1 is compared to frame 1 from <trajname>, frame 2

is compared to frame 2 from <trajname> and so on. If

<trajname> runs out of frames before processing is complete,

the last frame of <trajname> continues to be used as the

reference.

parm <parmname> | parmindex <#> Associate reference trajectory

<trajname> with specified topology; if not specified the

first topology is used.

Per-residue RMSD keywords:

perres Activate per-residue no-fit RMSD calculation.

perresout <perresfile> Write per-residue RMSD to <perresfile>.

perresavg <avgfile> Write average per-residue RMSDs to <avgfile>.

range <res range> Calculate per-residue RMSDs for residues in <res

range> (default all solute residues).

refrange <ref range> Calculate per-residue RMSDs to reference

residues in <ref range> (use <res range> if not specified).

perresmask <additional mask> By default residues are selected

using the mask ’:X’ where X is residue number; this appends

<additional mask> to the mask expression.
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perrescenter Translate residues to a common center of mass prior

to calculating RMSD.

perresinvert Make X-axis residue number instead of frame number.

DataSet Aspects:

[res] (perres only) Per-residue RMSDs; index is residue number.

[Avg] (perres only) Average per-residue RMSD for each residue.

[Stdev] (perres only) Standard deviation of RMSD for each

residue.

Note: For backwards compatibility with ptraj the command ’rms’ will also work.
Calculate the coordinate RMSD of input frames to a reference frame (or reference trajectory).

Both <mask> and <refmask> must specify the same number of atoms, otherwise an error will
occur.

For example, say you have a trajectory and you want to calculate RMSD to two separate
reference structures. To calculate the best-fit RMSD of the C, CA, and N atoms of residues 1
to 20 in each frame to the C, CA, and N atoms of residues 3 to 23 in StructX.crd, and then
calculate the no-fit RMSD of residue 7 to residue 7 in another structure named
Struct-begin.rst7, writing both results to Grace-format file “rmsd1.agr”:

reference StructX.crd [structX]

reference md_begin.rst7 [struct0]

rmsd BB :1-20@C,CA,N ref [structX] :3-23@C,CA,N out rmsd1.agr

rmsd Res7 :7 ref [struct0] out rmsd1.agr nofit

Per-residue RMSD calculation

If the perres keyword is specified, after the initial RMSD calculation the no-fit RMSD of
specified residues is also calculated. So for example:

rmsd :10-260 reference perres perresout PRMS.dat range 190-211 perresmask &!(@H=)

will first perform a best-fit RMSD calculation to the first specified reference structure using
residues 10 to 260, then calculate the no-fit RMSD of residues 190 to 211 (excluding any
hydrogen atoms), writing the results to PRMS.dat.

8.10.32 rms2d | 2drms

Although the ’rms2d’ command can still be specified as an action, it is now considered an
analysis. See 8.13.4 on page 276.

8.10.33 rmsavgcorr

Although the ’rmsavgcorr’ command can still be specified as an action, it is now considered
an analysis. See 8.13.3 on page 276.
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8.10.34 rotdif

rotdif [rseed <rseed>] [nvecs <nvecs>]

[ref <refname> | refindex <refindex> | reference] [<refmask>]

[ncorr <ncorr>] [nmesh <nmesh>] dt <tfac> [ti <ti>] tf <tf>

[itmax <itmax>] [tol <delmin>] [d0 <d0>] [order <olegendre>]

[delqfrac <delqfrac>] [gridsearch] [rvecout <randvecOut>]

[rmout <rmOut>] [deffout <deffOut>] [outfile <outfilename>]

[rvecin <randvecIn>]

Evaluate rotational diffusion properties over a trajectory according to the procedure laid out
by Wong & Case[157]. Briefly, random vectors (can be thought of as analogous to e.g. N-H
bond vectors) are rotated according to rotation matrices obtained from an RMS fit to a reference
structure (typically an averaged structure). For each random vector the time correlation function
of the rotated vector is calculated. The time correlation function can then be used to solve for
the effective value of the diffusion constant (deff) for that vector. Given an effective diffusion
constant for each vector, solve for the diffusion tensor D assuming small anisotropy. Finally,
based on D in the small anisotropic limit, a downhill simplex minimizer is used to optimize D
with full anisotropy.

Rotation matrices are generated via an RMS fit to the reference structure specified by name
(ref) or index (refindex); reference uses the first reference structure read in. It is recommended
that the RMS fit be done to an average structure (see the average command). Rotation matrices
can be written (row-major) to a file specified by rmout.

The number of random vectors to generate is specified by nvecs; alternatively random
vectors can be read in from a file specified by rvecin with format:

<VectorNum> <Vx> <Vy> <Vz>

where <VectorNum> is an integer (not used internally), and Vx, Vy, and Vz are the x, y, and
z components of the vector. Random vectors can be written out in the same format to a file
specified by rvecout.

The order of Legendre polynomials to use (correlation and tau) is specified by olegendre;
currently this must be 1 or 2 (default 2). The maximum length of the correlation function (or
lag) is specified by ncorr (in frames). The default is to use all frames; however it is recom-
mended that ncorr be set to a number less than the total number of frames since noise tends
to increase as ncorr approaches the # of frames. The integration over the correlation func-
tion is from ti (in ns) (0.0 if not specified) to tf (also in ns), with a timestep specified by dt;
the final time should be less than ncorr * dt. The relative size of the mesh used with cubic
spline interpolation for integration is controlled by nmesh (size of the mesh is ncorr points
* nmesh); nmesh = 1 means no interpolation, default is 2. The iterative solver for effective
value of the diffusion constant from the correlation functions is controlled by itmax, tol, and
d0, where itmax specifies the number of iterations to perform (default 500), tol specifies the
tolerance (default 1E-6), and d0 specifies the initial guess for the diffusion constant (default
0.03). Effective diffusion constants for each random vector can be written out to a file specified
by deffout.

The random number generator (used in generating random vectors and by the simplex min-
imizer) is seeded with the value given by rseed (80531 by default). If the random seed is less
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than 1 the wallclock time is used. delqfrac controls the scaling of simplexes when fitting D
with full anisotropy (default 0.5).

Results are printed to the file specified by outfile. Details on the Q and D tensors are given, as
well as observed and calculated tau for each random vector. First, results are printed for analysis
in the limit of small anisotropy. Next, results are printed for analysis with full anisotropy. The
results of the full anisotropic calculation are first given using results from the small anisotropic
analysis as an initial guess, followed by the final results after minimization using the downhill
simplex (amoeba) minimizer.

For example, given a trajectory ’mdcrd.nc’ containing 100 frames, to calculate rotational
diffusion using 100 vectors using rotation matrices generated via an RMS fit to
’avgstruct.pdb’, computing the correlation function for each vector using a max lag of 90
frames, integrating from 0 ns to 0.180 ns with a timestep of 0.002 ns, and writing out the
effective diffusion constants and results to ’deffs.dat’ and ’rotdif.out’ respectively:

reference avgstruct.pdb [avg]

trajin mdcrd.nc 1 100

rotdif nvecs 100 ref [avg] @CA,C,N,O \

ncorr 90 ti 0.0 tf 0.180 dt 0.002 deffout deffs.dat \

itmax 500 tol 0.000001 d0 0.03 order 2 \

outfile rotdif.out

8.10.35 secstruct

secstruct [<dataset name>] [out <filename>] [<mask>] [sumout <sumfilename>]

[ptrajformat] [namen <N name>] [nameh <H name>]

[namec <C name>] [nameo <O name>]

DataSet Aspects:

[res] (Only if ptrajformat not specified) Residue secondary

structure; index corresponds to residue number.

[avgss] Average secondary structure; index corresponds to SS type

(see table below; no index for “None”).

Calculate secondary structural propensities for residues in <mask> (or all solute residues if
no mask given) using the DSSP method of Kabsch and Sander[158], which assigns secondary
structure types for residues based on backbone amide (N-H) and carbonyl (C=O) atom posi-
tions. By default cpptraj assumes these atoms are named “N”, “H”, “C”, and “O” respectively.
If a different naming scheme is used (e.g. amide hydrogens are named “HN”) the backbone
atom names can be customized with the nameX keywords (e.g. ’nameH HN’). Note that it
is expected that some residues will not have all of these atoms (such as proline); in this case
cpptraj will print an informational message but the calculation will proceed normally.

Results will be written to filename specified by out with format:

<#Frame> <ResX SS> <ResX+1 SS> ... <ResN SS>
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where <#Frame> is the frame number and <ResX SS> is an integer representing the calculated
secondary structure type for residue X. If the keyword ptrajformat is specified, the output
format will instead be:

<#Frame> STRING

where STRING is a string of characters (one for each residue) where each character represents
a different structural type (this format is similar to what ptraj outputs). The various secondary
structure types and their corresponding integer/character are listed below:

Character Integer SS type
0 0 None
b 1 Parallel Beta-sheet
B 2 Anti-parallel Beta-sheet
G 3 3-10 helix
H 4 Alpha helix
I 5 Pi (3-14) helix
T 6 Turn

Average structural propensities over all residues for each frame will be written to the file
specified by sumout (or “<filename>.sum” if sumout is not specified).

The output of secstruct command in particular is amenable to visualization with gnuplot. To
generate a 2D map-style plot of secondary structure vs time, with each residue on the Y axis
simply give the output file a “.gnu” extension. For example, to generate a 2D map of
secondary structure vs time, with different colors representing different secondary structure
types for residues 1-22:

secstruct :1-22 out dssp.gnu

The resulting file can be visualized with gnuplot:

gnuplot dssp.gnu

Similarly, the sumout file can be nicely visualized using xmgrace (use “.agr” extension).

secstruct :1-22 out dssp.gnu sumout dssp.agr

xmgrace dssp.agr

8.10.36 surf

surf [<dataset name>] [<mask>] [out <filename>]

Calculate the surface area in Å2 of atoms in <mask> (all solute atoms if no mask specified)
using the LCPO algorithm of Weiser et al.[159]. In order for this to work, the topology needs
to have bond information and atom type information. For topologies with no bond information
(e.g. PDB files), bond information can be set up by specifying ’bondsearch’ prior to the ’parm’
command.
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Note that even if <mask> does not include all solute atoms, the neighbor list is still calculated
for all solute atoms so the surface area calculated reflects the contribution of atoms in <mask>
to the overall surface area, not the surface area of <mask> as an isolated system. As a result, it
may be possible to obtain a negative surface area if only a small fraction of the solute is selected.

For example, to calculate the overall surface area of all solute atoms, as well as the
contribution of residue 1 to the overall surface area, writing both results to “surf.dat”:

surf out surf.dat

surf :1 out surf.dat

8.10.37 stfcdiffusion

stfcdiffusion mask <mask> [out <file>] [time <time per frame>]

[mask2 <mask>] [lower <distance>] [upper <distance>]

[nwout <file>]) [avout <file>] [distances] [com]

[x|y|z|xy|xz|yz|xyz]

mask Atoms for which MSDs will be computed.

out Output file: time vs. MSD.

time Time step in the trajectory. (1.0 ps)

mask2 Compute MSDs only within the lower and upper limit of

mask2. IMPORTANT: may be very slow!!!

lower Smaller distance from reference point(s). (0.01 Å)

upper Larger distance from reference point(s). (3.5 Å)

nwout Output file containing number of water molecules in the

chosen region, see mask2. (off)

avout Output file containing average distances. (off)

x|y|z|xy|xz|yz|xyz Computation of the mean square displacement in

the chosen dimension. (xyz)

distances Dump un-imaged distances. By default only averages are

output. (off)

com Calculate MSD for centre of mass. (off)

Calculate diffusion for selected atoms using code based on the ’diffusion’ routine developed by
Hannes Loeffler at STFC (http://www.stfc.ac.uk/CSE).

8.10.38 symmrmsd

symmrmsd [<name>] [<mask>] [<refmask>] [out <filename>] [nofit | norotate] [mass]

[ first | ref <name> | refindex <#> |

reftraj <trajname> [parm <parmname> | parmindex <#>] ]

[<name>] Output data set name.
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[<mask>] Mask of atoms to calculate RMSD for; if not specified,

calculate for all atoms.

[<refmask>] Reference mask; if not specified, use <mask>.

[out <filename>] Output data file name.

[nofit] Do not perform best-fit RMSD.

[norotate] If calculating best-fit RMSD (default), translate but

do not rotate coordinates.

[mass] Mass-weight the RMSD calculation.

Reference keywords:

first Use the first trajectory frame processed as reference.

reference Use the first previously read in reference structure

(refindex 0).

ref <name> Use previously read in reference structure specified

by filename/tag.

refindex <#> Use previously read in reference structure specified

by <#> (based on order read in).

reftraj <trajname> Use frames read in from <trajname> as

references. Each frame from <trajname> is used in turn, so

that frame 1 is compared to frame 1 from <trajname>, frame 2

is compared to frame 2 from <trajname> and so on. If

<trajname> runs out of frames before processing is complete,

the last frame of <trajname> continues to be used as the

reference.

parm <parmname> | parmindex <#> Associate reference trajectory

<trajname> with specified topology; if not specified the

first topology is used.

Perform symmetry-corrected RMSD calculation. Note that the symmetry correction is robust
enough to account for symmetries in the standard amino and nucleic acid residues, but may not
yet be robust enough for residues with more extended types of symmetry.

8.10.39 volmap

volmap filename dx dy dz <mask> [xplor] [radscale <factor>]

[ [[buffer <buffer>] [centermask <mask>]] |

[center <x,y,z>] [size <x,y,z>] ]

[peakcut <cutoff>] [peakfile <xyzfile>]

filename The name of the output file with the grid density. By

default it is written in the OpenDX file format

dx, dy, dz The grid spacing (Angstroms) in the X-, Y-, and

Z-dimensions, respectively
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<mask> The atom selection from which to calculate the number

density.

[xplor] If this keyword is present, the grid file will be written

in Xplor format.

radscale <factor> Factor by which to scale radii (by division).

To match the atomic radius of Oxygen used by the VMD volmap

tool, a scaling factor of 1.36 should be used.

buffer <buffer> A buffer distance, in Angstroms, by which the

edges of the grid should clear every atom of the centermask

(or default mask if centermask is omitted) in every

direction. The default value is 3. The buffer is ignored

if the center and size are specified (see below)

centermask <mask> The mask around which the grid should be

centered (via geometric center). If this is omitted and the

center and size are not specified, the default <mask>

entered (see above) is used in its place.

center <x,y,z> Specify the grid center explicitly. Note, the size

argument must be present in this case

size <x,y,z> Specify the size of the grid in the X-, Y-, and

Z-dimensions. Must be used alongside the center argument.

peakcut <cutoff> The minimum density required to consider a local

maximum a ’density peak’ in the outputted peak file.

peakfile <xyzfile> A file in XYZ-format that contains a carbon atom

centered at the grid point of every local density maximum.

This file is necessary input to the spam action command.

Grid data as a volumetric map, similar to the ’volmap’ command in VMD. The density is calcu-
lated by treating each atom as a 3-dimensional Gaussian function whose standard deviation is
equal to the van der Waals radius. The density calculated is the number density averaged over
the entire simulation.

8.10.40 watershell

watershell <solutemask> <filename> [lower <lower cut>] [upper <upper cut>]

[noimage] [<solventmask>]

DataSet Aspects:

[lower] Number of solvent molecules in first solvent shell.

[upper] Number of solvent molecules in second solvent shell.

This option will count the number of waters within a certain distance of the atoms in the mask in
order to represent the first and second solvation shells. The output is a file into filename which
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has, on each line, the frame number, number of waters in the first shell and number of waters
in the second shell. If lower is specified, this represents the distance from the mask which
represents the first solvation shell; if this is absent 3.4 angstroms is assumed. Likewise, upper
represents the range of the second solvation shell and if absent is assumed to be 5.0 angstroms.
The optional solvent-mask can be used to consider other atoms as the solvent; the default is
“:WAT”. Imaging on the distances is done implicitly unless the “noimage” keyword has been
specified.

8.11 Matrix and Vector Actions

8.11.1 matrix

matrix [out <filename>] [start <#>] [stop|end <#>] [offset <#>]

[name <name>] [ byatom | byres [mass] | bymask [mass] ]

[ ired [order <#>] ]

[ {distcovar | idea} <mask1> ]

[ {dist | correl | covar | mwcovar} <mask1> [<mask2>]

[out <filename>] If specified, write matrix to <filename>.

[start <#>] [stop|end <#>] [offset <#>] Start, stop, and offset frames

to use (as a subset of all frames read in).

[name <name>] Name of the matrix dataset (for referral in

subsequent analysis).

byatom Write results by atom (default). This is the sole option

for covar, mwcovar, and ired.

byres Write results by calculating an average for each residue

(mass weighted if mass is specified).

bymask Write average over <mask1>, and if <mask2> is specified

<mask1> x <mask2> and <mask2> as well (mass weighted if mass

is specified).

ired [order <#>] If IRED, no mask is needed; IRED vectors must be

specified previously (see ’vector ired’); order specifies

the order of Legendre polynomials used in calculating the

IRED matrix (2 by default).

Compute distance (dist), covariance (covar), mass-weighted covariance (mwcovar), correla-
tion (correl), distance-covariance (distcovar), Isotropically Distributed Ensemble Analysis
(idea),[160] or Isotropic Reorientational Eigenmode Dynamics (ired) [161] matrices. Matrix
dimensions will be of the order of N x M for dist, correl, idea, and ired, 3N x 3M for covar and
mwcovar, and N(N-1) x N(N-1) / 4 for distcovar (with N being the number of atoms in mask1
and M being the number of atoms either in mask1 or mask2). No mask is required for ired;
only one mask can be used with distcovar and idea matrices, otherwise one or two masks can
be used (for symmetric and full matrices respectively). If two masks are specified the num-
ber of atoms covered by mask1 must be greater than or equal to the number of atoms covered
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by mask2, and on output mask1 atoms are listed column-wise while mask2 atoms are listed
row-wise.

8.11.2 vector

vector [<name>] <Type> [out <filename> [ptrajoutput]] [<mask1>] [<mask2>]

[magnitude] [ired]

<Type> = { mask | principal [x|y|z] | dipole | box | center | corrplane }

[<name>] Vector data set name.

[out <filename>] Write vector data to <filename> with format ’Vx

Vy Vz Ox Oy Oz’ where V denotes vector coordinates and ’O’

denotes origin coordinates.

[ptrajoutput] Write vector data in ptraj style (Vx Vy Vz Ox Oy Oz

Vx+Ox Vy+Oy Vz+Oz). This prevents additional formatting of

<filename> and is not compatible with ’magnitude’.

[<mask1>] Atom mask, required for all types except ’box’.

[<mask2>] Second atom mask, only required for type ’mask’.

[magnitude] Store the magnitude of the vector with aspect [Mag].

[ired] Mark this vector for subsequent IRED analysis with commands

’matrix ired’ and ’ired’.

Vector types:

mask (Default) Store vector from center of mass of atoms in

<mask1> to atoms in <mask2>.

principal [x|y|z] Store one of the principal axis vectors determined

by diagonalization of the inertial matrix from the

coordinates of the atoms specified by <mask1>. The

eigenvector with the largest eigenvalue is considered “x”

(i.e., the hardest axis to rotate around) and the

eigenvector with the smallest eigenvalue is considered “z”.

If none of x or y or z are specified, then the “x” principal

axis is stored. The reference point is the center of mass

of atoms in <mask1>.

dipole Store the dipole and center of mass of the atoms specified

in <mask1>. The vector is not converted to appropriate

units, nor is the value well-defined if the atoms in the

mask are not overall charge neutral.

box (No mask needed) Store the box lengths of the trajectory.

The reference point is the origin (0.0, 0.0, 0.0).

center Store the center of mass of atoms in <mask1>. The

reference point is the origin (0.0, 0.0, 0.0).
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corrplane This defines a vector perpendicular to the

(least-squares best) plane through the atoms in <mask1>.

The reference point is the center of mass of atoms in

<mask1>.

DataSet Aspects:

[Mag] (magnitude only) Vector magnitude.

NOTE: The corrired and corr keywords are deprecated. The corrired functionality is now part
of the analysis command ’ired’. The corr functionality can now be done with any vectors and
“timecorr” analysis.

This command will keep track of a vector value (and its origin) over the trajectory; the data
can be referenced for later use based on the name (which must be unique). Auto-correlation
or cross-correlation functions can be calculated subsequently for vectors using the analysis
command “timecorr”. If no <Type> keyword is specified the default is ’mask’.

8.11.3 projection

projection modes <modesfile> out <outfile> [beg <beg>] [end <end>] [<mask>]

[start <start>] [stop<stop>] [offset <offset>]

For COVAR/MWCOVAR modes, DataSet indices correspond to mode #.

DataSet Aspects: (IDEA modes only)

[X] X component of mode.

[Y] Y component of mode.

[Z] Z component of mode.

[R] Magnitude of mode.

Projects snapshots onto modes obtained by diagonalizing covariance or mass-weighted covari-
ance matrices. The modes are read from modesfile. The results are written to outfile. Only
modes beg to end are considered. Default values are beg = 1, end = 2. mask specifies the atoms
that will be projected. The user has to make sure that these atoms agree with the ones used to
calculate the modes (i.e., if mask1 = @CA was used in the “matrix” command, mask = @CA
needs to be set here as well). The start, stop, and offset parameters can be used to specify the
range of coordinates processed (as a subset of all of those read in across all input files).

8.12 Data Set Analysis Commands

Similar to ptraj, analysis occurs after all trajectories have been read in and processed and all
actions have completed their ’print’ phase. In general, any data set created by an action with
an ’out <datafile>’ command is available for analysis. A complete list of DataSets available for
analysis is shown after trajectory processing or with the ’list dataset’ command.

Note that the ’analyze’ prefix used in ptraj is no longer necessary but can still be used for
backwards compatibility. The exception is ’analyze matrix’ in order to differentiate it from the
’matrix’ action; users are encouraged to use the new command diagmatrix instead.
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8.12.1 autocorr

autocorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]

[lagmax <lag>] [nocovar] [direct]

<dsetarg0> [dsetarg1> ...] Argument(s) specifying datasets to be

used.

[name <dsetname>] Store results in dataset(s) named

<dsetname>:X.

[out <filename>] Write results to file named <filename>.

[lagmax] Maximum lag to calculate for. If not specified all

frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this will be

much slower.

This is for integer/double/float datasets only; for vectors see the ’timecorr’ command.
Calculate auto-correlation (actually auto-covariance by default) function for datasets speci-

fied by one or more dataset arguments. The datasets must have the same # of data points.

8.12.2 corr | ’analyze correlationcoe’

corr out <outfilename> <dataset1> [<dataset2>]

[lagmax <lag>] [nocovar] [direct]

out <outfilename> Write results to file named <outfilename>. The

datasets must have the same # of data points.

<dataset1> [<dataset2>] Data set(s) to calculate correlation for.

If one dataset or the same dataset is given twice, the

auto-correlation will be calculated, otherwise

cross-correlation.

[lagmax] Maximum lag to calculate for. If not specified all

frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this will be

much slower.

DataSet Aspects:

[<dataset1>-<dataset2>] The aspect will be the names of each of the

data sets joined by a dash (’-’).

This is for integer/double/float datasets only; for vectors see the ’timecorr’ command.
Calculate the auto/cross-correlation (actually covariance by default) function.
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between datasets named <dataset1> and <dataset2> for lag = 0 to <lagmax> frames (all if
lagmax not specified), writing the result to file specified by out. The two datasets must have
the same # of datapoints. If <dataset1> and <dataset2> are the same dataset this is the auto-
correlation.

8.12.3 crank[shaft] | ’analyze crank[shaft]’

crank {angle | distance} <dsetname1> <dsetname2> info <string>

[out <filename>] [results <resultsfile>]

angle Analyze angle data sets.

distance Analyze distance data sets.

<dsetname1> Data set to analyze.

<dsetname2> Data set to analyze.

info <string> Title the analysis <string>.

[out <filename>] Write frame-vs-bin to <filename>.

[results <resultsfile>] Write results to <resultsfile>.

Calculate crankshaft motion between two data sets.

8.12.4 crosscorr

crosscorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]

[name <dsetname>] The resulting upper-triangle matrix is stored

with name <dsetname>.

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying datasets to be

used.

[out <filename>] Write results to file named <filename>.

Calculate the Pearson product-moment correlation coefficients between all specified datasets.

8.12.5 fft

fft <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>] [dt <samp_int>]

<dset0> [<dset1 ...] Argument(s) specifying datasets to be used.

[out <outfile>] Write results to file named <outfile>.

[name <outsetname>] The resulting transform will be stored with

name <outsetname>.

[dt <samp_int>] Set the sampling interval (default is 1.0).

Perform fast Fourier transform (FFT) on specified data set(s). If more than 1 data set, they must
all have the same size.
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8.12.6 hist | histogram

hist <dataset_name>[,min,max,step,bins] ...

[free <temperature>] [norm] [gnu] [circular] out <filename>

min <min> max <max> step <step> bins <bins>

<dataset_name>[,min,max,step,bins] Dataset(s) to be histogrammed.

Optionally, the min, max, step, and/or number of bins can be

specified for this dimension after the dataset name

separated by commas. It is only necessary to specify the

step or number of bins, an asterisk ’*’ indicates the value

should be calculated from available data.

[free <temperature>] If specified, estimate free energy from bin

populations using Gi =−kBT ln
(

Ni
NMax

)
, where KB is Boltzmann’s

constant, T is the temperature specified by <temperature>,

Ni is the population of bin i and NMax is the population of

the most populated bin. Bins with no population are given

an artificial barrier equivalent to a population of 0.5.

[norm] If specified, normalize bin populations so the sum over

all bins equals 1.0.

[gnu] Internal output only; data will be gnuplot-readable, i.e.

a space will be printed after the highest order coordinate

cycles.

[circular] Internal output only; data will wrap, i.e. an extra bin

will be printed before min and after max in each direction.

Useful for e.g. dihedral angles.

out <filename> Write results to file named <filename>.

[min <min>] Default minimum to bin if not specified.

[max <max>] Default max to use if not specified.

[step <step>] Default step size to use if not specified.

[bins <bins>] Default bin size to use if not specified.

Create an N-dimensional histrogram, where N is the number of datasets specified. For 1-
dimensional histograms the xmgrace ’.agr’ file format is recommended; for 2-dimensional hiso-
grams the gnuplot ’.gnu’ file format is recommended; for all other dimensions plot formatting
is disabled and the routine uses its own internal output format; this is also enabled if gnu or
circular is specified.

For example, to create a two dimensional histogram of two datasets ’phi’ and ’psi’:

dihedral phi :2@C :3@N :3@CA :3@C

dihedral psi :3@N :3@CA :3@C :4@N

hist phi:-180:180:*:72 psi:-180:180:*:72 out hist.gnu
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In this case the number of bins (72) has been specified for each dimension and ’*’ has been
given for the step size, indicating it should be calculated based on min/max/bins. The
following ’hist’ command is equivalent:

hist phi psi min -180 max 180 bins 72 out hist.gnu

8.12.7 lifetime

lifetime [out <filename>] <dsetarg0> [ <dsetarg1> ... ]

[window <windowsize> [name <setname>]] [averageonly]

[cumulative] [cut <cutoff>]

[out <filename>] Write results to file named <filename>. If

performing lifetime analysis 3 files will be written:

’<filename>’, containing lifetimes; ’max.<filename>’,

containing max lifetimes; and ’avg.<filename>’, containing

average lifetimes.

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying datasets to be

used.

[window <windowsize>] Size of window (in frames) over which to

calculate lifetimes/averages. If not specified

lifetime/average will be calculated over all sets.

[name <setname>] Store results in data sets with name <setname>.

[averageonly] Just calculate averages (no lifetime analysis).

[cumulative] Calculate cumulative lifetimes/averages over windows.

[cut <cutoff>] In lifetime analysis, by default data is considered

’present’ when above a cutoff 0.5 (intended for use with

hbond ’series’ datasets). This can be changed by specifying

’cut <cutoff>’.

DataSet Aspects:

[max] Maximum lifetimes.

[avg] Average lifetimes.

Perform lifetime analysis or just calculate averages over windows for specified datasets.
’Lifetime’ in this case means ’whenever present’; so in the case of a hydrogen bond ’series’

dataset, if a hydrogen bond is present the set is 1, otherwise it is 0. For example, given the
dataset {0 1 1 0 1 0 0 0 1 1}, the overall average is 0.5. However, there are 3 lifetimes of lengths
2, 1, and 2 (1 1, 1, and 1 1). The max lifetime is 2 and the average lifetime is 1.67, i.e. (2 + 1 +
2) / 3 lifetimes = 1.67.

8.12.8 statistics | stat | analyze statistics

stat {<name> | ALL} [shift <value>] [out <filename>]
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<name> Name of data set to analyze.

ALL analyze all data sets.

shift <value> Subtract <value> from all elements in each data set.

[out <filename>] Write analysis results to <filename>.

Analyze distances, torsions, angles, and/or puckers and calculate various properties. More
specific analyses can be obtained by labelling distances/torsions/puckers with the ’type <label>’
keyword:

dihedral type labels: alpha, beta, gamma, delta, epsilon, zeta, chi, c2p h1p, phi, psi, pchi

distance type labels: hbond, noe

pucker type labels: pucker

For example, to perform in-depth analysis on some nucleic acid dihedral angles:

dihedral g0 out dihedrals.dat :1@O5’ :1@C5’ :1@C4’ :1@C3’ type gamma

dihedral d0 out dihedrals.dat :1@C5’ :1@C4’ :1@C3’ :1@O3’ type delta

dihedral c0 out dihedrals.dat :1@O4’ :1@C1’ :1@N9 :1@C4 type chi

analyze statistics all out stat.dat

8.13 Coordinate Analysis Commands

These analyses operate specifically on COORDS data sets. If no COORDS data set is speci-
fied, a default one will be automatically created from frames read in by ’trajin’ statements.

8.13.1 cluster

cluster [crdset <crd set>] [<name>]

{ [hieragglo [epsilon <e>] [clusters <n>]

[linkage|averagelinkage|complete]] |

[dbscan minpoints <n> epsilon <e>] }

{ [[rms] [<mask>] [mass] [nofit]] | [dme [<mask>]] |

[data <dset0>[,<dset1>,...]] }

[sieve <#>] [loadpairdist] [savepairdist] [pairdist <file>]

[out <cnumvtime>] [gracecolor] [summary <summaryfile>] [info <infofile>]

[summaryhalf <halffile>] [cpopvtime <file> [normpop]] [splitframe <frame>]

[ clusterout <trajfileprefix> [clusterfmt <trajformat>] ]

[ singlerepout <trajfilename> [singlerepfmt <trajformat>] ]

[ repout <repprefix> [repfmt <repfmt>] ]

[crdset <crd set>] Name of previously generated COORDS DataSet. If

not specified the default COORDS set will be used.

Algorithms:
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hieragglo (Default) Use hierarchical agglomerative (bottom-up)

approach.

[epsilon <e>] Finish clustering when minimum distance between

clusters is greater than <e>.

[clusters <n>] Finish clustering when <n> clusters remain.

[linkage] single-linkage; use the shortest distance between

members of two clusters.

[averagelinkage] average-linkage (default); use the average

distance between members of two clusters.

[complete] complete-linkage; use the maximum distance between

members of two clusters.

dbscan Use DBSCAN clustering algorithm of Ester et al.[162]

minpoints <n> Minimum number of points required to form a

cluster.

epsilon <e> Distance cutoff between points for forming a

cluster.

Distance Metric Options:

[rms [<mask>]] (Default) Distance between frames calculated via

best-fit coordinate RMSD using atoms in <mask>.

[mass] Mass-weight the RMSD.

[nofit] Do not fit structures onto each other prior to

calculating RMSD.

dme [<mask>] Distance between frames calculated using

distance-RMSD (aka DME, distrmsd) using atoms in <mask>.

[data <dset0>[,<dset1>,...] Distance between frames calculated using

specified DataSet(s).

[sieve <#>] Perform clustering only for every <#> frame. After

clustering, all other frames will be added to clusters based

on how close they are to cluster centroids.

[pairdist <file>] File to use for loading/saving pairwise distances.

[loadpairdist] Load pairwise distances from <file> (CpptrajPairDist

if pairdist not specified).

[savepairdist] Save pairwise distances from <file> (CpptrajPairDist

if pairdist not specified). NOTE: If sieving was performed

only the calculated distances are saved.

Output Options:

[out <cnumvtime>] Write cluster # vs frame to <cnumvtime>.

Algorithms that calculate noise (e.g. DBSCAN) will assign

noise points a value of -1.
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[gracecolor] Instead of cluster # vs frame, write cluster# + 1

(corresponding to colors used by XMGRACE) vs frame. Cluster

#s larger than 15 are given the same color. Algorithms that

calculate noise (e.g. DBSCAN) will assign noise points a

color of 0 (blank).

[summary <summaryfile>] Summarize each cluster with format

’#Cluster Frames Frac AvgDist Stdev Centroid AvgCDist’:

#Cluster Cluster number starting from 0 (0 is most

populated).

Frames # of frames in cluster.

Frac Size of cluster as fraction of total trajectory.

AvgDist Average distance between points in the cluster.

Stdev Standard deviation of points in the cluster.

Centroid Frame # of structure in cluster that has the lowest

cumulative distance to every other point.

AvgCDist Average distance of this cluster to every other

cluster.

[info <infofile>] Write ptraj-like cluster information to

<infofile>. This file has format:

#Clustering: <X> clusters <N> frames

#Cluster <I> has average-distance-to-centroid <AVG>

...

#DBI: <DBI>

<Line for cluster 0>

...

#Representative frames: <representative frame list>

Where <X> is the number of clusters, <N> is the number of

frames clustered, <I> ranges from 0 to <X>-1, <AVG> is the

average distance of all frames in that cluster to the

centroid, <DBI> is the Davies-Bouldin Index (a measure of

clustering merit; smaller DBI values are better), and

<representative frame list> contains the frame # of the

representative frame (i.e. closest to the centroid) for

each cluster. Each cluster has a line made up of characters

(one for each frame) where ’.’ means ’not in cluster’ and

’X’ means ’in cluster’.

[summaryhalf <halffile>] Summarize each cluster based on which of

its frames fall in the first and last halves of the

trajectory with format ’#Cluster Total Frac C# Color

NumIn1st NumIn2nd Frac1 Frac2’:

#Cluster Cluster number starting from 0 (0 is most

populated).

Total # of frames in cluster.
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Frac Size of cluster as a fraction of the total trajectory.

C# Grace color number.

Color Text description of the color (based on standard

XMGRACE coloring).

NumIn1st # of frames in 1st half of the trajectory.

NumIn2nd # of frames in 2nd half of the trajectory.

Frac1 Fraction of frames in 1st half of the trajectory.

Frac2 Fraction of frames in 2nd half of the trajectory.

[splitframe <frame>] For summaryhalf, frame to split at.

[cpopvtime <file> [normpop]] Write cluster population vs time to

<file>; if normpop specified normalize each cluster to 1.0.

Coordinate Output Options:

clusterout <trajfileprefix> Write frames in each cluster to files

named <trajfileprefix>.cX, where X is the cluster number.

clusterfmt <trajformat> Format keyword for clusterout (default Amber

Trajectory).

singlerepout <trajfilename> Write all representative frames to

single trajectory named <trajfilename>.

singlerepfmt <trajformat> Format keyword for singlerepout (default

Amber Trajectory).

repout <repprefix> Write representative frames to separate files

named <repprefix>.X.<ext>, where X is the cluster number and

<ext> is a format-specific filename extension.

repfmt <trajformat> Format keyword for repout (default Amber

Trajectory).

DataSet Aspects:

[Pop] Cluster population vs time; index corresponds to cluster

number.

Cluster input frames using the specified clustering algorithm and distance metric. In order to
speed up clustering of large trajectories, the sieve keyword can be used. In addition, subsequent
clustering calculations can be sped up by writing/reading calculated pair distances between each
frame to/from a file specified by pairdist (or “CpptrajPairDist” if pairdist not specified).

Example: cluster on a specific distance:

distance endToEnd :1 :255

cluster data endToEnd clusters 10 epsilon 3.0 summary summary.dat info info.dat

Example: cluster on the CA atoms of residues 2-10 using average-linkage, stopping when
either 3 clusters are reached or the minimum distance between clusters is 4.0, writing the
cluster number vs time to “cnumvtime.dat” and a summary of each cluster to
“avg.summary.dat”:

cluster C1 :2-10 clusters 3 epsilon 4.0 out cnumvtime.dat summary avg.summary.dat
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8.13.2 crdfluct

[crdset <crd set>] [<mask>] [out <filename>] [window <size>] [bfactor]

Calculate atomic positional fluctuations for atoms in <mask> over windows of size <size>. If
bfactor is specified, the fluctuations are weighted by 8

3 π2(similar but not necessarily equivalent
to crystallographic B-factor calculation). Units are Å, or Å2x 8

3 π2 if bfactor specified.

8.13.3 rmsavgcorr

rmsavgcorr [crdset <crd set>] [<name>] [<mask>] [out <filename>] [mass]

[stop <maxwindow>]

Calculate correlation of RMSD by calculating the average RMSD of running-averaged
coordinates over increasing window sizes. Output has format:

<WindowSize> <AvgRmsd>

The first entry has window size of 1, and so is just the average RMSD of the structure to the
first frame. The second entry has a window size of two, so it is the average RMSD of all
frames averaged over two adjacent windows to the average of the first two frames, and so on.
Average RMSDs will be calculated up to the number of frames minus 1 or the value specified
by stop, whichever is lower. To calculate mass-weighted RMSD specify mass. Note that to
reduce memory costs it can be useful to strip all coordinates not involved in the RMS fit from
the system prior to specifying ’rmsavgcorr’. For example, to calculate the correlation of
C-alpha RMSD of residues 2 to 12:

strip !(:2-12@CA)

rmsavgcorr out rmscorr.dat

8.13.4 rms2d | 2drms

rms2d [crdset <crd set>] [<name>] [<mask>] [out <filename>]

[dme] [mass] [nofit]

[reftraj <traj> [parm <parmname> | parmindex <parm#>] [<refmask>]]

[corr <corrfilename>]

[crdset <crd set>] Name of previously generated COORDS DataSet. If

not specified the default COORDS set will be used.

[<mask>] Mask of atoms to calculate 2D-RMSD for. Default is all

atoms.

[out <filename>] Write results to <filename>.

[dme] Calculate distance RMSD instead of coordinate RMSD; this

is substantially slower.
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[mass] Mass-weight RMSD.

[nofit] Do not calculate best-fit RMSD.

[reftraj <traj>] Calculate 2D RMSD to frames in trajectory <traj>

instead.

[parm <parmname> | parmindex <#>] Topology to use for <traj>; only

useful in conjunction with reftraj.

[<refmask>] Mask of atoms in reference; only useful in

conjunction with reftraj.

[corr <corrfilename>] Calculate pseudo-auto-correlation C for

2D-RMSD as C(i) =
∑

j<N−i
j=0 exp(−RMSD( j, j+i))

N−i , where i is the lag, j

is the frame #, and N is the total number of frames. An

exponential is used to weight the RMSD since 0.0 RMSD is

equivalent to correlation of 1.0. This can only be done if

reftraj is not used.

DataSet Aspects:

[Corr] (corr only) Pseudo-auto-correlation.

Note: For backwards compatibility with ptraj the command ’2drms’ will also work.
Calculate the RMSD of each frame in <crd set> (the default COORDS set if none specified)

to each other frame. This creates an upper-triangle matrix named <name> (or a full matrix if
reftraj specified). The output of the rms2d command can be best-viewed using gnuplot; a
gnuplot-formatted file can be produced by giving <filename> a ’.gnu’ extension. For example,
to calculate the RMSD of non-hydrogen atoms of each frame in trajectory “test.nc” to each
other frame, writing to a gnuplot-viewable file “test.2drms.gnu”:

trajin test.nc

rms2d !(@H=) rmsout test.2drms.gnu

To calculate the RMSD of atoms named CA of each frame in trajectory “test.nc” to each frame
in “ref.nc” (assuming test.nc and ref.nc are using the default topology file):

trajin test.nc

rms2d @CA rmsout test.2drms.gnu reftraj ref.nc

8.14 Matrix and Vector Analysis

8.14.1 diagmatrix | analyze matrix

diagmatrix <name> [out <filename>] [thermo [outthermo <filename>]]

[vecs <#>] [name <modesname>] [reduce]

<name> Name of symmetric matrix to diagonalize.

[out <filename>] Write results to <filename>.
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[thermo [outthermo <filename>]] Mass-weighted covariance (mwcovar)

matrix only. Calculate entropy, heat capacity, and internal

energy from the structure of a molecule (average

coordinates, see above) and its vibrational frequencies

using standard statistical mechanical formulas for an ideal

gas. Results are written to <filename> if specified,

otherwise results are written to STDOUT. Note that this

implicitly converts calculated eigenvalues to frequencies.

[vecs <#>] Number of eigenvectors to calculate. Default is 0,

which is only allowed when ’thermo’ is specified.

[name <modesname>] Store resulting modes data set with name

<modesname>.

[reduce] Covariance (covar/mwcovar/distcovar) matrices only. For

coordinate covariance (covar/mwcovar) matrices, each

eigenvector element is reduced via Ei = Eix^2 + Eiy^2 +

Eiz^2. For distance covariance (distcovar) the eigenvectors

are reduced by taking the sum of the squares of each row.

See Abseher & Nilges, JMB 1998, 279, 911-920 for further

details. They may be used to compare results from PCA in

distance space with those from PCA in cartesian-coordinate

space.

Calculate eigenvectors and eigenvalues for the specified symmetric matrix. This is followed by
Principal Component Analysis (in cartesian coordinate space in the case of a covariance matrix
or in distance space in the case of a distance-covariance matrix), or Quasiharmonic Analysis
(in the case of a mass-weighted covariance matrix). Diagonalization of distance, correlation,
idea, and ired matrices are also possible. Eigenvalues are given in cm−1 in the case of a mass-
weighted covariance matrix and in the units of the matrix elements in all other cases. In the
case of a mass-weighted covariance matrix, the eigenvectors are mass-weighted.

Results may include average coordinates (in the case of covar, mwcovar, correl), average
distances (in the case of distcovar), main diagonal elements (in the case of idea and ired),
eigenvalues, and eigenvectors.

8.14.2 ired

ired [relax freq <hz> [NHdist <distnh>]] [order <order>]

tstep <tstep> tcorr <tcorr> out <filename> [norm] [drct]

modes <modesname> [beg <ibeg> end <iend>]

[relax [freq <hz>]] Should only be used when ired vectors represent

N-H bonds; calculate correlation times τm for each eigenmode

and relaxation rates and NOEs for each N-H vector. ’freq

<hz>’ (required) is the Lamor frequency of the measurement.

’NHdist <distnh>’ specifies the length of the NH bond in

Angstroms (default is 1.02).
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tstep <tstep> Time between snapshots (default 1.0).

tcorr <tcorr> Maximum time to calculate correlation functions for

(default 10000.0).

out <filename> Name of file to write output to.

[norm] Normalize all correlation functions, i.e.,

Cl(t = 0) = Pl(t = 0) = 1.0.
[drct] Use the direct method to calculate correlations instead of

FFT; this will be much slower.

modes <modesname> Name of previously calculated eigenmodes

corresponding to IRED vectors (either data set or data file

name).

[beg <ibeg> end <iend>] If <modesname> is from a file, beginning

and end eigenmode to read.

Peform IRED[161] analysis on previously defined IRED vectors (see vector ired) using eigen-
modes calculated from those vectors with a previous ’diagmatrix’ command. Autocorrelation
functions for each mode and the corresponding correlation time τm will be written to file-
name.cmt. Autocorrelation functions for each vector will be written to filename.cjt. Relaxation
rates and NOEs for each N-H vector will be added to the the end of the standard output. For the
calculation of τm the normalized correlation functions and only the first third of the analyzed
time steps will be used. For further information on the convergence of correlation functions see
[Schneider, Brünger, Nilges, J. Mol. Biol. 285, 727 (1999)].

8.14.3 modes | analyze modes

modes {fluct|displ|corr} name <modesname>

[beg <beg>] [end <end>] [bose] [factor <factor>]

[out <outfile>] [maskp <mask1> <mask2> [...]]

fluct rms fluctuations from normal modes. Results vector usage:

[rmsx(at1), rmsy(at1), rmsz(at1), rms(at1), ..., rmsx(atN),

..., rms(atN)]

displ displacement of cartesian coordinates along normal mode

directions. Results vector usage: [displx(at1),

disply(at1), displz(at1), ..., displx(atN), ...,

displz(atN)]

corr dipole-dipole correlation functions. Results vector usage:

[corr(pair1, vec1), ..., corr(pair1, vecN), ..., corr(pairM,

vec1), ..., corr(pairM, vecN)

name <modesname> Modes dataset or datafile name.

[beg <beg>] [end <end>] If modes taken from datafile, beginning and

end modes to read. Default for beg is 7 (which skips the

first 6 zero-frequency modes in the case of a normal mode

analysis); for end it is 50.
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[bose] Use quantum (Bose) statistics in populating the modes.

[factor <factor>] multiplicative constant on the amplitude of

displacement, default 1.0.

[out <outfile>] File to write data results to. If not given

results are written to STDOUT.

[maskp <mask1> <mask2> [...]] If corr, pairs of atom masks (mask1,

mask2; each pair preceded by “maskp” and each mask defining

only a single atom) have to be given that specify the atoms

for which the correlation functions are desired.

Analyze previously calculated eigenmodes obtained from principal component analyses (of
covariance matrices) or quasiharmonic analyses (diagmatrix analysis command). Modes can be
taken either from a dataset or a datafile. By default, classical (Boltzmann) statistics are used in
populating the modes. A possible series of commands would be “matrix covar | mwcovar ...”
to generate the matrix, “diagmatrix ...” to calculate the modes, and, finally, “modes ...”.

8.14.4 timecorr | analyze timecorr

timecorr vec1 <vecname1> [vec2 <vecname2>] out <filename>

[order <order>] tstep <tstep> tcorr <tcorr>

[dplr] [norm] [drct]

vec1 <vecname1> [vec2 <vecname2>] Vector(s) to calculate

correlation for. If only vec1 specified or if vec1 == vec2

the auto-correlation is calculated, otherwise the

cross-correlation is calculated.

out <filename> Name of file to write output to.

order <order> Order of Legendre polynomials to use; default 2.

tstep <tstep> Time between snapshots (default 1.0).

tcorr <tcorr> Maximum time to calculate correlation functions for

(default 10000.0).

[dplr] Output correlation functions Cl ≡< Pl/(r(0)3r(τ)3)> and

< 1/(r(0)3r(τ)3)> in addition to the Pl correlation function.

[norm] Normalize all correlation functions, i.e.,

Cl(t = 0) = Pl(t = 0) = 1.0.
[drct] Use the direct method to calculate correlations instead of

FFT; this will be much slower.

Calculate auto/cross-correlation functions for vectors using spherical harmonics/FFT method.

8.15 Matrix/Vector Analysis Examples

Please note that in most cases the trajectory needs to be aligned against a reference structure
to obtain meaningful results. Use the “rms” command for this.
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8.15.1 Calculating and analyzing matrices and modes

As a simple example, a distance matrix of all CA atoms is generated and output to
distmat.dat.

matrix dist @CA out distmat.dat

In the following, a mass-weighted covariance matrix of all atoms is generated and stored
internally with the name mwcvmat (as well as output). Subsequently, the matrix is analyzed by
performing a quasiharmonic analysis, whereby 5 eigenvectors and eigenvalues are calculated
and output to evecs.dat.

matrix mwcovar name mwcvmat out mwcvmat.dat

diagmatrix mwcvmat out evecs.dat vecs 5

Alternatively, the eigenvectors can be stored internally and used for calculating rms
fluctuations or displacements of cartesian coordinates.

diagmatrix mwcvmat name evecs vecs 5

modes fluct out rmsfluct.dat name evecs beg 1 end 3

modes displ out resdispl.dat name evecs beg 1 end 3

Finally, dipole-dipole correlation functions for modes obtained from principle component
analysis or quasiharmonic analysis can be computed.

modes corr out cffromvec.dat name evecs beg 1 end 3 ...

... maskp @1 @2 maskp @3 @4 maskp @5 @6

8.15.2 Projecting snapshots onto modes

After calculating modes, snapshots can be projected onto these in an additional pass through
the trajectory. Here, snapshots are projected onto modes 1 and 2 read from evecs.dat (which
have been obtained by the "matrix mwcovar", "diagmatrix" commands from above).

projection modes evecs.dat out project.dat beg 1 end 2

8.15.3 Calculating time correlation functions

Vectors between atoms 5 and 6 as well as 7 and 8 are calculated below, for which auto and
cross time correlation functions are obtained.

vector v0 @5 @6

vector v1 @7 @8

timecorr vec1 v0 tstep 1.0 tcorr 100.0 out v0.out order 2

timecorr vec1 v1 tstep 1.0 tcorr 100.0 out v1.out order 2

timecorr vec1 v0 vec2 v1 tstep 1.0 tcorr 100.0 out v0_v1.out order 2

Similarly, a vector perpendicular to the plane through atoms 18, 19, and 20 is obtained and
further analyzed.

vector v2 @18,@19,@20 corrplane

timecorr vec1 v3 tstep 1.0 tcorr 100.0 out v2.out order 2
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8.15.4 The Cpptraj IRED Approach

In cpptraj, IRED analysis[161] can now be performed in one pass (as opposed to the two
passes previously required in ptraj). First, IRED vectors are defined (in this case for N-H
bonds) and an IRED matrix is calculated and analyzed. The IRED vectors are then projected
onto the calculated IRED eigenvectors in the ired analysis command to calculate the time
correlation functions. If the parameter order is specified, order parameters based on IRED are
calculated. By specifying the relax parameter, relaxation rates and NOEs can be obtained for
each N-H vector. Note that the order of the IRED matrix should be the same as the one
specified for IRED analysis.

# Define N-H IRED vectors

vector v0 @5 ired @6

vector v1 @7 ired @8

...

vector v5 @15 ired @16

vector v6 @17 ired @18

# Define IRED matrix using all previous IRED vectors

matrix ired name matired order 2

# Diagonalize IRED matrix

diagmatrix matired vecs 6 out ired.vec name ired.vec

# Perform IRED analysis

ired relax NHdist 1.02 freq 500.0 tstep 1.0 tcorr 100.0 out v0.out noefile noe order 2
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Ptraj has long been the main analysis code for Amber, but most of its functionality is now
contained within cpptraj, and most of the functionality of rdparm is now in parmed.py; users are
encouraged to use the new programs if possible. Some of the functionality in ptraj that is either
not yet present in cpptraj or functions in a significantly different way (mostly the hydrogen bond
and clustering functionality) is described below. All other commands in ptraj should work as
they do in cpptraj; see the cpptraj chapter (8) for documentation on those commands. If desired,
a full ptraj manual can be obtained from the Amber website, http://www.ambermd.org.
ptraj is really two interfaces contained within the same C source code:

1. rdparm: a program to read and help interpret Amber prmtop files

usage: rdparm prmtop

2. ptraj: a program to process and analyze a series of 3-D atomic coordinates (one molec-
ular configuration or frame at a time). Molecular information, such as atom and residue
names, is loaded from the file prmtop and this file can be an Amber prmtop, CHARMM
PSF or PDB file. Note that the input atomic coordinates must be in the same order as the
atoms stored in the molecular information file (i.e., prmtop).

usage: ptraj prmtop script or ptraj prmtop < script >& ptraj.out

The interface used at runtime by default is ptraj, unless the executable is named “rdparm”.
rdparm is interactive – type “?” or “help” for a list of commands – and only supports the
reading of Amber prmtop files. If the executable name does not contain the string “rdparm”,
ptraj is run instead. Commands to ptraj can either be piped in through standard input or
from a file (script). To save runtime information from ptraj it is often convenient to pipe
the standard output and error to a file (>& ptraj.out). The code is documented and can be
extended by users. Information absent from this manual can often be found by consulting the
code directly.

9.1 ptraj coordinate input/output commands

trajin filename [ start stop offset] [remdtraj remdtrajtemp reptemp]

reference filename

trajout filename [ format ] [ nobox ] [ nowrap ] [ append ] [ remdtraj ] [ les

split|average ] [ little | big ] \
[ dumpq| parse ] [ title title ] [ application application ] [ program program ]
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filename [ format ]: Specify the name of a file for output coordinates (filename) written
in a specific format (format). Currently supported formats are:

• trajectory – Amber ascii trajectory, the default

• restart – Amber restart

• binpos – Scripps binary format

• pdb – PDB, the traditional format (not the newer CIF files); if molecule information
is present, TER cards will be written between molecules.

• cdf | netcdf – Amber NetCDF binary trajectory

• charmm – CHARMM DCD binary trajectory

Note that the allowable formats include both trajectory files (i.e., a series of frames) and
files that traditionally include only a single coordinate set. In this latter case, the filename
will be appended with .N where N is the frame number (unless the optional keyword
append is specified).

9.2 ptraj commands that override the molecular information
specified

These commands change the state of the system, such as to define the solvent or alter the box
information.

box [ x value ] [ y value ] [ z value ] [ alpha value ] [ beta value ] [ gamma value ] \
[ fixx ] [ fixy ] [ fixz ] [ fixalpha ] [ fixbeta ] [ fixgamma ]

This command allows specification and optionally fixing of the periodic box (unit cell)
dimensions. This can be useful when reading PDB files that do not contain box
information, trajectory formats that do not support non-standard triclinic cells, or to
override the box information in the trajectory file. For example, if you wanted to process
the coordinates with average values rather than the instantaneous box coordinates for
each frame. The x, y, and z keywords change the box size (in Å) and the alpha, beta
and gamma values change the angles of the triclinic unit cell. In the standard usage,
without the “fix” keywords, if the box information is not already present in the input
trajectory (such as the case with restart files or trajectory files) this command can be
used to set the default values that will be applied. If you want to force a particular box
size or shape, the fixx, fixy, etc commands can be used to override any box
information already present in the input coordinate files. For example, the following
command will set the x-component of the box size to be 100.0 Å and fix its value
throughout the trajectory:

box x 100.0 fixx

solvent [ byres | byname ] mask1 [ mask2 ] [ mask3 ] ...

This command can be used to override the solvent information specified in the Am-
ber prmtop file or that which is set by default (based on residue name) upon reading
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a CHARMM PSF file. Applying this command overwrites any previously set solvent
definitions. The solvent can be selected by residue with the “byres” modifier using all the
residues specified in the one or more atom masks listed. The byname option searches for
solvent by residue name (where the mask contains the name of the residue), searching
over all residues.

As an example, say you want to select the solvent to be all residues from 20-100, then
you would do

solvent byres :20-100

Note that if you don’t know the final residue number of your system offhand, yet you do
know that the solvent spans all residues starting at residue 20 until the end of the system,
just chose an upper bound and the program will reset accordingly, i.e.,

solvent byres :20-999999

To select all residues named "WAT" and "TIP3" and "ST2":

solvent byname WAT TIP3 ST2

Note that if you just want to peruse the current solvent information (or, more generally,
to obtain information about the current state), specify solvent with no arguments and a
summary of the current state will be printed.

Other commands which also modify the molecular information are strip and closest.
These commands are described in the next section since they also modify the coordinates.

9.3 ptraj action commands

The following are descriptions of ptraj commands. Only commands that are either not yet
present in or significantly different from cpptraj will be described; all other commands use the
same syntax as in cpptraj. Note that when ptraj processes the list of commands, they are applied
in the order specified. Some of these may change the overall state or molecular information
(i.e., the list of active atoms; more on this later). All of the actions can be applied repeatedly.
Note that in general (except where otherwise mentioned) implicit imaging in non-orthorhombic
systems (for example of distances) is supported.

angle name mask1 mask2 mask3 [ out filename ] [ time interval ]

atomicfluct [ out filename ] [ mask ] [ start start ] [ stop stop ] [ offset offset ] [ byres

| byatom | bymask ] [ bfactor ]

average filename [ mask ] [ start start ] [ stop stop ] [ offset offset ] [ nobox ] \
[ pdb [ parse | dumpq ] [ nowrap ] | binpos | rest ] [ stddev ]

center [ mask ] [ origin ] [ mass ]

checkoverlap [ mask ] [ min value ] [ max value ] [ noimage ] [ around mask ]

Look for pair distances in the mask selected atoms (all by default) that are less than
the specified minimum value (in Å, min 0.95 Å by default) apart or greater than the
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maximum value (if specified with max). The “around” keyword can be used to limit
search of pair distances only around a selected set of atoms. This command is extremely
computationally demanding, particularly if imaging is turned on (by default; imaging can
be turned off with noimage), so expect to wait a while.

This command is extremely useful for diagnosing problems in input coordinates related
to poor model building, such as to find overlapping atoms that can lead to infinite van
der Waals or electrostatic energies. An example below looks for overlap of atoms in
residues named Na+ and K+:

checkoverlap @Na+,K+

To look over atoms with a distance less than 1.2 Å between any atom in residues 1 – 20
with any other atom:

checkoverlap min 1.2 around :1-20

closest total mask [ oxygen | first ] [ noimage ]

cluster out filename [ representative format ] [ average format ] [ all format ] algorithm
[ clusters n | epsilon critical_distance ]\
[ rms| dme ] [ sieve s [ start start_frame | random ]] [ verbose verb ] [ mass ] mask

Clustering refers to grouping together similar objects. In the context of ptraj, this means
grouping together coordinate frames from the trajectory into distinct sets. Several
different algorithms for clustering have been implemented. The most common similarity
metric is RMSd (specified by the rms keyword). Distance matrix error is also a potential
similarity metric (with keyword dme), however this is considerably more
computationally demanding. It is now also possible to cluster by attribute, i.e., the
values of time series measured, and will be discussed later. The ideas used here are
discussed in considerable detail in Ref. [163], and users should consult that paper for
background and details. A simple example is as follows:

trajin traj.1.gz

trajin traj.2.gz

cluster out testcluster representative pdb \

average pdb averagelinkage clusters 5 rms @CA

The above reads in two trajectory files and then clusters using the average-linkage algo-
rithm to produce 5 clusters using the pairwise RMSd between frames as a metric com-
paring the atoms named CA. PDB files are dumped for the average and representative
structures from the clusters and full trajectories (over ALL atoms) are dumped in AM-
BER format. If you only want to output only the CA atoms, the strip command could be
applied prior. The files output will be prefixed with “testcluster”.

Output information will be dumped to a series of files prefixed with filename. filename.txt
contains the clustering results and statistics. “filename.rep.ci” contains the representative
structure of cluster i with its specified format (i = 0 to n – 1). “filename.avg.ci” contains
the average structure of cluster i with its specified format. “filename.ci” contains all the
frames in the cluster i-1 with specified format. Available formats include “none”, “pdb”,
“rest”, “binpos”, or “amber”. The default format is the “amber” trajectory.
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Algorithms implemented in the ptraj include averagelinkage, linkage, complete, edge,
centripetal, centripetalcomplete, hierarchical, means, SOM, COBWEB, and Bayesian.
Please see Ref. [163] for more details on the advantages and disadvantages of each algo-
rithm. For averagelinkage, linkage, complete, edge, centripetal, centripetalcomplete, and
hierarchical, the user can specify a critical distance so that the clustering will stop when
this distance is met. All algorithms will try to generate n clusters. However, sometimes
SOM and Bayesian algorithms will generate less than n clusters and this may indicate a
more reasonable number of clusters of the trajectory.

The distance metric can be rms or dme (distance matrix error). Users are encouraged to
use rms since dme is significantly more computationally demanding yet returns similar
results. rms is the default value. The keyword mass indicates the rms or dme matrix will
be mass-weighted. The users are advised to always turn this “mass” option on. Mask is
the atom selection where the clustering method is focused.

The sieve keyword is useful when dealing with large trajectories. The command “sieve
s” tells ptraj to cluster every sth frame in the first pass. The default sieve size is 0 (equiv-
alent to sieve 1). The user can state where the first frame will be picked for the first pass
by specifying the parameter start_frame. The default value of start_frame is 1. To
avoid the potential problem of periodicity, frames can be picked randomly if the keyword
“random” is specified. Since the coordinates of unsampled frames are not saved during
the process, the DBI and pSF values can not be calculated for the whole trajectory, al-
though those values for the first pass will be saved in a file called “EndFirstPass.txt”. The
DBI and pSF values for a sieving algorithm can be calculated later by running the ptraj
clustering again, using “DBI” as the algorithm. This will read the clustering result from
the “filename.txt” and appended the DBI and pSF values to the file “filename.txt”.

The cluster facility will calculate a pairwise distance matrix between each pair of frames
and save the matrix in a file called “PairwiseDistances”. This file will be read in (and
checked) for clustering if it is found in the current directory. Although not all algorithms
require this distance matrix, this matrix will be helpful for the calculation of DBI and pSF
in the post-clustering process. In the case of sieving, the file “PairwiseDistance” will be
generated for just those sampled frames in the first pass. A user provided “FullPairwise-
Matrix” containing a full pairwise matrix would further expedite the calculation of DBI
and pSF.

For the COBWEB algorithm, a special file “CobwebPreCoalesce.txt” will be saved for
the COBWEB tree structures. The first level of branches usually indicates the natural
clustering. Use “clusters -1” (minus one) will achieve this natural clustering. If the
specified number of clusters, n, is not equal to its natural number of clusters, branches
will be merged or split. COBWEB will read a pre-written CobwebPreCoalesce.txt if it
found in the current directory. Another special parameter for COBWEB is [acuity acu].
Acuity is set to be the minimal standard deviation of a cluster attribute. The default value
of acuity is 0.1.

For the agglomerative algorithms, specifically averagelinkage, linkage, complete, edge,
centripetal, and centripetalcomplete, every merging step will be saved in the file “Clus-
terMerging.txt”. This file can be read in to generate other number of clusters by using
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“ReadMerge” as the cluster algorithm in the ptraj command. For each line, the first field
is the newly formed cluster, which is followed by the two fields representing the sub-
clusters. The fourth field is the current critical distance, which is followed by (the DBI
and) pSF values. The DBI values are omitted if the number of clusters is greater than 50
because the time to calculate DBI is intractable as cluster number increases. Obviously,
this will not yield less clusters (i.e., more merging steps) than the clustering when the
ClusterMerging.txt file is generated. Therefore, the users can use “clusters 1” at first for
these algorithms, and then generate other number of clusters by ReadMerge.

Some parameters are designed for specific algorithms. The [iteration iter] parameter
is used in the means algorithm which specifies the maximum iteration for the refinement
steps. The default value of iteration is 100. There is a variation of means algorithm,
decoy. The “decoy” method allows the users to provide seed structures for the means
algorithm. Use “decoy decoy_structure” as the algorithm to provide the initial structures
in a trajectory file “decoy_structure”. If the users want the real decoy by providing the
well-defined structures, “iteration 1” can be used to prevent subsequent refinement.

clusterdihedral out filename cut clustersize_cutoff framefile filename clusterinfo file-
name
[dihedralfile filename] | [phibins bins psibins bins mask]

contacts [ first|reference ] [ byresidue ] [ out filename ] [ time interval ] [ distance
cutoff ] [ mask ]

dihedral name mask1 mask2 mask3 mask4 [ out filename ] [ time value ] [ type tag-name ]

diffusion mask time_per_frame [ average ] [ filenameroot ]

dipole filename nx x_spacing ny y_spacing nz z_spacing mask1 origin | box [ max

max_percent]

distance name mask1 mask2 [ out filename ] [ noimage ] [ time interval ]

grid filename nx x_spacing ny y_spacing nz z_spacing mask1 [ origin | box ] [ negative ] [
max fraction ]

image [ origin ] [ center ] mask [ bymol | byres | byatom | bymask ] mask [ triclinic

| familiar [ com mask ] ]

principal mask [ dorotation ] [ mass ]

pucker name mask1 mask2 mask3 mask4 mask5 [ out filename ] [ amplitude ] [ altona |
cremer ] [ offset offset ] [ time interval ]

radial root-filename spacing maximum solvent-mask [ solute-mask ] [ closest ] [ density
value ] [ noimage ]

radgyr [ out filename ] [ time interval ] [mask]

randomizeions mask [ around mask by distance ] [ overlap value ] [ noimage ] [ seed value
]
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rms {previous | first | reference} [ mass ] [ out filename ] [ time interval ] mask [ name name
] [ nofit ]

secstruct [ out filename ] [ time interval ] [ mask ]

strip mask

translate mask [ x x-value ] [ y y-value ] [ z z-value ]

truncoct mask distance [ prmtop filename ]

Note: This command is largely obsolete.

Create a truncated octahedron box with solvent stripped to a distance distance away from
the atoms in the mask. Coordinates are output to the trajectory specified with the trajout
command. Note that this is a special command and will only really make sense if a single
coordinate set is processed (i.e., any prmtop written out will only correspond to the first
configuration!) and commands after the truncoct will have undefined behavior since the
state will not be consistent with the modified coordinates. It is intended only as an aid for
creating truncated octahedron restrt files for running in Amber.

The “prmtop” keyword can be used to specify the writing of a new prmtop (to a file
named filename; this prmtop is only consistent with the first set of coordinates written.
Moreover, this command will only work with Amber prmtop files and assumes an Amber
prmtop file has previously been read in (rather than a CHARMM PSF). This command
also assumes that all the solvent is located contiguously at the end of the file and that the
solvent information has previously been set (see the solvent command).

unwrap [ reference ] mask

watershell mask filename [ lower lower upper upper ] [solvent-mask] [ noimage ]

9.4 Correlation and fluctuation facility

The ptraj program now contains several related sets of commands to analyze correlations and
fluctuations, both from trajectories and from normal modes. These items replace the correlation
command in previous versions of ptraj, and also replace what used to be done in the nmanal
program. Some examples of command sequences are given at the end of this section.

vector name mask [ principal [ x|y|z ] | dipole | box | corrplane | ired mask2 | corr
mask2 | corrired mask2]\
[ out filename ] [ order order ] [ modes modesfile ] [ beg beg ] [ end end ] [ npair
npair ]

This command will keep track of a vector value (and its origin) over the trajectory; the
data can be referenced for later use based on the name (which must be unique among the
vector specifications). "Ired" vectors, however, may only be used in connection with the
command "matrix ired". If the optional keyword "out" is specified (not valid for "ired"
vectors), the data will be dumped to the file named filename. The format is frame number,
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followed by the value of the vector, the reference point, and the reference point plus the
vector. What kind of vector is stored depends on the keyword chosen.

principal: [x | y | z]: store one of the principal axis vectors determined by diagonaliza-
tion of the inertial matrix from the coordinates of the atoms specified by the mask.
If none of x or y or z are specified, then the principal axis (i.e., the eigenvector
associated with the largest eigenvalue) is stored. The eigenvector with the largest
eigenvalue is “x” (i.e., the hardest axis to rotate around) and the eigenvector with the
smallest eigenvalue is “z” and if one of x or y or z are specified, that eigenvector
will be dumped. The reference point for the vector is the center of mass of the mask
atoms.

dipole: store the dipole and center of mass of the atoms specified in the mask. The vector
is not converted to appropriate units, nor is the value well-defined if the atoms in
the mask are not overall charge neutral.

box: store the box coordinates of the trajectory. The reference point is the origin or (0.0,
0.0, 0.0).

ired mask2: This defines ired vectors necessary to compute an ired matrix (see matrix
command). The vectors must be defined prior to the matrix command.

corrplane: This defines a vector perpendicular to the (least-squares best) plane through
a series of atoms given in mask, for which a time correlation function can be calcu-
lated subsequently with the command “analyze timecorr ...”. order specifies the
order of the Legendre polynomial used (0 <= order <= 2). It defaults to 2.

corr mask2: This defines a vector between the center of mass of mask and the one of
mask2, for which a time correlation function can be calculated subsequently with
the command “analyze timecorr ...”. order specifies the order of the Legendre
polynomial used (0 <= order <= 2). It defaults to 2.

corrired mask2: This defines a vector between the center of mass of mask and the one
of mask2, for which a time correlation function according to the Isotropic Reori-
entational Eigenmode Dynamics (ired) approach [161] can be calculated. order

specifies the order of the Legendre polynomial used (0 <= order <= 2). It de-
faults to 2. To calculate this vector, ired modes need to be provided by modesfile.
They can be calculated by the commands “matrix ired ...”, followed by “analyze
matrix ...”. Only modes <beg> to <end> are considered. Default is beg = 1, end
= 50. To obtain meaningful results, it is important that the vector definition agrees
with the one used for calculation of the ired matrix (there is no internal check for
this). Along these lines, npair needs to be specified, which relates to the position of
this definition in the sequence of ired (not corrired!) vectors used to obtain the ired
matrix.

matrix dist | covar | mwcovar | distcovar | correl | idea | ired [ name name ] [ order
order ] [mask1] [mask2]\
[ out filename ] [ start start ] [ stop stop ] [ offset offset ] [ byatom | byres |
bymask ]
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Compute distance (distance), covariance (covar), mass-weighted covariance
(mwcovar), correlation (correl), distance-covariance (distcovar), Isotropically Dis-
tributed Ensemble Analysis (idea),[160] or Isotropic Reorientational Eigenmode Dy-
namics (ired) [161] matrices. Results are output to filename if given. Be aware, matrix
dimension will be of the order of N x M for dist, correl, idea, and ired, 3N x 3M for covar
and mwcovar, and N(N-1) x N(N-1) / 4 for distcovar (with N being the number of atoms
in mask1 and M being the number of atoms either in mask1 or mask2).

“byatom” dumps the results by atom (default). This is the sole option for covar,
mwcovar, distcovar, idea, and ired. In the case of dist or correl, “byres” cal-
culates an average for each residue and “bymask” dumps the average over all atoms in
the mask(s). With “mass”, mass-weighted averages will be computed.

In the case of ired, mask information must not be given. Instead, “ired vectors” need
to be defined prior to the matrix command by using the vector command. Otherwise,
if no mask is given, all atoms against all are used. If only mask1 is given, a symmetric
matrix is computed. In the case of distcovar and idea, only mask1 (or none) may be
given. In the case of distcovar, mwcovar, and correl, if mask1 and mask2 is given, on
output mask1 atoms are listed column-wise while mask2 atoms are listed row-wise. The
number of atoms covered by mask1 must be >= the number of atoms covered by mask2
(this is also checked in the function).

The matrix may be stored internally on the matrixStack with the name name for latter
processing (with the “analyze matrix” command). Since at the moment this only in-
volves diagonalization, storing is only available for (symmetric) matrices generated with
mask1 (or no mask or ired matrices).

The start, stop, and offset parameters can be used to specify the range of coordinates
processed (as a subset of all of those read in across all input files).

The order parameter chooses the order of the Legendre polynomial used to calculate the
ired matrix.

analyze matrix matrixname [out filename] [ thermo | order ] [ vecs vecs ] [ reduce ] [
orderparamfile orderparamfilename ]

Diagonalizes the matrix matrixname, which has been generated and stored before by
the matrix command. This is followed by Principal Component Analysis (in cartesian
coordinate space in the case of a covariance matrix or in distance space in the case of a
distance-covariance matrix), or Quasiharmonic Analysis (in the case of a mass-weighted
covariance matrix). Diagonalization of distance, correlation, idea, and ired matrices are
also possible. Eigenvalues are given in cm−1 in the case of a mass-weighted covariance
matrix and in the units of the matrix elements in all other cases. In the case of a mass-
weighted covariance matrix, the eigenvectors are mass-weighted.

Results [average coordinates (in the case of covar, mwcovar, correl), average distances
(in the case of distcovar), main diagonal elements (in the case of idea and ired), eigen-
values, eigenvectors] are output to filename. vecs determines, how many eigenvectors
and eigenvalues are calculated. The value must be >= 1, except if the “thermo” flag is
given (see below). In that case, setting vecs = 0 results in calculating all eigenvalues, but
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no eigenvectors. This option is mainly intended for saving memory in the case of ther-
modynamic calculations. “reduce” (only possible for covar, mwcovar, and distcovar)
results in reduced eigenvectors [Abseher & Nilges, J. Mol. Biol. 279, 911, (1998)]. They
may be used to compare results from PCA in distance space with those from PCA in
cartesian-coordinate space.

“thermo” calculates entropy, heat capacity, and internal energy from the structure of a
molecule (average coordinates, see above) and its vibrational frequencies using standard
statistical mechanical formulas for an ideal gas. This option is only available for mwcovar
matrices.

“order” calculates order parameters based on eigenvalues and eigenvectors with
the isotropic reorientational eigenmode dynamics (iRED) approach [Prompers &
Brüschweiler, J. Am. Chem. Soc. 124, 4522, (2002)] and outputs them to standard
output. This option is only available for ired matrices.

If orderparamfile is specified, the ired order parameters will be written to orderparam-
filename instead of standard output.

analyze modes fluct| displ | corr stack stackname | file filename [ beg beg ] [ end end
]\
[ bose ] [ factor factor ] [ out outfile ] [ maskp mask1 mask2 [...] ]

Calculates rms fluctuations (“fluct”), displacements of cartesian coordinates along
mode directions (“displ”), or dipole-dipole correlation functions (“corr”) for modes
obtained from principal component analyses (of covariance matrices) or quasiharmonic
analyses (of mass-weighted covariance matrices). Thus, a possible series of commands
would be “matrix covar | mwcovar ...” to generate the matrix, “analyze matrix ...” to
calculate the modes, and, finally, “analyze modes ...”.

Modes can be taken either from an internal stack, identified by their name on the stack,
stackname, or can be read from a file filename. Only modes beg to end are considered.
Default for beg is 7 (which skips the first 6 zero-frequency modes in the case of a normal
mode analysis); for end it is 50. If “bose” is given, quantum (Bose) statistics is used
in populating the modes. By default, classical (Boltzmann) statistics is used. factor is
used as multiplicative constant on the amplitude of displacement. Default is factor = 1.
Results are written to outfile, if specified, otherwise to stdout. In the case of “corr”, pairs
of atom masks (mask1, mask2; each pair preceded by “maskp” and each mask defining
only a single atom) have to be given that specify the atoms for which the correlation
functions are desired.

analyze timecorr vec1 vecname1 vec2 vecname2 [ relax ] [ NHdist nhdistance ] [ freq MHz
] [ tstep tstep ] [ tcorr tcorr ]\
[ drct ] [ dplr ] [ norm ] out filename [ noefile noefilename ]

Calculates time correlation functions for vectors vecname1 (vecname2) of type “corr”
or “corrired”, using a fast Fourier method. If two different vectors are specified for
“vec1” and “vec2”, a cross-correlation function is calculated; if the two vectors are the
same, the result is an autocorrelation function. If the drct keyword is given, a direct
approach is used instead of the FFT approach. Note that this is less efficient than the FFT
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route. If dplr is given, in addition to the Pl correlation function, also correlation func-
tions Cl ≡< Pl/(r(0)3r(τ)3) > and < 1/(r(0)3r(τ)3) > are output. If norm is given, all
correlation functions are normalized, i.e., Cl(t = 0) = Pl(t = 0) = 1.0. Results are writ-
ten to filename. tstep specifies the time between snapshots (default: 1.0), and tcorr

denotes the maximum time for which the correlations functions are to be computed (de-
fault: 10000.0).

relax can only be used when the vectors are of type “corrired” and when they rep-
resent an N-H bond. If relax is given, correlation times τm for each eigenmode and
relaxation rates and NOEs for each N-H vector will be calculated following the iRED
approach [Prompers & Brüschweiler, J. Am. Chem. Soc. 124, 4522, (2002)]. NHdist

and freq are only considered if relax is given. NHdist specifies the length of the NH
bond in Angstroms (default is 1.02). It is mandatory for the user to set freq, which is
the Lamor frequency of the measurement. Autocorrelation functions for each mode and
the corresponding correlation time τm will be written to filename.cmt. Autocorrelation
functions for each vector will be written to filename.cjt. Relaxation rates and NOEs for
each N-H vector will be added to the the end of the standard output. For the calculation
of τm the normalized correlation functions and only the first third of the analyzed time
steps will be used. For further information on the convergence of correlation functions
see [Schneider, Brünger, Nilges, J. Mol. Biol. 285, 727 (1999)].

If noefile is specified, the NOEs and relaxation rates will be written to noefilename
instead of standard output.

projection modes modesfile out outfile [ beg beg ] [ end end ] [ mask ] [ start start ] [ stop
stop ] [ offset offset ]

9.5 Hydrogen bonding facility

The ptraj program now contains a generic facility for keeping track of lists of pair interac-
tions (subject to a distance and angle cutoff) useful for calculation hydrogen bonding or other
interactions. It is designed to be able to track the interactions between a list of hydrogen bond
"donors" and hydrogen bond "acceptors" that the user specifies.

Important Note: In ptraj the definition of donors and acceptors is reversed with respect to
standard conventions; the “acceptor” is bonded to the hydrogen and the “donor” is the atom the
hydrogen bond is formed to (i.e., in ptraj a “donor” can be thought of as “donating” electrons to
the hydrogen atom). This has not been changed in order to preserve backwards-compatibility.

donor resname atomname | mask mask | clear | print
This command sets the list of hydrogen bond donors. It can be specified repeatedly to
add to the list of potential donors. The usage is either as a pair of residue and atom
names or as a specified atom mask. The former usage,

donor ADE N7

would set all atoms named N7 in residues named ADE to be potential donors.

donor mask :10@N7
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would set the atom named N7 in residue 10 to be a potential donor.

The keyword “clear” will clear the list of donors specified so far and the keyword
“print” will print the list of donors set so far.

acceptor resname atomname atomnameH | mask mask maskH | clear | print

Similar to the donor command, this command sets the list of hydrogen bond acceptors. It
can be specified repeatedly to add to the list of potential acceptors. The usage is either as
a residue name followed by two atom names (the heavy atom and the hydrogen bonded
to the heavy atom respectively), or as two masks, one specifying heavy atoms and one
specifying corresponding hydrogen atoms. In either case, the number of heavy atoms
must match the number of hydrogen atoms. If the same atom is specified twice (as might
be the case to probe ion interactions) then no angle is calculated between the donor and
acceptor.

For example:

acceptor THY N3 H3

would set all atoms named N3 and H3 in residues named THY to be potential acceptors.

acceptor mask :11@N3 :11@H3

would set the atoms named N3 and H3 in residue 11 to be a potential acceptor.

The keyword “clear” will clear the list of acceptors specified so far and the keyword
“print” will print the list of acceptors set so far.

The donor and acceptor commands do not actually keep track of distances but instead simply
set of the list of potential interactions. To actually keep track of the distances, the hbond
command needs to be specified:

hbond [ distance value ] [ angle value ] [ solventneighbor value ]\
[ solventdonor donor-spec ] [ solventacceptor acceptor-spec ]\
[ nosort ] [ time value ] [ print value ] [ series name ]

The optional “distance” keyword specifies the cutoff distance for the pair interactions
and the optional “angle” keyword specifies the angle cutoff for the hydrogen bond. The
default is no angle cutoff and a distance of 3.5 angstroms. To keep track of potential
hydrogen bond interactions where we don’t care which molecule of a given type is inter-
action as long as one is (such as with water), the solvent keywords can be specified. An
example would be keeping track of water or ions interacting with a particular donor or
acceptor. The maximum number of possible interactions per a given donor or acceptor is
specified with the “solventneighbor” keyword. The list of potential solvent donors/ac-
ceptors is specified with the solventdonor and solventacceptor keywords (with a
format the same as the donor/acceptor keywords above).

As an example, if we want to keep track of water interactions with our list of
donors/acceptors:
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hbond distance 3.5 angle 120.0 solventneighbor 6 solventdonor WAT O \

solventacceptor WAT O H1 solventacceptor WAT O H2

If you wanted to keep track of interactions with Na+ ions (assuming the atom name was
Na+ and residue name was also Na+):

hbond distance 3.5 angle 0.0 solventneighbor 6 solventdonor Na+ Na+ \

solventacceptor Na+ Na+ Na+

To print out information related to the time series, such as maximum occupancy and
lifetimes, specify the “series” keyword.

9.6 rdparm

rdparm requires an Amber prmtop file for operation and is menu driven. Rudimentary online
help is available with the "?" command. The basic commands are summarized here.

angles mask

Print all the angles in the file. If the mask is present, only print angles involving these
atoms. For example, angles :CYT@C? will print all angles involving atoms which have
2-letter names beginning with “C” from “CYT” residues.

atoms mask

Print all the atoms in the file. If the mask is present, only print these atoms.

bonds mask

Print all the bonds in the file. If the mask is present, only print bonds involving these
atoms.

checkcoords Amber-trajectory

Perform a rudimentary check of the coordinates from the filename specified. This is to
look for obvious problems (such as overflow) and to count the number of frames.

dihedrals mask

Print all the dihedrals in the file. If the mask is present, only print dihedrals involving one
of these atoms.

delete [ bond | angle | dihedral ] number

This command will delete a given bond, angle or dihedral angle based on the number
specified from the current prmtop. The number specified should match that shown by the
corresponding print command. Note that a new prmtop file is not actually saved. To do
this, use the writeparm command. For example, “delete bond 5” will delete with 5th
bond from the parameter/topology file.
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openparm filename

Open up the prmtop file specified.

writeparm filename

Write a new prmtop file to filename based on the current (and perhaps modified) param-
eter/topology file. Note that this command is obsolete and writes old style prmtop files.

system string

Execute the command string on the system.

mardi2sander constraint-file

A rudimentary conversion of Mardigras style restraints to sander NMR restraint format.

rms Amber-trajectory

Create a 2D RMSd plot in postscript or PlotMTV format using the trajectory specified.
The user will be prompted for information. This command is rather slow... Use 2Drms
in ptraj instead.

stripwater

This command will remove or add three point waters to a prmtop file that already has
water. The user will be prompted for information. This is useful to take an existing
prmtop and create another with a different amount of water. Of course, corresponding
coordinates will also have to be built and this is not done by rdparm. To do this, ideally
construct a PDB file and convert to Amber coordinate format using ptraj. Note that this
command is obsolete and writes old style prmtop files.

ptraj script-file

This command reads a file or from standard input a series of commands to perform pro-
cessing of trajectory files. See the ptraj documentation.

translateBox Amber-coords

Translate the coordinates (only if they contain periodic box information) specified to
place the center either at the origin or at half the box (Amber format). This is obsolete
and the user is encouraged to use the center command of ptraj instead.

modifyBoxInfo

This is a command to modify the box information, such as to change the box size. The
changes are not saved until a writeparm command is issued.

modifyMolInfo

This command checks the molecule info (present with periodic box coordinates are spec-
ified) and points out problems if they exist. In particular, this is useful to overcome the
deficiency in edit which places all the “add” waters into a single molecule.

parmInfo Print out information about the current prmtop file.
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printAngles Same as angles.

printAtoms Same as atoms.

printBonds Same as bonds.

printDihedrals Same as dihedrals.

printExcluded Print the excluded atom list.

printLennardJones Print out the Lennard-Jones parameters.

printTypes Print out the atom types.

quit Quit the program.
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Several efficient finite-difference numerical solvers, both linear [164, 165] and
nonlinear,[166] are implemented in pbsa for various applications of the Poisson-Boltzmann
method. In the following, a brief introduction is given on the method, the numerical solvers,
and numerical energy and force calculations. This is followed by a detailed description of the
usage and keywords. Finally example input files are explained for typical pbsa applications. For
more information on the background and how to use the method, please consult cited references
and online Amber tutorial pages.

10.1 Introduction

Solvation interactions, especially solvent-mediated dielectric screening and Debye-Hückel
screening, are essential determinants of the structure and function of proteins and nucleic
acids.[167] Ideally, one would like to provide a detailed description of solvation through ex-
plicit simulation of a large number of solvent molecules and ions. This approach is frequently
used in molecular dynamics simulations of solution systems. In many applications, however,
the solute is the focus of interest, and the detailed properties of the solvent are not of central
importance. In such cases, a simplified representation of solvation, based on an approximation
of the mean-force potential for the solvation interactions, can be employed to accelerate the
computation.

The mean-force potential averages out the degrees of freedom of the solvent molecules, so
that they are often called implicit or continuum solvents. The formalism with which implicit
solvents can be applied in molecular mechanics simulations is based on a rigorous foundation
in statistical mechanics, at least for additive molecular mechanics force fields. Within the for-
malism, it is straightforward to understand how to decompose the total mean-field solvation
interaction into electrostatic and non-electrostatic components that scale quite differently and
must be modeled separately (see for example [168]).

The Poisson-Boltzmann (PB) solvents are a class of widely used implicit solvents to model
solvent-mediated electrostatic interactions.[167] They have been demonstrated to be reliable in
reproducing the energetics and conformations as compared with explicit solvent simulations
and experimental measurements for a wide range of systems.[167] In these models, a solute
is represented by an atomic-detail model as in a molecular mechanics force field, while the
solvent molecules and any dissolved electrolyte are treated as a structure-less continuum. The
continuum treatment represents the solute as a dielectric body whose shape is defined by atomic
coordinates and atomic cavity radii.[169] The solute contains a set of point charges at atomic
centers that produce an electrostatic field in the solute region and the solvent region. The elec-
trostatic field in such a system, including the solvent reaction field and the Coulombic field,
may be computed by solving the PB equation:[170, 171]

299



10 PBSA

∇ � [ε(r)∇φ(r)] =−4πρ(r)−4πλ (r)∑
i

zici exp(−ziφ(r)/kBT ) (10.1)

where ε(r) is the dielectric constant, φ(r) is the electrostatic potential, ρ(r) is the solute charge,
λ (r) is the Stern layer masking function, zi is the charge of ion type i, ci is the bulk number
density of ion type i far from the solute, kB is the Boltzmann constant, and T is the temperature;
the summation is over all different ion types. The salt term in the PB equation can be linearized
when the Boltzmann factor is close to zero. However, the approximation apparently does not
hold in highly charged systems. Thus, it is recommended that the full nonlinear PB equation
solvers be used in such systems.

The non-electrostatic or non-polar (NP) solvation interactions are typically modeled with
a term proportional to the solvent accessible surface area (SASA).[172] An alternative and
more accurate method to model the non-polar solvation interactions is also implemented in
pbsa.[120] The new method separates the non-polar solvation interactions into two terms: the
attractive (dispersion) and repulsive (cavity) interactions. Doing so significantly improves the
correlation between the cavity free energies and solvent accessible surface areas or molecular
volumes enclosed by SASA for branched and cyclic organic molecules.[173] This is in contrast
to the commonly used strategy that correlates total non-polar solvation energies with solvent
accessible surface areas, which only correlates well for linear aliphatic molecules.[172] In the
alternative method, the attractive free energy is computed by a numerical integration over the
solvent accessible surface area that accounts for solvation attractive interactions with an infinite
cutoff.[174]

10.1.1 Numerical solutions of the PB equation

In pbsa both the linear form and the full nonlinear form of the PB equation are supported.
Many strategies may be used to discretize the PB equation, but only the finite-difference (FD)
method, or more rigorously, the finite-volume method [175–177] is fully supported in pbsa
for both the linear and nonlinear PB equations. A FD method involves the following steps:
mapping atomic charges to the FD grid points (termed grid charges below); assigning non-
periodic/periodic boundary conditions, i.e., electrostatic potentials on the boundary surfaces
of the FD grid; and applying a dielectric model to define the high-dielectric (i.e., water) and
low-dielectric (i.e., solute interior) regions and mapping it to the FD grid edges.

These steps allow the partial differential equation to be converted into a linear or nonlinear
system with the electrostatic potential on grid points as unknowns, the charge distribution on the
grid points as the source, and the dielectric constant on the grid edges (and the salt-related term
for the linear case) wrapped into the coefficient matrix, which is a seven-banded symmetric
matrix. In pbsa, four common linear FD solvers are implemented: modified ICCG, geomet-
ric multigrid, conjugate gradient, and successive over-relaxation (SOR).[165] In addition, we
have also implemented six nonlinear FD solvers: Inexact Newton(NT)/modified ICCG, NT/ge-
ometric multigrid, conjugate gradient, and SOR and its improved versions - adaptive SOR and
damped SOR.[166]

In addition to the FD method, a new discretization strategy is also introduced to solve the
linear PB equation.[178] The Immersed Interface method (IIM) is a second-order accurate nu-
merical method developed for systems with interface, i.e. solute/solvent boundary in this case.
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In the IIM discretization scheme, the linear equations on regular grid points, i.e. grid points
away from the interface, are the same as the standard finite-difference method, but the linear
equations on irregular grid points, i.e. grid points nearby the interface, are constructed by mini-
mizing the magnitude of the local truncation error in the discretization of the PB equation.[179]
It can be proven that the errors of calculated potentials are at the order of O(h2) on the regular
grid points and O(h) on the irregular grid points.[179]

10.1.2 Numerical interpretation of energy and forces

PB solvents approximate the solvent-induced electrostatic mean-force potential by comput-
ing the reversible work in the process of charging the atomic charges in a solute molecule or
complex. The charging free energy is a function of the electrostatic potential φ , which can be
computed by solving the linear or nonlinear system.

It has been shown (see for example [168]) that the total electrostatic energy of a solute
molecule can be approximated through the FD approach by subtracting the self FD Coulombic
energy (GFD

coul,shel f ) and the short-range FD Coulombic energy (GFD
coul,short ) from the total FD

electrostatic energy (GFD
coul,total), and adding back the analytical short-range Coulombic energy

(Gana
coul,short ). The self FD Coulombic energy is due to interactions of grid charges within one

single atom. The self energy exists even when the atomic charge is exactly positioned on one
grid point. It also exists in the absence of solvent and any other charges. It apparently is a pure
artifact of the FD approach and must be removed. The short-range FD Coulombic energy is
due to interactions between grid charges in two different atoms that are separated by a short
distance, usually less than 14 grid units. The short-range Coulombic energy is inaccurate be-
cause the atomic charges are mapped onto their eight nearest FD grids, thus causing deviation
from the analytical Coulomb energy. The correction of GFD

coul,shel f and GFD
coul,short is made pos-

sible by the work of Luty and McCammon’s analytical approach to compute FD Coulombic
interactions.[180]

Therefore, the PB electrostatic interactions include both Coulombic interactions and reaction
field interactions for all atoms of the solute. The total electrostatic energy is given in the energy
component EEL in the output file. The term that is reserved for the reaction field energy, EPB,
is zero if this method is used. If you want to know how much of EEL is the reaction field energy,
you can set the BCOPT keyword (to be explained below) to compute the reaction field energy
only by using a Coulombic field (or singularity) free formulation.[181]

When the full nonlinear Poisson-Boltzmann equation is used, an additional energy term, the
ionic energy, should also be included. This energy term disappears in the symmetrical linear
system because the effects due to opposite ions cancel out. It is currently approximated by
calculation up to the space boundary of the FD grid. It should be noted that the NBUFFER
keyword may need increasing to obtain good precision in the ionic energy for small molecules
with a large FILLRATIO.

An alternative method of computing the electrostatic interactions is also implemented in
pbsa. In this method, the reaction field energy is computed directly after the induced surface
charges are first computed at the dielectric boundary (i.e., the surface that separates solute and
solvent). These surface charges are then used to compute the reaction field energy,[167] and is
given as the EPB term. It has been shown that doing so improves the convergence of reaction
field energy with respect to the FD grid spacing. However, a limitation of this method is that
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the Coulombic energy has to be recomputed analytically with a pairwise summation procedure.
When this method is used, the EEL term only gives the Coulombic energy with a cutoff distance
provided in the input file. The two ways of computing electrostatic interactions are controlled
by the keywords ENEOPT and FRCOPT to be described below.

The non-polar solvation free energy is returned by the ECAVITY term, which is either the
total non-polar solvation free energy or the cavity solvation free energy in the two different
models described above. The EDISPER term returns the dispersion solvation free energy.
Of course it is zero if the total non-polar solvation free energy has been returned by ECAV-
ITY. The word INP can be used to choose one of the two treatments of non-polar solvation
interactions.[120] Specifically, you can use SASA to correlate total non-polar solvation free
energy, i.e., Gnp= NP_TENSION * SASA + NP_OFFSET as in PARSE.[172] You can also use
SASA to correlate the cavity term only and use a surface-integration approach to compute the
dispersion term.[120] i.e., Gnp= Gdisp+ Gcavity, with Gcavity= CAVITY_TENSION * SASA +
CAVITY_OFFSET. See the discussion of keywords in 8.2.8. These options are described in
detail in Ref. [120].

Finally, in this release, the PB forces are now correctly interpreted for the widely used SES
molecular surface definition, i.e., the partition of dielectric boundary pressure/force can now
reproduce the virtual work principle. This is achieved by proper decomposition of the dielectric
boundary force on the reentrant portion of the molecular surface. Specifically, the molecular
surface is computed more accurately by considering the cases when the solvent probe touches
three atoms simultaneously. Next the reentrant force is also distributed onto the three atoms
forming the reentrant surface following the virtual work principle.[182]

10.1.3 Numerical accuracy and related issues

Note that the accuracy of any numerical PB procedure is determined by the discretization
resolution specified in the input, i.e., the grid spacing. The convergence criterion for the it-
eration procedures also plays some role for the numerical PB solvers. Finally the accuracy is
highly dependent upon the methods used for computing total electrostatic interactions. In Lu
and Luo,[168] the accuracy of the first method for total electrostatic interactions is discussed
in detail. In Ye and Luo [Manuscript in preparation], the accuracy of the second method is
discussed.

It is recommended that the second method for total electrostatic interactions be used for
most calculations. Apparently the cutoff distance for charge-charge interactions strongly influ-
ences the accuracy of electrostatic interactions. The default setting is infinity, i.e., no cutoff
is used. In this method, the convergence of the reaction field energy with respect to the grid
spacing is much better than that of the first method. Our experience shows that the reaction
field energies converge to within ~2% for tested proteins at the grid spacing of 0.5 Å when the
weighted harmonic average of dielectric constants is used at the solute/solvent interface (when
SMOOTHOPT = 1, see below).[183]

The reaction field energies computed with the second method (when SMOOTHOPT = 2)
are also in excellent agreement (differences in the order of 0.1%) with those computed with
the Delphi program which uses the same method for energy calculation. For example, see
the computational set up documented in test case pbsa_delphi in this release [Wang and Luo,
Manuscript in preparation].
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The accuracy of non-polar solvation energy depends on the quality of SASA which is com-
puted numerically by representing each atomic surface by spherically distributed dots. Thus a
higher dot density gives more accurate atomic surface and molecular surface. However, it is
found that the default setting for the dot density is quite sufficient for typical applications.[120]
Should you encounter any memory allocation error for surface calculation, you are advised to
enlarge the surface dot resolution if the physical memory of your computer is limited.

Numerical solvation calculations are memory intensive for macromolecules due to the fine
grid resolution required for sufficient accuracy. Thus, the efficiency of pbsa depends on how
much memory is allocated for it and the performance of the memory subsystem. The option
that is directly related to its memory allocation is the FD grid spacing for the PB equation
and the surface dot resolution for molecular surface. Apparently the geometric dimension and
the number of atoms are also important for predicting the memory usage. In general for a
typical computer configuration with 8GB memory, the geometric dimension can be as large
as 180× 180× 180 Å3 at the default grid spacing of 0.5 Å before the computer responds too
slowly.

10.2 Usage and keywords

10.2.1 File usage

pbsa has a very similar user interface as the Amber/sander program, though much simpler.

pbsa [-O] -i mdin -o mdout -p prmtop -c inpcrd

Here is a brief description of the files referred to above.

mdin input control data for the run.

mdout output user readable state info and diagnostics “-o stdout” will send output to stdout (to
the terminal) instead of to a file.

prmtop input molecular topology, force field, atom and residue names, and (optionally) peri-
odic box type.

inpcrd input initial coordinates and (optionally) velocities and periodic box size.

10.2.2 Basic input options

The layout of the input file is in the same way as that of Amber/sander for backward com-
patibility with previous releases in Amber. The keywords are put in the the namelist of &cntrl
for basic controls and &pb for more detailed manipulation of the numerical procedures. This
subsection discusses the basic keywords, either retained from sander or newly created to in-
voke different energetic analyses. To reduce confusion most keywords from sander have been
removed from the namelist so they can no longer be read since the current implementation in
pbsa only performs single-structure calculations with the coordinates from inpcrd and exits.
However, the current release is compatible with the mdin file generated with the mmpbsa script
in previous releases in Amber. Users interested in energy minimization and molecular dynamics
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with the PB implementation are referred to sander in the release of Amber. Nevertheless, for
purposes of validation and development, the atomic forces can be dumped out in a file when
requested as described below.

The numerical electrostatic procedures can be turned on by setting IPB to either 1, 2 or 4.
The flag IGB = 10 is phased out in this release. The numerical non-polar procedures can be
turned on by setting INP to either 1 or 2. The backward compatible flag NPOPT is also phased
out in this release.

imin Flag to run minimization. Both options give the same output energies though the
output formats are slightly different. This option is retained from previous releases
in the Amber package for backward compatibility. The current release of pbsa only
supports single point energy calculation.

= 0 No minimization. Dynamics is available with sander and NAB.

= 1 Single point energy calculation. Default. Multiple-step PB minimization is
also available with sander and NAB.

ntx Option to read the coordinates from the “inpcrd” file. Only options 1 and 2 are
supported in this releases. Other options will cause pbsa to issue a warning though
it does not affect the energy calculation.

= 1 X is read formatted with no initial velocity information. Default.

= 2 X is read unformatted with no initial velocity information.

ipb Option to set up a dielectric model for all numerical PB procedures. IPB = 1 cor-
responds to a classical geometric method, while a level-set based algebraic method
is used when IPB > 2. The default IPB is 2.

= 0 No electrostatic solvation free energy is computed.

= 1 The dielectric interface between solvent and solute is built with a geometric
approach.

= 2 The dielectric interface is implemented with the level set function. Use of a
level set function simplifies the calculation of the intersection points of the
molecular surface and grid edges and leads to more stable numerical calcula-
tions. Default.

= 4 The dielectric interface is also implemented with the level set function. How-
ever, the linear equations on the irregular points are constructed using the
IIM. In this option, The dielectric constant do not need to be smoothed, that
is, SMOOTHOPT is useless. Only the linear PB equation is supported, that
is, NPBOPT = 0. And the different solvers are used to solve the generated
linear equation set, that is, the meaning of SOLVOPT is changed as shown
below.

inp Option to select different methods to compute non-polar solvation free energy.

= 0 No non-polar solvation free energy is computed.
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= 1 The total non-polar solvation free energy is modeled as a single term linearly
proportional to the solvent accessible surface area, as in the PARSE parameter
set, that is, if INP = 1, USE_SAV must be equal to 0. See Introduction.

= 2 The total non-polar solvation free energy is modeled as two terms: the cav-
ity term and the dispersion term. The dispersion term is computed with a
surface-based integration method [120] closely related to the PCM solvent
for quantum chemical programs.[174] Under this framework, the cavity term
is still computed as a term linearly proportional to the molecular solvent-
accessible-surface area (SASA) or the molecular volume enclosed by SASA.
Default.

Once the above basic options are specified, pbsa can proceed with the default options to com-
pute the solvation free energies with the input coordinates. Of course, this means that you only
want to use default options for default applications.

More PB options described below can be defined in the &pb namelist, which is read imme-
diately after the &cntrl namelist. We have tried hard to make the defaults for these parameters
appropriate for calculations of solvated molecular systems. Please use caution when changing
any default options.

10.2.3 Options to define the physical constants

epsin Sets the dielectric constant of the solute region, default to 1.0. The solute region is
defined to be the solvent excluded volume.

epsout Sets the implicit solvent dielectric constant, default to 80. The solvent region is
defined to be the space not occupied the solute region. i.e., only two dielectric
regions are allowed in the current release.

epsmemb Sets the membrane dielectric constant. Only used if membraneopt > 0, does noth-
ing otherwise. Value used should be between epsin and epsout or there may be
errors. Defaults to 1.0.

smoothopt Instructs PB how to set up dielectric values for finite-difference grid edges that are
located across the solute/solvent dielectric boundary.

= 0 The dielectric constants of the boundary grid edges are always set to the equal-
weight harmonic average of EPSIN and EPSOUT.

= 1 A weighted harmonic average of EPSIN and EPSOUT is used for boundary
grid edges. The weights for EPSIN and EPSOUT are fractions of the bound-
ary grid edges that are inside or outside the solute surface.[184] Default.

= 2 The dielectric constants of the boundary grid edges are set to either EPSIN or
EPSOUT depending on whether the midpoints of the grid edges are inside or
outside the solute surface.

istrng Sets the ionic strength (in mM) for the PB equation. Default is 0 mM. Note the
unit is different from that (in M) in the generalized Born methods implemented in
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Amber. Note also that we are only dealing with symmetrical solution, so the ionic
strength should be equal to the square of the valence of the symmetrical ions times
the ion concentration (in mM).

pbtemp Temperature (in K) used for the PB equation, needed to compute the Boltzmann
factor for salt effects; default is 300 K.

radiopt Option to set up atomic radii.

= 0 Use radii from the prmtop file for both the PB calculation and for the NP
calculation (see INP).

= 1 Use atom-type/charge-based radii by Tan and Luo [185] for the PB calculation.
Note that the radii are optimized for Amber atom types as in standard residues
from the Amber database. If a residue is built by antechamber, i.e., if GAFF
atom types are used, radii from the prmtop file will be used. Please see [185]
on how these radii are optimized. The procedure in [185] can also be used to
optimize radii for nonstandard residues. These optimized radii can be read in
if they are incorporated into the radii section of the prmtop file (of course via
RADIOPT = 0). Default.

dprob Solvent probe radius for molecular surface used to define the dielectric boundary
between solute and solvent. DPROB = 1.4 by default.

iprob Mobile ion probe radius for ion accessible surface used to define the Stern layer.
Default to 2.0 Å.

sasopt Option to determine which kind of molecular surfaces to be used in the Poisson-
Boltzmann implicit solvent model. Default is 0.

= 0 Use the solvent excluded surface. [Wang, Cai, and Luo, Manuscript in prepa-
ration]

= 1 Use the solvent accessible surface.

= 2 Use the smooth surface defined by a revised density function.[186] This must
be combined with IPB > 2.

saopt Option to compute the surface area of a molecule. Default is 0. Once the computa-
tion is enabled, the surface area will be reported in the output file with the subtitle
“Total molecular surface”. Note that only the surface areas for the solvent excluded
surface and the solvent accessible surface are supported in this release.

= 0 Do not compute any surface area.

= 1 Use the field-view method to compute the surface area.[187]

triopt Option to add trimer arc dots for a more accurate and lower memory mapping
method of the analytical solvent excluded surface.

= 0 Trimer arc dots are not used.

= 1 Trimer arc dots are used. Default.
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arcres pbsa uses a numerical method to compute solvent accessible arcs,[Wang, Cai, and
Luo, Manuscript in preparation]. The ARCRES keyword gives the resolution (in
the unit of Å) of dots used to represent these arcs, default to 0.25 Å. These dots
are first checked against nearby atoms to see whether any of the dots are buried.
The exposed dots represent the solvent accessible portion of the arcs and are used
to define the dielectric constants on the grid edges. It should be pointed out that
ARCRES should be reduced to (0.125 Å) when the TRIOPT option is turned off
to achieve a similar accuracy in the reaction field energies. More generally, AR-
CRES should be set to max(0.125 Å, 0.5h) when the TRIOPT option is turned
on, or max(0.0625 Å, 0.25h) when the TRIOPT option is turned off (h is the grid
spacing).[Wang, Cai, and Luo, Manuscript in preparation]

10.2.4 Options for Implicit Membranes

membraneopt Option to turn implicit membrane on and off. Membrane is implemented as a
slab like region with same dielectric constant as solute. Other membrane setup
schemes will be made available in the future.

= 0 No implicit membrane used (default).

= 1 Use a slab-like implicit membrane.

mthick Membrane thickness in Å, default to 20.0.

mctrdz Distance in Å to offset membrane along the z direction. Default is 0 - membrane
centered at the center of the finite difference grid.

poretype Option to control use of exclusion region for channel proteins. Only cylindrical
region is supported currently.

= 0 Do not use a cylindrical exclusion region (Default).

= 1 Use cylindrical exclusion region.

poreradius Controls the radius, in Å, of the cylindrical exclusion region.

10.2.5 Options to select numerical procedures

npbopt Option to select the linear or the full nonlinear PB equation.

= 0 Linear PB equation is solved. Default.

= 1 Nonlinear PB equation is solved.

solvopt Option to select iterative solvers.

= 1 Modified ICCG or Periodic (PICCG) if bcopt = 10 is. Default. If IPB = 4, an
algebraic multigrid solver is used.

= 2 Geometric multigrid. A four-level v-cycle implementation is applied. Each
dimension of the finite-difference grid is 24×n-1. If IPB = 4, preconditioned
GMRES.
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= 3 Conjugate gradient (Periodic version available under bcopt = 10). This option
requires a large MAXITN to converge. If IPB = 4, preconditioned BiCG.

= 4 SOR. This option requires a large MAXITN to converge.

= 5 Adaptive SOR. This is only compatible with NPBOPT = 1. This option re-
quires a large MAXITN converge.

= 6 Damped SOR. This is only compatible with NPBOPT = 1. This option requires
a large MAXITN to converge.

accept Sets the iteration convergence criterion (relative to the initial residue). Default to
0.001.

maxitn Sets the maximum number of iterations for the finite difference solvers, default to
100. Note that MAXITN has to be set to a much larger value, like 10,000, for the
less efficient solvers, such as conjugate gradient and SOR, to converge.

fillratio The ratio between the longest dimension of the rectangular finite-difference grid
and that of the solute. Default is 2.0. It is suggested that a larger FILLRATIO,
for example 4.0, be used for a small solute, such as a ligand molecule. Otherwise,
part of the small solute may lie outside of the finite-difference grid, causing the
finite-difference solvers to fail.

space Sets the grid spacing for the finite difference solver; default is 0.5 Å.

nbuffer Sets how far away (in grid units) the boundary of the finite difference grid is away
from the solute surface; default is 0 grids, i.e., automatically set to be at least a
solvent probe or ion probe (diameter) away from the solute surface.

nfocus Set how many successive FD calculations will be used to perform an electrostatic
focussing calculation on a molecule. Default to 2, the maximum. When NFOCUS
= 1, no focusing is used. It is recommended that NFOCUS = 1 when the multigrid
solver is used.

fscale Set the ratio between the coarse and fine grid spacings in an electrostatic focussing
calculation. Default to 8.

npbgrid Sets how often the finite-difference grid is regenerated; default is 1 step. For molec-
ular dynamics simulations, it is recommended to be set to at least 100. Note that
the PB solver effectively takes advantage of the fact that the electrostatic poten-
tial distribution varies very slowly during dynamics simulations. This requires that
the finite-difference grid be fixed in space for the code to be efficient. However,
molecules do move freely in simulations. Thus, it is necessary to set up the finite-
difference grid once in a while to make sure a molecule is well within the grid.

10.2.6 Options to compute energy and forces

ENEOPT is the option to set a method to compute electrostatic energy and forces, and DB-
FOPT is phased out in this release.
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bcopt Boundary condition options.

= 1 Boundary grid potentials are set as zero. Total electrostatic potentials and
energy are computed.

= 5 Computation of boundary grid potentials using all grid charges. Total electro-
static potentials and energy are computed. Default.

= 6 Computation of boundary grid potentials using all grid charges. Reaction
field potentials and energy are computed with the charge singularity free
formulism.[181]

= 10 Periodic boundary condition is used. Total electrostatic potentials and energy
are computed. Can be used to switch ICCG and CG to PICCG and PCG.
Should only be used with charge neutral systems.

eneopt Option to compute total electrostatic energy and forces.

= 1 Compute total electrostatic energy and forces with the particle-particle
particle-mesh (P3M) procedure outlined in Lu and Luo.[168] In doing so,
energy term EPB in the output file is set to zero, while EEL includes both
the reaction field energy and the Coulombic energy. The van der Waals en-
ergy is computed along with the particle-particle portion of the Coulombic
energy. The electrostatic forces and dielectric boundary forces can also be
computed.[168] This option requires a non-zero CUTNB and BCOPT = 5.

= 2 Use dielectric boundary surface charges to compute the reaction field energy.
Default. Both the Coulombic energy and the van der Waals energy are com-
puted via summation of pairwise atomic interactions. Energy term EPB in
the output file is the reaction field energy. EEL is the Coulombic energy.

= 3 Similar to the first option above, a P3M procedure is applied for both solvation
and Coulombic energy and forces for larger systems.

frcopt Option to compute and output electrostatic forces to a file named force.dat in the
working directory.

= 0 Do not compute or output atomic and total electrostatic forces. This is default.

= 1 Reaction field forces are computed by trilinear interpolation. Dielectric bound-
ary forces are computed using the electric field on dielectric boundary. The
forces are output in the unit of kcal/mol·Å.

= 2 Use dielectric boundary surface polarized charges to compute the reaction field
forces and dielectric boundary forces [182] The forces are output in the unit
of kcal/mol·Å.

= 3 Reaction field forces are computed using dielectric boundary polarized charge.
Dielectric boundrary forces are computed using the electric field on dielectric
boundary. [188] The forces are output in the unit of kcal/mol·Å.

scalec Option to compute reaction field energy and forces.
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= 0 Do not scale dielectric boundary surface charges before computing reaction
field energy and forces. Default.

= 1 Scale dielectric boundary surface charges using Gauss’s law before computing
reaction field energy and forces.

cutfd Atom-based cutoff distance to remove short-range finite-difference interactions,
and to add pairwise charge-based interactions, default is 5 Å. This is used for both
energy and force calculations. See Eqn (20) in Lu and Luo.[168]

cutnb Atom-based cutoff distance for van der Waals interactions, and pairwise Coulom-
bic interactions when ENEOPT = 2. Default to 0. When CUTNB is set to the
default value of 0, no cutoff will be used for van der Waals and Coulombic inter-
actions, i.e., all pairwise interactions will be included. When ENEOPT = 1, this is
the cutoff distance used for van der Waals interactions only. The particle-particle
portion of the Coulombic interactions is computed with the cutoff of CUTFD.

nsnba Sets how often atom-based pairlist is generated; default is 1 step. For molecular
dynamics simulations, a value of 5 is recommended.

10.2.7 Options for visualization and output

phiout pbsa can be used to output spatial distribution of electrostatic potential for visual-
ization.

= 0 No potential file is printed out. Default.

= 1 Electrostatic potential is printed out in a file named pbsa.phi in the working
directory. Please refer to examples in the next section on how to display
electrostatic potential on molecular surface.

phiform Controls the format of the electrostatic potential file.

= 0 The electrostatic potential (kT/mol·e) is printed in the Delphi binary format.
Default.

= 1 The electrostatic potential (kcal/mol·e) is printed in the Amber ASCII format.

= 2 The electrostatic potential (kcal/mol·e) is printed in the DX volumetric data
format for use with VMD.

outlvlset pbsa can be set to write the total level set, used in locating interfaces between re-
gions of differing dielectric constant, to a DX format volumetric data file. This
option will control printing of the total level set (i.e. both solute-solvent and mem-
brane level sets combined if membrane present)

= false No level set file printed out. Default.

= true Level set printed out in a file named pbsa_lvlset.dx
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outmlvlset pbsa can be set to write the membrane level set, used in locating interfaces between
regions of differing dielectric constant, to a DX format volumetric data file. This
option controls printing a separate file for the membrane level set. Does nothing if
membraneopt is not turned on.

= false No level set file printed out. Default.

= true Level set printed out in a file named pbsa_lvlset.dx

npbverb When set to 1, turns on verbose mode in pbsa; default is 0.

10.2.8 Options to select a non-polar solvation treatment

decompopt Option to select different decomposition schemes when INP = 2. See [120] for a
detailed discussion of the different schemes. The default is 2, the σ decomposi-
tion scheme, which is the best of the three schemes studied.[120] As discussed in
Ref. [120], DECOMPOPT = 1 is not a very accurate approach even if it is more
straightforward to understand the decomposition.

= 1 The 6/12 decomposition scheme.

= 2 The σ decomposition scheme. Default

= 3 The WCA decomposition scheme.

use_rmin The option to set up van der Waals radii. The default is to use rmin to improve the
agreement with TIP3P [120].

= 0 Use atomic van der Waals σ values.

= 1 Use atomic van der Waals rmin values. Default.

sprob Solvent probe radius for solvent accessible surface area (SASA) used to compute
the dispersion term, default to 0.557 Å in the σ decomposition scheme as optimized
in Ref. [120] with respect to the TIP3P solvent and the PME treatment. Recom-
mended values for other decomposition schemes can be found in Table 4 of [120].
If USE_SAV = 0 (see below), SPROB can be used to compute SASA for the cavity
term as well. Unfortunately, the recommended value is different from that used
in the dispersion term calculation as documented in Ref. [120] Thus two separate
pbsa calculations are needed when USE_SAV = 0, one for the dispersion term and
one for the cavity term. Therefore, please carefully read Ref. [120] before proceed-
ing with the option of USE_SAV = 0. Note that SPROB was used for ALL three
terms of solvation free energies, i.e., electrostatic, attractive, and repulsive terms in
previous releases in Amber. However, it was found in the more recent study [120]
that it was impossible to use the same probe radii for all three terms after each term
was calibrated and validated with respect to the TIP3P solvent. [120, 185]

vprob Solvent probe radius for molecular volume (the volume enclosed by SASA) used
to compute non-polar cavity solvation free energy, default to 1.300 Å, the value
optimized in Ref. [120] with respect to the TIP3P solvent. Recommended values
for other decomposition schemes can be found in Tables 1-3 of Ref. [120].
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rhow_effect Effective water density used in the non-polar dispersion term calculation, default
to 1.129 for DECOMPOPT = 2, the σ scheme. This was optimized in Ref. [120]
with respect to the TIP3P solvent in PME. Optimized values for other decomposi-
tion schemes can be found in Table 4 of Ref. [120].

use_sav The option to use molecular volume (the volume enclosed by SASA) or to use
molecular surface (SASA) for cavity term calculation. The default is to use
the molecular volume enclosed by SASA. Recent study shows that the molecu-
lar volume approach transfers better from small training molecules to biomacro-
molecules.

= 0 Use SASA to estimate cavity free energy.

= 1 Use the molecular volume enclosed by SASA. Default.

cavity_surften The regression coefficient for the linear relation between the total non-polar sol-
vation free energy (INP = 1) or the cavity free energy (INP = 2) and SASA/volume
enclosed by SASA. The default value is for INP = 2 and set to the best of three
tested schemes as reported in Ref. [120], i.e. DECOMPOPT = 2, USE_RMIN = 1,
and USE_SAV = 1. See recommended values in Tables 1-3 for other schemes.

cavity_offset The regression offset for the linear relation between the total non-polar solvation
free energy (INP = 1) or the cavity free energy (INP = 2) and SASA/volume en-
closed by SASA. The default value is for INP = 2 and set to the best of three tested
schemes as reported in Ref. [120], i.e. DECOMPOPT = 2, USE_RMIN = 1, and
USE_SAV = 1. See recommended values in Tables 1-3 for other schemes.

maxsph pbsa uses a numerical method to compute solvent accessible surface area.[120]
MAXSPH variable gives the approximate number of dots to represent the maxi-
mum atomic solvent accessible surface, default to 400. These dots are first checked
against covalently bonded atoms to see whether any of the dots are buried. The ex-
posed dots from the first step are then checked against a non-bonded pair list with
a cutoff distance of 9 to see whether any of the exposed dots from the first step are
buried. The exposed dots of each atom after the second step then represent the sol-
vent accessible portion of the atom and are used to compute the SASA of the atom.
The molecular SASA is simply a summation of the atomic SASA’s. A molecular
SASA is used for both PB dielectric map assignment and for NP calculations.

10.2.9 Options to enable active site focusing

Active site focusing is an extension to the electrostatic focusing method. Electrostatic focus-
ing can be regarded as a multi-level FDPB calculation (two levels currently implemented) in
which a coarse-grid solution is conducted to set up the boundary condition for the requested
fine-grid solution. In the original implementation of electrostatic focusing, the fine grid always
covers all the solute atoms. However in the enhanced implementation, the fine grid is allowed to
cover only a local region of interest, such as an enzyme active site or ligand docking site. In such
applications, most or all of the protein atoms are held frozen during a calculation while only the
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active site side chain and the substrate ligand are allowed to move. In principle, energies com-
puted with the local electrostatic focusing method should correlate with those computed with
the original electrostatic focusing method if the movable substrate/ligand atoms are well within
the local region of interest. The “active site” or the local region is specified as a rectangular box
by the following six variables:

xmax The upper boundary of the box in x direction.

xmin The lower boundary of the box in x direction, XMAX has to be greater than XMIN.

ymax The upper boundary of the box in y direction.

ymin The lower boundary of the box in y direction, YMAX has to be greater than YMIN.

zmax The upper boundary of the box in z direction.

zmin The lower boundary of the box in z direction, ZMAX has to be greater than ZMIN.

Of course, these keywords are zero by default, i.e. the original electrostatic focusing would be
invoked if these keywords remain to be the default value of zero.

10.2.10 Options to enable multiblock focusing

In order to handle large molecular systems with typical computer hardwares available to our
end users, the basic principle of the electrostatic focusing discussed in the previous subsection
is extended for the multiblock electrostatic focusing method. Briefly, the time-limiting step of
FDPB, the fine-grid calculation, is divided into a series of smaller jobs, with each solving only
a small local region of a large molecular system. Once all the smaller jobs are finished, the
solutions are combined to obtain the final energy for the large molecular system. Note that
this is an approximated method, just like the original electrostatic focusing method. In this
implementation, overlapping/padding grid points are used to preserve accuracy. Most of the
settings for this feature are hidden from end users except the dimensions of the multi-blocks.
[189]

Before your production runs, please activate NPBVERB = 1 and check in the mdout file to
see if your multi-block settings are indeed reasonable. Here are some hints. First, the blocksize
should be around 643 to 963 for typical computers with 8GB memory. Secondly, the grid
dimension, xm, should be divisible by (ngrdblkx−1), or slightly larger, for the x direction. The
same applies for y and z directiosn as well. Keep in mind that the incentive for choosing this
method is to be able to work with large systems on typical computer hardwares.

ngrdblkx The number of fine-grid points for a focusing block in x direction, (ngrdblkx−1)
should be divisible by FSCALE.

ngrdblky The number of fine-grid points for a focusing block in y direction, (ngrdblky−1)
should be divisible by FSCALE.

ngrdblkz The number of fine-grid points for a focusing block in z direction, (ngrdblkz−1)
should be divisible by FSCALE.
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pbsa can also be run in parallel environment with pbsa.MPI executable but for multiblock
focusing only. Do make sure that the number of nodes is less than the number of focusing
blocks.

10.3 Example inputs and demonstrations of functionalities

10.3.1 Single-point calculation of solvation free energies

Normally the default pbsa options are capable of dealing with most situations. Users should
be fully aware of the meaning of an option before they change its default value. In all the
following example inputs, only the options that are different from their default values will be
shown, and the explanations on the changes will be given in detail. Here is a sample input file
that might be used to perform single structure calculations.

Sample single point PB calculation

&cntrl

/

&pb

npbverb=1, istrng=150, fillratio=1.5, saopt=1,

/

Note that NPBVERB = 1 above. This generates much detailed information in the output file
for the PB and NP calculations. A useful printout is atomic SASA data for both PB and NP
calculations which may or may not use the same atomic radius definition. Since the FD solver
for PB is called twice to perform electrostatic focus calculations, two PB printouts are shown for
each single point calculation. For the PB calculation, a common error message can be generated
when FILLRATIO is set to the default value of 2.0 for small molecules. This may cause a solute
to lie outside of the focusing finite-difference grid.

In this example INP is not set and equal to the default value of 2, which calls for non-polar
solvation calculation with the new method that separates cavity and dispersion interactions.
The EDISPER term gives the dispersion solvation free energy, and the ECAVITY term gives
the cavity solvation free energy. The default options for the NP calculation are set to the rec-
ommended values for the σ decomposition scheme and to use molecular volume to correlate
with cavity free energy. You can find recommended values for other decomposition schemes
and other options in Tables 1-4 of Ref. [120]. If INP is set to 1, the ECAVITY term would give
the total non-polar solvation free energy.

Finally, a few words on the RADIOPT option, set to the default value of 1 instructing PB to
use the optimized values instead of reading the radii from the prmtop file. Starting this release,
the RADIOPT option only controls the radius definition for the PB calculation. The INP=2
calculation automatically uses the default values, such as atomic radii and solvent probes as
optimized in Ref. [120]. On the other hand, the INP=1 calculation is allowed to use whatever
radii that a user decides to use.

The ion strength option ISTRNG is set to 150 in unit mM, a typical value for a physiological
environment. The FILLRATIO option is set to 1.5 because the biomolecule is relatively large.
We set saopt to 1 because we need the information of the molecular surface area (the molecular
surface is defined as the solvent excluded surface since SASOPT is set to its default value 0).
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10.3.2 Implicit membrane model

pbsa now supports inclusion of an implicit membrane region in implicit solvation calcula-
tions. This feature is enabled by setting MEMBRANEOPT to 1 (default value is 0, for off).
The membrane will extend the solute dielectric region to include a slab-like planar region run-
ning parallel to the xy plane. The thickness is controlled by the MTHICK option. The default
is 20 Å. The membrane region will be centered on the center of the finite-difference grid by
default, and can be offset along the z-axis using the MCTRDZ option (default is 0). Neither
option will have any effect unless MEMBRANEOPT is set to 1. The dielectric constant can
be controlled using epsmemb. We set the membrane interior dielectric constant to a value of
4.0 in this example. This is four times that of the solute which defaults to 1 (same as vacuum).
The value of epsmemb should always be set to a value greater than or equal to epsin (solute
dielectric constant) and less than epsout (solvent dielectric constant). These default to 1.0 and
80.0 respectively.

When using the implicit membrane model, only SASOPT = 2, i.e. the smooth molecular
surface based on the revised density function, is currently supported. It is also suggested that
periodic boundary conditions be used to avoid unphysical edge effects. This is currently
supported under the conjugate gradient solvers: Periodic Conjugate Gradient (PCG) and
Periodic Incomplete Cholesky Conjugate Gradient (PICCG), and can be accomplished by
setting IPB = 2 (default), BCOPT = 10, and SOLVOPT = 1 (PICCG, default) or SOLVOPT = 3
(PCG). In addition, ENEOPT needs to be set to 1 because the charge-view method (ENEOPT
= 2) has not been verified for this application.

Sample single point PB calculation with membrane region

&cntrl

inp=0

/

&pb

radiopt=0, nfocus=1, maxitn=200,

bcopt=10, eneopt=1, solvopt=1,

sasopt=2, membraneopt=1, epsmemb = 4.0

outlvlset=true, outmlvlset=true

/

The MAXITN option is set to a bigger value, 200, than the default one, 100, because the
conjugate gradient method, when applied to periodic boundary conditions, seem to require
slightly more iterations than non-periodic conjugate gradient solvers.

To aid in visualization of the dielectric model, the level set function, which is used to locate
the interfacial surfaces between regions of differing dielectric constant, can be written to output
files. Output of the total level set function, including both the solute-solvent and membrane
contributions, can be written to a DX formatted volumetric data file by setting the OUTLVLSET
option to “true”. The membrane contribution can be written to a separate file by setting the
OUTMLVLSET option to “true”. This may take a good deal of extra time, so be sure to leave it
off if you don’t want / need to visualize the levelset surface. Accordingly, NFOCUS is set to 1
because we want the electrostatic potential and the level set function in both the solute and the
solvent region.
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Finally, if calculations need to be performed on a protein which includes a solvent filled
channel region, this region should be excluded from the membrane dielectric region. This
can be accomplished by setting PORETYPE = 1 to allow definition of a cylindrical exclusion
region. This region will be centered upon the center of mass of the solute and will extend the
entire length of the membrane. Its radius may be controlled using PORERADIUS = r, where r
is the desired radius in angstroms. An initial visualization of the system is generally required to
facilitate selection of an appropriate radius (see section 8.4).

10.3.3 Single point calculation of forces

Since pbsa is released for single point calculations in AmberTools, no energy minimization
or molecular dynamics is supported. However, the PB procedure can be invoked to print out
the numerical electrostatic forces for developmental purposes. Here is a sample input:

Sample PB force computation

&cntrl

inp=0

/

&pb

npbverb=1, radiopt=0, frcopt=2

/

Note that INP is set to 0 to turn off non-polar solvation interactions. RADIOPT = 0 means the
atomic radii from the topology files will be used. FRCOPT is set to 2, i.e., induced surface
charges are used to compute the electrostatic energy and forces. Since CUTNB is equal to the
default value of zero, an infinite cutoff distance is used for both Coulombic and van der Waals
interactions.

10.3.4 Comparing with Delphi results

Under identical condition, pbsa is highly consistent with Delphi in term of computed reac-
tion field energies. In this subsection, we briefly go over the details on how you can obtain
comparable energies from both programs. Apparently, you need coordinates, atomic charges,
and atomic radii that have exactly the same numerical values but in both the Amber format and
the Delphi format, i.e., the pqr format.

For a Delphi computation with the following input parameters:

salt=0.150

ionrad=2.0

exdi=80.0

indi=1.0

scale=2.0

prbrad=1.5

perfil=50

bndcon=4

linit=1000
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A comparable computation in pbsa can be obtained by using the following input file:

Sample PB for delphi comparison

&cntrl

ipb=1, inp=0

/

&pb

istrng=150, ivalence=1, iprob=2.0, dprob=1.5,

radiopt=0, bcopt=5, smoothopt=2, nfocus=1,

/

IPB is set to 1 to make sure pbsa is using the exactly same surface defination as Delphi. Note
that the values of exdi, indi, prbrad, and ionrad in Delphi should be consistent with the values
of EPSOUT, EPSIN, DPROB, and IPROB in pbsa, respectively. In Delphi salt=0.150 is set in
the unit of M, while in pbsa ISTRNG = 150 is in the unit of mM. In Delphi the grid spacing is
set as the number of grids per Å, i.e., scale=2.0, while in pbsa the grid spacing is set straight in
Å as SPACE = 0.5. In Delphi the grid dimension is set as percentage of the solute dimension
over the grid dimension, i.e., perfil=50, which is equivalent to the ratio of solute dimension over
grid dimension set as FILLRATIO = 2 in pbsa. Finally, Delphi sets the boundary condition by
bndcon=4 and pbsa sets the boundary condition as BCOPT = 5; both programs mean to use the
Debye-Huckel limitation behavior for each atomic charged sphere. There are additional options
in pbsa that do not have corresponding counterparts in Delphi. For example, SMOOTHOPT is
used to instruct the program to use a specific dielectric boundary smoothing option, which is
equivalent to that used in Delphi when set to 2. (see Section 8.1.3).

10.4 Visualization functions in pbsa

AMBER pbsa can produce volumetric data files to allow visualization of electrostatic poten-
tial and level set maps. There are two points to note before continuing.

1. The data files generated can become quite large if small grid spacings are used since they
will scale as the cube of the inverse of grid spacing

2. Unless singularity removal methods are used, the potential at grid nodes corresponding to
atom centers may be quite large when compared to the potential at the molecular / atomic
surface. This will often result in poor contrast during visualization of the potential map,
particularly when it is used as a color map for a molecular surface.

These two points should be kept in mind when determining grid spacing. For visualization
purposes, a grid spacing of about one angstrom should provide good results. If finer spacing
is needed, singularity removal (BCOPT = 6) can be used to prevent poor contrast that could
result from the presence of singularities. Lastly, when using grid spacings of 0.5 Å or lower, the
output files may become quite large (tens, or even hundreds of megabytes each) and may take a
significant amount of time (up to several seconds each) to generate.
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10.4.1 Visualization of electrostatic potential using PyMol

pbsa can produce an electrostatic potential map for visualization in PyMol when setting
PHIOUT = 1. By default, pbsa outputs a file pbsa.phi in the Delphi binary format. The sample
input file is listed below:

Sample PB visualization input

&cntrl

inp=0

/

&pb

npbverb=1, space=1.,

phiout=1, phiform=0

/

To be consistent with the surface routine of PyMol, the option PHIOUT = 1 instructs pbsa to
use the radii as defined in PyMol. The finite-difference grid is also set to be cubic as in Delphi.
The default DPROB value is equal to that used in PyMol, 1.4 Å. A large grid spacing, e.g. 1 Å
or higher, is recommended for visualization purposes, as commented above.

Here is an example of loading the potential map in PyMol. First load the molecule in the
form of prmtop and inpcrd. In our case we need to rename our prmtop file to molecule.top and
inpcrd file to molecule.rst and load the molecule with commands

PyMol> load molecule.top

PyMol> load molecule.rst

The molecule will appear as an object “molecule”. Next display the surface of the molecule in
the PyMol menu by clicking “S” and then select surface. Now import the potential map
generated by pbsa with the command in PyMol

PyMol> load pbsa.phi

to create a value map object called “pbsa”. After this, create a value ramp called e_lvl from the
potential map with the command

PyMol> ramp_new e_lvl, pbsa, [-7, 0, 7]

You can assign surface_color to the e_lvl ramp with the command

PyMol> set surface_color, e_lvl, molecule

This will display the surface with the color scale according to the potential. You can adjust the
value scale, such as [-5, 0, 5], to change the color scale and use “rebuild” command to redraw
the surface.

10.4.2 Writing electrostatic potential to DX format volumetric data file

To visualize the pbsa potential using VMD, you will need to set the output to DX format by
changing PHIFORM = 0 to PHIFORM = 2.
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Sample PB visualization input

&cntrl

inp=0

/

&pb

npbverb=1, space=1., sasopt=2,

phiout=1, phiform=2

/

The program will now generate a file called pbsa_phi.dx. This format should be automatically
recognized by VMD. It can be either loaded directly into your molecule or as a separate file.

10.4.3 Loading DX format electrostatic potential data in VMD

1. go to the “File” menu in the VMD Main window.

2. Select “New Molecule...”.

• This will bring up the “Molecule File Browser” window

3. Click on the “Browse...” button in the “Molecule File Browser” window

4. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue
that pops up.

• The “Determine file type:” drop down menu should now read “DX”.

5. Click the “Load” button.

VMD will, by default, display the data with an isosurface representation.

10.4.4 Changing the representation model

1. Select “Representations...” from the “Graphics” menu in the “VMD Main” window

• The “Graphical Representations” window should pop up

2. Select the object corresponding to the volumetric data you loaded from the “Selected
Molecule” pull down menu

3. Click on the representation you wish to change

• There should be one present for the isosurface being displayed

4. Click on the “Draw style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu if it is not already chosen

• Another pull down menu will appear next to it.

• If you have multiple data files loaded for the same object you can choose which is
used to color your chosen draw method representation here
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6. The “Drawing Method” pull down menu will let you choose a different visual represen-
tation model.

• To directly visualize potential data, use either “Isosurface” or “Volume Slice”

• VMD can also be used to visualize the corresponding electric field by choosing
“Field Lines”.

Displayed below are Volume Slice representations of electrostatic potential maps generated for
an aquaporin system. Computations were run using the periodic conjugate gradient solver for
a 1 Å grid spacing, and FILLRATIO of 2.0. For the systems using implicit water, the charge
singularity removal methodology was used.

From Left to right: Vacuum, Water only, Water and 20 Å slab-like membrane, Water and 20
Å slab-like membrane with 6 Å cylindrical channel region removed.

Often, the data ranges will not be consistent between potential distributions for different
implicit solvent setups. E.g. the range of the electrostatic values seen for vacuum will likely be
larger than the range for implicit water. The range of values displayed can be set manually to
provide consistent color scaling for comparison.

10.4.5 Adjusting the color scale of the color map

1. Select “Colors...” from the “Graphics” menu in the “VMD Main” window

• This should cause the “Color Controls” window to pop up

2. Select the “Color Scale” tab

• The color scheme can be selected from the “Method” pull down menu

• The “Offset” and “Midpoint” sliders can be used to adjust the scaling of the color
map.

– If singularities are present, it may be difficult to get a good scaling for volume
maps generated with fine grid spacings. In this case, either re-run with singu-
larity removal on, or set the color scale range manually as shown in the next
section.

When singularity removal is not employed, the presence of singularities will cause the range
of the electrostatic potential distribution near the atom centers to be much wider than near the
molecular surface. This typically results in very poor contrast particularly for implicit solvent
since the high dielectric constant in the solvent region will amplify the effect. This can be
compensated for by manually setting the Color Scale Data Range.
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10.4.6 Changing the color scale range

1. Select desired representation to modify

2. Select “Volume” Coloring Method and Select the desired volumetric map to rescale from
the pull down menu.

• Each time you change the volumetric map being displayed, you will need to repeat
this, so it is a good idea to make multiple representations for each potential data set
rather than switching between them on the same representation.

3. Select the “Trajectory” tab

4. You should see the automatically computed range in the “Color Scale Data Range:”
boxes. The left hand box controls the minimum value for the range, the right hand box
controls the maximum value for the range.

5. Set the minimum and maximum values as needed to improve the contrast. Often the inner
10% to 30% of the total (automatic) range will give good contrast for a one angstrom grid
spacing.

6. Click on the “Set” button when you are finished

7. To return to the automatic scaling that was originally calculated by VMD, click the “Au-
toscale” button.

Electrostatic potential data can also be used as a color map for other drawing methods. You will
need to first load the data into the molecule you wish to display.

10.4.7 Loading electrostatic potential data into an existing molecule

The names of the files are used as labels, so it is useful to rename them from “pbsa_phi.dx”
to something more descriptive before loading.

1. Select the molecule you wish to display the potential color map on in the “VMD Main”
window

2. Go to the “File” menu in the VMD Main window.

3. Select “Load Data Into Molecule...”.

• This will bring up the “Molecule File Browser” window

4. Click on the “Browse...” button in the “Molecule File Browser” window

5. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue
that pops up.

• The “Determine file type:” drop down menu should now read “DX”.

6. Click the “Load” button.

The data should now be loaded into the molecule you selected.
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10.4.8 Using the electrostatic potential data as a color map

Once you have loaded a volumetric data file into a molecule, it can be used to generate a
color map for any representations of that molecules model.

1. Open the “Graphical Representations” window if it is not already open

• Select “Representations...” from the “Graphics” menu in the “VMD Main” window

2. Select the molecule you loaded the data into from the “Selected Molecule” pull down
menu

3. Select the representation you wish to map the potential color map onto

4. Select the “Draw Style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu

• Another pull down menu should appear next to it

• Choose the selection that corresponds to the data you just loaded, it should be the
last one on the list if it is the last one that was loaded.

VMD will attempt to automatically scale the color mapping used for Volumetric data that you
load. The color scale may be manually adjusted if needed (see previous section)

10.4.9 Loading and displaying the level set map

The level set used by pbsa to model the solute - solvent interface can be written to an output
file in DX format by setting OUTLVLSET to “true” in the input file.

Sample PB visualization input

&cntrl

inp=0

/

&pb

npbverb=1, space=1., sasopt=2,

phiout=1, phiform=2,

outlvlset=true

/

The level set will be written to a DX format volumetric data file named “pbsa_lvlset.dx”. This
file can be used to visualize the corresponding molecular surface. The level set file is loaded into
VMD in the same manner as an electrostatic potential data file. Cross sections can be viewed
using the “Volume Slice” representation.

Shown below are the level sets for the aquaporin systems shown previously (no level set is
shown for vacuum as there is no dielectric interface being modeled in that system)

From left to right: Water, Water + Slab-like membrane, Water + Membrane with pore region
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10.4.10 Visualizing the molecular surface as an isosurface of the level set

The level set is constructed such that the molecular surface is the locus of all points where
the level set is zero. This allows us to use the Isosurface representation in VMD to display the
solvent excluded surface by setting the “Isovalue” to 0. Alternatively, if we wish to view the
potential just outside the surface, we can set the “Isovalue” to a number slightly higher than 0.
E.g. 0.1 or 0.01.

1. Load the level set data file into the molecule.

• This is done using the same procedure as loading an electrostatic potential data file,
but the level set data file will be chosen instead of the potential data file.

2. Create a new Isosurface representation in the “Graphical Representations” window.

3. Select the volume map for the level set from the pull down menu

4. Choose an “Isovalue” at or slightly above 0.

5. Using the “Coloring Method” pull down menu, you may also use a previously loaded
electrostatic potential data file as a color map by selecting “Volume” and then selecting
the appropriate volume map from the pull down menu that appears.

• VMD will automatically assign color scale range every time.

• To compare multiple potential maps, it is often desirable to use the same color scale
range for each. The best way to do this is to make a new representation for each
potential map and manually assign the same color scale range to be identical for
each (see previous section)

The examples below were generated for Aquaporin (1IH5 in the protein data bank) under vari-
ous implicit solvent options using a FILLRATIO of 2.0, grid spacing of 1Å. For each calcula-
tion, the periodic conjugate gradient solver with singularity removal was used. The level set for
the system modeling implicit water was used to build the isosurfaces. The electrostatic potential
data files were then overlayed as color maps with the color scale ranges set to [-80000,80000].

From Left to right: Water only, Water + Slab Like Membrane, Water + Membrane with 6Å
cylindrical pore.

323



10 PBSA

10.4.11 Visualizing interior channels, voids, and solvent pockets

One of the common roles for membrane proteins is to act as a transmembrane channel, to
allow specific substance to pass from one side of a membrane to another. Features such as
solvent / ion channels or internal voids will often be occluded from view by the exterior surface.
One option that can allow these to be viewed is to use the clipping plane tool in VMD.

1. Open the “Exensions” pull down menu in the “VMD Main” window and go to the “Visu-
alization” submenu and select “Clipping Plane Tool”.

2. The “Clip Tool” window should pop up.

3. The “Distance” slider allows clipping to be set

4. The “Normal” slider sets the normal of the clipping plane.

• The “flip” button on the right will let you clip from front to back, which will be
useful to clip the occluding exteriro surface from the view and reveal the interior.

The clipping tool was used to reveal the internal pore region for the aquaporin system setups
used in the previous section.

From Left to right: Water only, Water + Slab like Membrane, Water + Membrane with pore
region excluded.

As an alternative, the level set map generated using PORTYPE=1 with the implicit mem-
brane option will allow a cylindrical region to be excluded from the membrane level set. The
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corresponding isosurface will show any interior cavities or voids which fall within this region
for isovalues at or slightly above 0 (since the level set at the membrane-solute interface will be
below 0). See the previous section for details on writing and loading the level set file.

Shown below is the level set isosurface for the aquaporin system with implicit water plus a
membrane with a cylindrical region removed. The corresponding potential data was again over-
layed as a color map. The surface of the channel region, and the membrane-solvent interface
planes are now clearly visible.

10.4.12 Importing / Modifying Atomic Radii to VMD from the prmtop file

Currently, VMD does not support loading radii for atoms directly from the prmtop file when
it loads a molecule. These values can be loaded relatively easily using the tkconsole, however.
To do so:

1. select “Tk Console” from the “Extensions” menu in the “VMD Main” window.

• The “VMD TkConsole” window will then open

2. Be sure that the atom you want to import radii for is the top molecule on the list in the
VMD Main window. If it is not, you will need to replace “top” with the appropriate ID

3. Type or copy and paste the following lines, but DO NOT hit enter yet.

set prot [atomselect “top” all]

$prot set radius {#RadiiList#}

4. You will now need to replace #RadiiList# with the one from the prmtop file.

a) Open the prmtop file for the molecule using a text editor

b) find the section that starts with “%FLAG RADII”

c) Highlight/Select the list of numbers that follows “%FORMAT(5E16.8)”

d) Copy the list (usually done by selecting “Copy” from the “Edit” menu in your text
editor)

e) Go back to the “VMD TkConsole” window

f) Highlight/Select #RadiiList#
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g) Select “Paste Ctrl-v” from the “Edit” menu in the “VMD TkConsole” window

5. Now hit return

• If this was successful, you should now have the correct radii for each atom in the
molecule.

• you can have the console print the list of all radii by typing:

$prot get radius

• For a more human readable printout, use:

for {set ind 0} {$ind<[llength $rad]} {incr ind} \

{puts "Atom $ind radius is [lindex $rad $ind]"}

These radii are used by VMD to display the VDW surface (made by selecting “VDW” from
the “Drawing Method” pull down menu in the “Graphical Representations” window). One
useful trick is to set them to be a small amount larger (say .01 Å) than those used to generate
the surface. This will ensure that the color map will represent the external field just outside of
the molecule. To modify the radii type or copy the following in the Tk Console:

set rad [$prot get radius]

for {set ind 0} {$ind<[llength $rad]} {incr ind} \

{lset rad $ind [expr [lindex $rad $ind] +.01]}

The above code will increase all atomic radii by .01 angstroms. This can be changed if a dif-
ferent amount is desired. (The code assumes you already followed steps 1 through 5 otherwise
$prot will be undefined!)

10.5 pbsa in sander and NAB

10.5.1 Electrostatic forces/gradients in pbsa

Force calculation in the finite-difference Poisson-Boltzmann method is straightforward,
though not a trivial issue. It can be shown, by using the variation of the electrostatic free energy,
that the electrostatic force density consists of three components, viz., the reaction field force,
the dielectric boundary force, and the ionic force. [190] Since the ionic force is much smaller
in absolute value than the other two components, we only include the reaction field force and
the dielectric boundary force in this release.

The reaction field force only exists where there are atomic charges, so that it is straightfor-
ward to be mapped onto atoms. In contrast, the dielectric boundary force exists on the molecular
surface where the dielectric constant changes. The surface force, or pressure, cannot be easily
mapped onto atoms. This is because a force-mapping procedure from the molecular surface to
atoms apparently needs the derivatives of molecular surface with respect to atomic positions.
However such derivatives do not exist for the widely used molecular surface definition, i.e.,
the solvent excluded surface (SES). We are actively developing an analytical molecular surface
definition that is consistent with the widely used SES definition for the numerical PB methods
so that this difficulty will be overcome in future releases.
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Temporarily, a partial solution in the mapping of dielectric boundary force as described by
Gilson et al[190] is implemented for PB dynamics and minimization when the SES definition
is used. The stability of the MD simulation has been much improved with a more accurate
mapping method of analytical SES.

10.5.2 Example for pbsa in sander

All pbsa functionalities are available in sander and all input options are exactly the same as
in the standalone pbsa. An apparent exception is IPB: you need to really set IPB to nonzero in
order to invoke pbsa functionalities. All other default values of PB options in sander are same
as those in pbsa for single point calculations, whereas there are some options that have
different recommended or default values when PB minimization or dynamics is enabled.
These options are

space=0.25

arcres=0.125

fscale=4

eneopt=2

bcopt=6

frcopt=2

The SPACE, ARCRES and FSCALE are all set for higher resolution of the grid so that the
force calculation can be more accurate. The charge view method (ENEOPT = 2, FRCOPT = 2)
is used here because it has been tested to be able to run stable molecular dynamics simulations.
Plus, BCOPT is set to 6 to remove charge singularity for the same stability purpose. An
example input for PBMD is given as follows

Sample PB visualization input

&cntrl

imin=0, ntx=1, irest=0,

ipb=2, ntb=0,

ntc=2, ntf=2,

tempi=100, temp0=100, ntt=3, gamma_ln=1,

nstlim=100000, dt=0.002,

ntpr=100, ntwr=100, ntwx=100,

/

&pb

npbgrid=500, nsnba=5,

/

IPB is explicitly set to 2 to enable PB dynamics. The NPBGRID option is set to 500, which
means the finite difference grid is regenerated every 500 dynamics steps. NSNBA = 5 means
the atom-based pairlist is generated every 5 steps. Please refer to the Amber manual for the
other &cntrl options. Note that the above input can be used with sander only.
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10.5.3 Example for pbsa in NAB

pbsa functionalities are available in NAB as a part of the standard build. However the
available input options are limited, please refer to the table in Section 19.1 for the list of
available pbsa input options. The structures and parameters are supplied by NAB’s facility.
Here is a sample of calls in a NAB program to the mm_options() routine, in order to run pbsa:

mm_options("ntpr=1, cut=99.0"); // No solute-solute cutoff

mm_options("ipb=2"); // Use PBSA

mm_options("accept=0.000001"); // Convergence criterion

mm_options("dprob=1.6"); // Solvent probe radius for SASA

mm_options("radiopt=1"); // Useatom-type/charge-based radii

mm_options("fillratio=4"); // Coarse/Fine ratio of electrostatic focusing
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In addition to explicit and continuum implicit solvation models, Amber also has a third type
of solvation model for molecular mechanics simulations, the reference interaction site model
(RISM) of molecular solvation[191–204]. In AmberTools, 1D-RISM is available as rism1d.
3D-RISM is available as an option in NAB, MMPBSA.py and sander. rism3d.snglpnt is a simpli-
fied, standalone interface, ideal for calculating solvation thermodynamics on individual struc-
tures and trajectories. Details specific to using sander and sander.MPI can be found in the
Amber manual.

11.1 Introduction

RISM is an inherently microscopic approach, calculating the equilibrium distribution of the
solvent, from which all thermodynamic properties are then arrived at. Specifically, RISM is an
approximate solution to the Ornstein-Zernike (OZ) equation[192, 201, 202, 205, 206]

h(r12,Ω1,Ω2) = c(r12,Ω1,Ω2)+ρ

∫
dr3 dΩ3 c(r13,Ω1,Ω3)h(r32,Ω3,Ω2), (11.1)

where r12 is the separation between particles 1 and 2 while Ω1 and Ω2 are their orientations
relative to the vector r12. The two functions in this relation are h, the total correlation function,
and c, the direct correlation function. The total correlation function is defined as

hab(rab,Ωa,Ωb)≡ gab(rab,Ωa,Ωb)−1,

where gab is the pair-distribution function, which gives the conditional density distribution of
species b about a. In cases where only radial separation is considered, for example by ori-
entational averaging over site α of species a and site γ of species b, gives the familiar one
dimensional site-site radial distribution function, gαγ(rαγ).

For real mixtures, it is often convenient to speak in terms of a solvent, V, of high concentration
and a solute, U, of low concentration. A generic case of solvation is infinite dilution of the
solute, i.e., ρU→ 0. We can rewrite Equation (11.1), in the limit of infinite dilution, as a set of
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three equations:

hVV(r12,Ω1,Ω2) = cVV(r12,Ω1,Ω2)+ρ
V
∫

dr3 dΩ3 cVV(r13,Ω1,Ω3)hVV(r32,Ω3,Ω2),

(11.2)

hUV(r12,Ω1,Ω2) = cUV(r12,Ω1,Ω2)+ρ
V
∫

dr3 dΩ3 cUV(r13,Ω1,Ω3)hVV(r32,Ω3,Ω2),

(11.3)

hUU(r12,Ω1,Ω2) = cUU(r12,Ω1,Ω2)+ρ
V
∫

dr3 dΩ3 cUV(r13,Ω1,Ω3)hVU(r32,Ω3,Ω2).

(11.4)

Equation (11.3) is directly relevant for biomolecular simulations where we are often interested
in the properties of a single, arbitrarily complex solute in the solution phase. Solutions to
Equation (11.3) can be obtained using 3D-RISM. However, a solution to Equation (11.2) for
pure solvent is a necessary prerequisite and is readily obtained from 1D-RISM.

To obtain a solution to the OZ equations it is necessary to have a second equation that relates
h and c or uniquely defines one of these functions. The general closure relation is[205]

g(r12,Ω1,Ω2) = exp [−βu(r12,Ω1,Ω2)+h(r12,Ω1,Ω2)− c(r12,Ω1,Ω2)+b(r12,Ω1,Ω2)]
(11.5)

u is the potential energy function for the two particles and b is known as the bridge function
(a non-local functional, representable as infinite diagrammatic series in terms of h [205]). It
should be noted that u is the only point at which the interaction potential enters the equations.
Depending on the method used to solve the OZ equations, u is generally an explicit potential.
In principle, it should now be possible to solve our two equations. For example, we may wish
to use SPC/E as a water model. Inputting the relevant aspects of the SPC/E model into u,
1D-RISM can be used to calculate the equilibrium properties of the SPC/E model. A different
explicit water model will yield different properties.

A fundamental problem for all OZ-like integral equation theories is the bridge function,
which contains multiple integrals that are readily solved only in special circumstances. In prac-
tice, an approximate closure relation must be used. While many closures have been developed,
at this time only three are implemented in 3D-RISM: hypernetted-chain approximation (HNC),
Kovalenko-Hirata (KH) and the partial series expansion of order-n (PSE-n).

For HNC, we set b = 0, giving[205]

gHNC(r12,Ω1,Ω2) = exp(−βu(r12,Ω1,Ω2)+h(r12,Ω1,Ω2)− c(r12,Ω1,Ω2))

= exp(t∗(r12,Ω1,Ω2)) (11.6)

where t∗ is the renormalize-indirect correlation function. HNC works well in many situations,
including charged particles, but has difficulties when the size ratios of particles in the system are
highly varied and may not always converge on a solution when one should exist. Also, as the
bridge term is generally repulsive, HNC allows particles to approach too closely, overestimating
non-Coulombic interactions[202].

KH is a combination of HNC and the mean spherical approximation (MSA), the former being
applied to the spatial regions of solvent density depletion (g < 1), including the repulsive core,
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and the latter to those of solvent density enrichment (g> 1), such as association peaks[201, 202]

gKH(r12,Ω1,Ω2) =

{
exp
(

t∗(r12,Ω1,Ω2)
)

for g(r12,Ω1,Ω2)≤ 1
1+ t∗(r12,Ω1,Ω2) for g(r12,Ω1,Ω2)> 1

. (11.7)

Like HNC, KH handles Coulombic systems well but overestimates non-Coulombic interactions.
Unlike HNC, it does not have difficulties with highly asymmetric particle sizes and readily
converges to stable solutions for almost all systems of practical interest. The reliability of the
KH closure makes it particularly suitable for molecular mechanics calculations.

PSE-n offers the ability to interpolate between KH and HNC. Here, the exponential regions
of solvent density enrichment are treated as a Taylor expansion,

gPSE-n(r12,Ω1,Ω2) =

{
exp
(

t∗(r12,Ω1,Ω2)
)

for g(r12,Ω1,Ω2)≤ 1

∑
n
i=0 (t∗(r12,Ω1,Ω2))

i/i! for g(r12,Ω1,Ω2)> 1
. (11.8)

In the case of n = 1, the KH closure is obtained, while in the limit of n→ ∞ HNC is recovered.
This allows a balance between the numerical stability of KH and the often better accuracy of
HNC.

11.1.1 1D-RISM

1D-RISM is used to calculate bulk properties of the solvent and is a prerequisite for 3D-
RISM, for which the primary result is the bulk solvent site-site susceptibility in reciprocal space,
χVV(k). As its name would suggest, 1D-RISM is a one-dimensional calculation. The six-
dimensional OZ equations are reduced to one dimension (radial separation) via the fundamental
RISM approximation[192–195, 205, 206], which produces the intramolecular pair correlation
matrix,

ωαγ(k) = sin(krαγ)/(krαγ) (11.9)

where α and γ label the different atom types in the model. Note that atoms of the same type
in RISM theory have the same Lennard-Jones and Coulomb parameters. For example, most
three site water models have two RISM types, oxygen and hydrogen. Depending on the model,
propane, C3H8, may have two carbon types and two hydrogen types. Equation (11.2) then
becomes

hαγ(r) = ∑
µν

∫
dr′dr′′ωαµ(

∣∣r− r′
∣∣)cµν(

∣∣r′− r′′
∣∣)[ωνγ(r′′)+ρν hνγ(r′′)

]
=

1
(2π)3

∫
eik·rdk

[
ωc [1−ρωc]−1

ω

]
αγ

=
∞

∑
0

ω(k)c(k)ω(k) [ρc(k)ω(k)]n . (11.10)

Equation (11.10) must be complemented with one of the five closures currently supported by
rism1d (see §11.4.1). In 1d, these are site-site closures and there is no orientational dependence.
For example, the HNC closure (Eq. (11.6)) becomes,
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gHNC
αγ (r) = exp

[
−βuαγ(r)+hαγ(r)− cαγ(r)

]
. (11.11)

Equation (11.10), with KH, HNC or PSE-n closures, is readily applicable to liquid mixtures,
with site indices of the site-site correlation functions enumerating interaction sites on all (dif-
ferent) species in the solution and the intramolecular matrix (11.9) set equal to zero for sites
α,γ belonging to different species.

A dielectrically consistent version of 1D-RISM theory (DRISM) enforces the proper dielec-
tric asymptotics of the site-site correlation functions, and so provides the self-consistent dielec-
tric properties of electrolyte solution with polar solvent and salt in a range of concentrations,
including the given dielectric constant of the solution [207].

The 1D-RISM integral equations are then solved for the site-site direct correlation function
in an iterative manner, accelerated by the modified direct inversion of the iterative subspace
(MDIIS) [202, 208]. All correlation functions are represented as one-dimensional grids and
the convolution integrals in Equation (11.10) are performed in reciprocal space by making use
of a fast Fourier transform applied to the short-range parts of all the correlations, while the
electrostatic asymptotics are separated out and Fourier transformed analytically [202–204].

11.1.2 3D-RISM

With the results from 1D-RISM, a 3D-RISM calculation for a specific solute can be carried
out. For 3D-RISM calculations, only the solvent orientational degrees of freedom are averaged
over and Equation (11.3) becomes[200, 201]

hUV
γ (r) = ∑

α

∫
dr′cUV

α

(
r− r′

)
χ

VV
αγ (r′), (11.12)

where χVV
αγ (r) is the site-site susceptibility of the solvent, obtained from 1D-RISM and given

by
χ

VV
αγ (r) = ω

VV
αγ (r)+ρα hVV

αγ (r).

3D-RISM supports HNC, KH and PSE-n closures (see §11.6.1, 19.1 and 12.3.1). As with the
1D-RISM closures, these are constructed by analogy from Eqs. 11.6-11.8. For example, HNC
becomes

gHNC,UV
γ (r) = exp

(
−βuUV

γ (r)+hUV
γ (r)− cUV

γ (r)
)
. (11.13)

As with 1D-RISM, correlation functions are represented on (3D) grids, convolution integrals
are performed in reciprocal space and a self-consistent solution is iteratively converged upon
using the MDIIS accelerated solver. There is one 3D grid for each solvent type for each corre-
lation function. For example, for a solute in SPC/E water there will be both gUV

H (r) and gUV
O (r)

grids. Each point on the gUV
H (r) will give the fractional density of water hydrogen a that location

of real-space.
To properly treat electrostatic forces in electrolyte solution with polar molecular solvent and

ionic species, the electrostatic asymptotics of all the correlation functions (both the 3D and
radial ones) are treated analytically [202, 203, 209]. The non-periodic electrostatic asymptotics
are separated out in the direct and reciprocal space and the remaining short-range terms of the
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correlation functions are discretized on a 3D grid in a non-periodic box large enough to ensure
decay of the short-range terms at the box boundaries [209]. The convolution of the short-range
terms in the integral equation (11.12) is calculated using 3D fast Fourier transform [210, 211].
Accordingly, the electrostatic asymptotics terms in the thermodynamics integral (11.15) below
are handled analytically and reduced to one-dimensional integrals easy to compute [209].

With a converged 3D-RISM solution for hUV and cUVit is straightforward to calculate sol-
vation thermodynamics. From the perspective of molecular simulations, the most important
thermodynamic values are the excess chemical potential of solvation (solvation free energy),
µex and the mean solvation force, fUV

i (Ri), on each solute atom, i. µex can be obtained through
analytical thermodynamic integration for HNC,

µ
ex,HNC = kBT ∑

α

ρ
V
α

∫
dr
[

1
2
(
hUV

α (r)
)2− cUV

α (r)− 1
2

hUV
α (r)cUV

α (r)
]
, (11.14)

KH ,

µ
ex,KH = kBT ∑

α

ρ
V
α

∫
dr
[

1
2
(
hUV

α (r)
)2

Θ
(
−hUV

α (r)
)
− cUV

α (r)− 1
2

hUV
α (r)cUV

α (r)
]
, (11.15)

and PSE-n,

µ
ex,PSE-n = kBT ∑

α

ρ
V
α

∫
dr
[

1
2
(
hUV

α (r)
)2− cUV

α (r)− 1
2

hUV
α (r)cUV

α (r)

− (t∗ (r))n+1

(n+1)!
Θ
(
hUV

α (r)
)]

, (11.16)

where Θ is the Heaviside function.
Analogous versions of Eqns. 11.6, 11.15 and 11.16 are used in 1D-RISM. While these are

used for DRISM they are have been derived for XRISM. Furthermore, these equations have
been derived a number of different ways with slightly different functional forms of the − 1

2 hc
term [201, 212–215]. These different functional forms are equivalent in XRISM but not in
DRISM. The form introduced by Pettitt and Rossky [213] is the most popular in the literature
and the default selection in rism1d. It is possible to have rism1d evaluate and output all three
functional forms (see Output) but, for DRISM, none of these expressions are correct.

The force equation

fUV
i (Ri) =−

∂ µex

∂Ri
=−∑

α

ρα

∫
drgUV

α (r)
∂uUV

α (r−Ri)

∂Ri

is valid for all closures with a path independent expression for the excess chemical potential,
such as HNC, KH and PSE-n closures implemented in 3D-RISM [191, 216–218].

In addition to closure specific expressions for the solvation free energy, other approximations
also exist. The Gaussian fluctuation (GF) approximation[219, 220] is given as

µ
ex,GF = kBT ∑

α

ρ
V
α

∫
dr
[
−cUV

α (r)− 1
2

hUV
α (r)cUV

α (r)
]
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and has been shown to yield improved absolute solvation free energies for both polar and non-
polar solutes[220, 221] but not necessarily for relative free energies[222]. It is not associated
with a particular closure but is typically used in place of the expression for a given closure.

Eqs. (11.14)-(11.16) give the total solvation free energy, ∆Gsol, but it is often useful to de-
compose this into electrostatic (solvent polarization), ∆Gpol, and non-electrostatic (dispersion
and cavity formation), (∆Gdis +∆Gcav), terms. Conceptually, we can divide the path of the ther-
modynamic integration into two steps: first the solute without partial charges is inserted into
the solvent (dispersion and cavity formation) and then partial charges are introduced, which
polarize the solvent,

µ
ex = ∆Gsol = ∆Gpol +∆Gdis +∆Gcav.

∆Gsol is produced by a 3D-RISM calculation on the charged solute. ∆Gpol is then the differ-
ence of the two calculations. As a point of reference, generalized-Born and Poisson-Boltzmann
methods calculate only ∆Gpol and, typically, use a calculation involving solvent accessible sur-
face area to predict ∆Gdis +∆Gcav.

11.1.3 Analytic Temperature Derivatives

For the thermodynamic analysis of solvation, it is often useful to calculate the energetic and
entropic contributions, εsolvand −T Ssolv respectively, to the solvation free energy. It has been
shown that it is possible to analytically decompose the solvation free energy into these two
contributions when the solvation free energy has a closed analytical form, such as with HNC
and KH closure [223]. In what follows, the analytical expression of energetic and entropic
contributions to the solvation free energy are derived in the framework of 1D-RISM theory with
HNC closure. The similar derivation can be applied to other closures as well as to the framework
of 3D-RISM theory. At this time, temperature derivatives are implemented for rism1d with
HNC, KH and PSE-n closures.

The solvation free energy of species U in a solution consisting of N total species is expressed
in the RISM-HNC framework as

µ
ex,U
HNC = kBT ∑

on U
α ∑

N
M=1 ∑

on M
γ ργ

∫
dr
[

1
2

(
hαγ(r)

)2− cαγ(r)− 1
2 hαγ(r)cαγ(r)

]
.

The differentiation of the solvation free energy with respect to the temperature T leads to

δT µ
ex,U
HNC = µ

ex,U
HNC + kBT ∑

on U
α ∑

N
M=1 ∑

on M
γ ργ

∫
dr

[
hαγ(r) ·δT hαγ(r)−δT cαγ(r)− 1

2 δT hαγ(r) ·

cαγ(r)− 1
2 hαγ(r) ·δT cαγ(r)

]
.

where δT is T ∂

∂T . Since µ
ex,U
HNC = εsolv,U −T Ssolv,U , we have δT µ

ex,U
HNC =−T Ssolv,U and therefore

the above equation can be rearranged as

εsolv,U =−kBT ∑
on U
α ∑

N
M=1 ∑

on M
γ ργ

∫
dr

[
hαγ(r) ·δT hαγ(r)−δT cαγ(r)− 1

2 δT hαγ(r) ·cαγ(r)−

1
2 hαγ(r) ·δT cαγ(r)

]
.
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It is noted that the solvation energy εsolv,U can be viewed as consisting of two contributions:
one arising from creation of a polarized cavity (in pure solvent) and the other corresponding to
the energy of embedding the solute molecule into the cavity. The former is the solvent
reorganization energy and the latter is the average solute-solvent interaction energy that is
obtained as ∑α ∑γ ργ

∫
druαγ gαγ .

The temperature derivatives of correlation functionsδT h(r) and δT c(r) can be obtained by
solving the temperature derivative of RISM-HNC equations

δT h(k) = w(k)δT c(k)w(k)+ρw(k)δT c(k)h(k)+ρw(k)c(k)δT h(k)

and

δT hαγ(r) =
[

uαγ (r)
kBT +δT hαγ(r)−δT cαγ(r)

]
(hαγ(r)+1).

Some practical examples can be found in [224] and [225].

11.2 Practical Considerations

11.2.1 Computational Requirements and Parallel Scaling

Calculating a 3D-RISM solution for a single solute conformation typically requires about
100 times more computer time than the same calculation with explicit solvent or PB. While
there are other factors to consider, such as sampling confined solvent or overall efficiency of
sampling in the whole statistical ensemble at once, this can be prohibitive for many applications.
Memory is also an issue as the 3D correlation grids require anywhere from a few megabytes for
the smallest solutes to gigabytes for large complexes. A lower bound and very good estimate
for the total memory required is

Total memory≥ 8bytes×

Nbox NV

2NMDIIS︸ ︷︷ ︸
c,residual

+ 1︸︷︷︸
u

+ Ndecomp︸ ︷︷ ︸
polar decomp

Npropagate︸ ︷︷ ︸
past solutions


(Nbox +2NyNz)

 4︸︷︷︸
asymptotics

+ 1︸︷︷︸
FFT scratch

+ 2︸︷︷︸
g,h

NV




where Nbox = Nx ×Ny×Nz is the total number of grid points, NV is the number of solvent
atom species and NMDIIS is the number of MDIIS vectors used to accelerate convergence. uUV,
cUV and the residual of cUV are stored in real-space only and require a full grid for each sol-
vent. cUV and its residual also require NMDIIS grids for the MDIIS routine (see the mdiis_nvec
keyword) and Npropagate grids to make use of solutions from previous solute configurations to
improve the initial guess (see the npropagate keyword). If a polar/non-polar decomposition is
requested (see the polardecomp keyword) an additional set of grids for past solutions with no
solute charges is kept (Ndecomp = 2); by default this is turned off (Ndecomp = 1). The full real
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space grid plus an additional 2NyNx grid points are needed (due to the FFT) for g and h for each
solvent species and for the four grids required to compute the long range asymptotics. Mem-
ory, therefore, scales linearly with Nbox while computation time scales as O(Nbox log(Nbox))
due to the requirements of calculating the 3D fast Fourier transform (3D-FFT). To overcome
these requirements, two options are available beyond optimizations already in place, multiple
time steps and parallelization. Multiple time step methods are available only in sander (see the
Amber manual) and are applicable to molecular dynamics calculations only. Parallelization is
available for all calculations but is limited by system size and computational resources.

Both sander and NAB have MPI implementations of 3D-RISM (see Section 11.5.5 for NAB
compiling instructions) that distribute both memory requirements and computational load. As
memory is distributed, the aggregate memory of many computers can be used to perform cal-
culations on very large systems. Memory distribution is handled by the FFTW 3.3 library
so decomposition is done along the z-axis. If a variable solvation box size is used, the only
consideration is to avoid specifying a large, prime number of processes (≥ 7). For fixed box
sizes, the number of grids points in each dimension must be divisible by two (a general require-
ment) and the number of grid points in the z-axis must be divisible by the number of processes.
sander.MPI also has the additional consideration that the number of processes cannot be larger
than the number of solute residues; NAB does not suffer from this limitation.

11.2.2 Output

gUV, hUV and cUV files can be output for 3D-RISM calculations and are useful for visualiza-
tion and calculation of thermodynamic quantities. These use the ASCII Data Explorer (DX) file
format (See http://ambermd.org/formats.html) so there is one file for each solvent atom type for
each requested frame. Each file is

(
348+Nbox×16 1

3

)
bytes, which can quickly fill disk space.

Also, very few visualization programs are capable of displaying both molecular and volumetric
trajectories.

11.2.3 Numerical Accuracy

Numerical accuracy depends on the specified residual tolerance for the solution and the sol-
vation box physical size and grid spacing. Almost all applications should use a grid spacing
of 0.5 Å. A larger grid spacing quickly leads to severe errors in thermodynamic quantities.
Smaller grid spacing may be necessary for some applications (e.g., mapping potentials of mean
force) but this is rare and computationally expensive. A buffer distance between the solute
and the edges of the solvent box should typically be 14 Å for water or larger for ionic solu-
tions. Molecular dynamics[191], minimization and trajectory post-processing[222] have dif-
ferent requirements for the maximum residual tolerance. Molecular dynamics does well with
a tolerance of 10−5 and npropagate=5. Minimization requires tolerances of 10−11or lower
and drms ≥ 10−4. Trajectory post-processing for MM/RISM type calculations typically have
high statistical noise from the trajectory itself and it is possible to use a tolerance of 10−3 and
npropagate=1. However, this should be compared against a tolerance of 10−5 on a subset of
the data before committing to this level of accuracy.
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11.3 Work Flow

11.2.4 Solution Convergence

11.3 Work Flow

Using 3D-RISM with SANDER or NAB for molecular dynamics, minimization or snapshot
analysis is very similar to using implicit solvent models like GBSA or PBSA. However, some
additional preliminary setup is required, the extent of which depends on the solvent to be used.

3D-RISM requires detailed information of the bulk solvent in the form of the site-site sus-
ceptibility, χVV, and properties such as the temperature and partial charges. This is read in as
an .xvv file, which is produced by a 1D-RISM calculation. If another 3D-RISM calculation is
to be preformed with any details of the bulk solvent changed (e.g., temperature or pressure) a
new .xvv file must be produced. Examples of precomputed .xvv files for SPC/E and TIP3P
water can be found in $AMBERHOME/AmberTools/test/rism1d.

Special care must be taken when producing .xvv files for use with 3D-RISM, particularly with
respect to grid parameters. It is important that the spatial extent of the grid be large enough to
capture the essential long range features of the solvent while the spacing must be fine enough to
sample the short-range structure. A grid spacing of 0.025 Å is sufficient for most applications.
The number of grid points required, which will determine the physical length of the grid in Å,
generally depends on the properties of the solvent. Low concentration aqueous salt solutions
typically require much larger grids than pure bulk water. A good indicator that the grid is large
enough is convergence of delhv0 in the .xvv file. When converged, delhv0 should retain four to
five digits of precision when the number of grid points is doubled.

1D-RISM calculations require details of the some bulk properties of the solvent, such
as temperature and dielectric constant, and an explicit model of the molecular components.
These are read in from one or more .mdl files, depending on the composition of the sol-
vent. Several .mdl files are included in the Amber11 distribution and can be found in
$AMBERHOME/dat/rism1d/mdl. These include many of the explicit models for solvent and
ions used with the Amber force fields. Other solvents models may be used by creating appro-
priate MDL files. See http://ambermd.org/formats.html for format details.

11.4 rism1d

1D-RISM calculations are carried out with rism1d, and require only one input file with an
.inp suffix. The input file is listed on the command line without this suffix.

rism1d inputfile

Parameters for the calculation are read in from parameters name list.

11.4.1 Parameters

Note that these keywords are not case sensitive.

Theory

theory [DRISM] The 1D-RISM theory to use.
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DRISM Dielectrically consistent RISM (recommended).

XRISM Extended RISM.

closure [KH] The type of closure to use.

KH Kovalenko-Hirata (recommended).

PSEn Partial serial expansion of order n. E.g., “PSE3”.

HNC Hyper-netted chain equation.

PY Percus-Yevick.

temperature_deriv [1] Solve another set of integral equations to calculate the temperature
derivative. This typically adds less than 50% to the compute time and yields an
energy/entropy decomposition of the excess chemical potential for all species and
sites.

0 Do not calculate the temperature derivative.

1 Calculate the temperature derivative.

Grid Size

dr [0.025] Grid spacing in real space in Å.

nr [16384] Number of grid points. Should be a product of small prime factors (2, 3
and 5).

Output

outlist [] Indicates what output files to produce. Output file names use the root name of
the input file with an extension listed below. This is a list of any combination of
the following characters in any order, upper or lower case.

U UVV(r) Solvent site-site potential in real space, inputfile.uvv (see
http://ambermd.org/formats.html).

X χVV(k) Solvent site-site susceptibility in reciprocal space. Required input for
3D-RISM, inputfile.xvv (see http://ambermd.org/formats.html).

G GVV(r) Solvent site-site pair distribution function in real-space,
inputfile.gvv (see http://ambermd.org/formats.html).

B BVV(r) Solvent site-site bridge correction in real space, inputfile.bvv (see
http://ambermd.org/formats.html).

T Thermodynamic properties of the solvent, inputfile.therm (see
http://ambermd.org/formats.html).

E exNVV(r), exNVV Solvent site-site running, inputfile.exnvv, and total,
inputfile.n00 (see http://ambermd.org/formats.html), excess coordination
numbers in real space.
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11.4 rism1d

N NVV(r) Solvent site-site running coordination numbers in real space,
inputfile.nvv (see http://ambermd.org/formats.html).

Q exQVV Solvent site-site excess total charge of site γ about α , inputfile.q00
(see http://ambermd.org/formats.html).

S SVV(k) Solvent site-site structure factor in reciprocal space, inputfile.svv (see
http://ambermd.org/formats.html).

rout [0] Largest real space separation in Å for output files. If 0 then all grid points will
be output.

kout [0] Largest reciprocal space separation in Å-1 for output files. If 0 then all grid
points will be output.

ksave [-1] Output an intermediate solution every ksave steps. If ksave <= 0 then no
intermediate restart files are written. If any restart files are present at run time
(.sav suffix) they are automatically used. However, such files are non-portable
binary files.

progress [1] Write the current residue to standard output every progress iteration. If
progress <= 0 then residue is not reported.

selftest [0] If ‘1’, perform a self-consistency check and output the results to
inputfile.self.test. Only tests applicable to the input parameters and system
are performed. The results will depend on the input parameters (e.g., ‘tolerance’)
used.

Species keywords

For each molecular species in the solvent mixture, a species name list should be provided.

density [] (Required.) Density of the species in M. See ’units’ below.

units [‘M’] Units for density value. Options are ‘M’ (molar), ‘mM’ (millimolar), ‘1/A^3’
(number per Å3), ‘g/cm^3’ (g/cm3) or ‘kg/m^3’ (kg/m3).

model [] (Required.) Relative or absolute path to and name of the .mdl file with the pa-
rameters for this solvent molecule.

Solution Convergence

rism1d uses MDIIS to accelerate convergence. The default parameters for this method are
usually near optimal but some systems can be difficult to converge. In such cases it may be
useful to use a small step size (mdiis_del=0.1 or 0.2). Occasionally, the target tolerance of
10−12 can not be achieved. A tolerance of 10−10 to 10−11 is often sufficient but it is advisable
to check how sensitive your calculations are to this.

mdiis_nvec [20] Number of MDIIS vectors to use.
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11 Reference Interaction Site Model

mdiis_del [0.3] MDIIS step size.

tolerance [1e-12] Target residual tolerance for the self-consistent solution.

maxstep [10000] Maximum number of iterations to converge to a solution.

extra_precision [1] Controls the use of extra precision routines at key points in the 1D-RISM
solver. This can be useful for achieving low tolerances or for very large box
lengths but increases computational cost. Strongly recommended for solutions with
charged particles (e.g., salts).

0 No extra precision routines are used.

1 Sensitive matrix multiplication and addition routines are done in extra
precision. A small computational cost is incurred.

Solvent Description

temperature [298.15] Temperature in Kelvin.

dieps [] (Required.) Dielectric constant of the solvent.

nsp [] (Required.) Number of species (molecules) in the solutions. Also indicates the
number of species name lists to follow.

Other

smear [1.0] Charge smear parameter in Å for long range asymptotics corrections.

adbcor [0.5] Numeric parameter for DRISM.

11.4.2 Example

Mixed ionic solvent.

&PARAMETERS

THEORY=’DRISM’, CLOSURE=’KH’, !Theory

NR=16384, DR=0.025, !Grid size and spacing

OUTLIST=’x’, ROUT=384, KOUT=0, !Output

MDIIS_NVEC=20, MDIIS_DEL=0.3, TOLERANCE=1.e-12, !MDIIS

KSAVE=-1, !Check pointing

PROGRESS=1, !Output frequency

MAXSTEP=10000, !Maximum iterations

SMEAR=1, ADBCOR=0.5, !Electrostatics

TEMPERATURE=310, DIEPS=78.497, NSP=3 !bulk solvent properties

/

&SPECIES

!SPC/E water

DENSITY=55.296d0, !very close to 0.0333 1/A3
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MODEL="../../../dat/rism1d/model/SPC.mdl"

/

&SPECIES

!Sodium

units=’mM’

DENSITY=100,

MODEL="../../../dat/rism1d/model/Na+.mdl"

/

&SPECIES

!Chloride

units=’g/cm^3’

DENSITY=35.45e-4,

MODEL="../../../dat/rism1d/model/Cl-.mdl"

/

11.5 3D-RISM in NAB

3D-RISM functionality is available in NAB and is built as part of the standard install proce-
dure. MPI functionality for 3D-RISM in NAB requires some additional information at compile
time, described in Section 11.5.5. At this time, standard molecular dynamics and minimization
with non-polarizable force fields are supported.

11.5.1 Solvation Box Size

The non-periodic solvation box super-cell can be defined as variable or fixed in size. When a
variable box size is used, the box size will be adjusted to maintain a minimum buffer distance
between the atoms of the solute and the box boundary. This has the advantage of maintaining
the smallest possible box size while adapting to changes of solute shape and orientation. Alter-
natively, the box size and grid spacing can be explicitly specified at run-time and used for the
duration of the calculation.

Regardless of how the solvation box is defined, the “center” of the solute is placed in the
middle of the box. The center of the solute and how it is placed in the solvent box is controlled
with the centering keyword. Generally, centering=1 (center=center-of-mass) is the default and
should be used for MD and centering=2 (center=center-of-geometry) should be used for min-
imization. Center-of-mass and center-of-geometry are conserved quantities in each method
respectively.

Other options for solute centering are available for special situations. To restrict the absolute
position of grid-points to be integer multiples of the grid-spacing (e.g., (2.5 Å,3.0 Å) for a grid
spacing of 0.5 Å) use centering=3 for center-of-mass and centering=4 for center-of-geometry.
To perform centering only on the first calculation (i.e., first step of MD or minimization or
first frame of a trajectory analysis), use the negative integer corresponding to the desired center
definition. This allows the solute to drift in the solvent box. Finally, with some care, it is
possible to achieve custom centering using centering=0. Here, no solute centering is performed
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and the solvent grid has an origin of (0,0,0) and a center of ( x-length
2 +dx, y-length

2 +dy, z-length
2 +

dz). If you use centering=0, it is advisable to use a fixed-size solvent box.

11.5.2 I/O

All 3D-RISM options, including input and output files, are specified using mm_options()

(see Section 19.1). Generated output files can be quite large and numerous. For each type of
correlation, a separate file is produced for each solvent atom type. The frequency that files are
produced is controlled by the ntwrism parameter. For every time step that output is produced, a
new set of files is written with the time step number in the file name. For example, a molecular
dynamics calculation using an SPC/E water model with ntwrism=2 and guvfile=guv will
produce two files on time step ten: guv.O.10.dx and guv.H1.10.dx.

11.5.3 Examples

Molecular Dynamics

...

mm_options("ntpr=100, ntpr_md=100");

mm_options("dt=0.002"); //Large time step

mm_options("rattle=1"); //Use RATTLE

mm_options("cut=999.0"); //No solute-solute

//cut off

mm_options("rism=1"); //Use 3D-RISM-KH

mm_options("xvvfile=../rism1d/spc/spc.xvv.save"); //1D-RISM input
...

Minimization

...

mm_options("ntpr=1, cut=999.0"); //No solute-solute

//cut off

mm_options("rism=1"); //Use 3D-RISM-KH

mm_options("xvvfile=../rism1d/spc/spc.xvv.save"); //1D-RISM input

mm_options("tolerance=1e-11"); //Low tolerance

mm_options("solvcut=999.0"); //No solute-solvent

//cut off

mm_options("centering=2"); //Center solute

//using center-

//of-geometry
...
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11.5.4 Thermodynamic Output

When nptrism6= 0 thermodynamic data about the solvent is output. This is presented as a
table

solute_epot: Total LJ Coulomb Bond

Angle Dihedral H-Bond LJ-14

Coulomb-14 Restraints 3D-RISM

Solute internal energy [kcal/mol] and its components. This is written as a single line.

rism_exchem: Total ExChem_1 ExChem_2 ...

Excess chemical potential (solvation free energy) [kcal/mol] for the closure used and the
contribution from each solvent atom type.

rism_exchGF: Total ExChem_GF_1 ExChem_GF_2 ...

Excess chemical potential (solvation free energy) [kcal/mol] using the Gaussian fluctuation
approximation and the contribution from each solvent atom type.

rism_exEnUV: Total Energy_1 Energy_2 ...

Average solute-solvent interaction energy [kcal/mol],

∆Usol = ∑
α

ρα

∫
drgUV

α (r)uUV
α (r),

and the contribution from each solvent atom type. Note that this is only a component of the
solvation energy as it does not include changes in the solvent-solvent interaction energy[226].

rism_volume: PMV

Partial molar volume of the solute [Å3].

rism_exNumb: ExNum_1 ExNum_2 ...

Excess number of each atom type of solvent accumulated by the solute.

rism_exChrg: Total ExChg_1 ExChg_2 ...

Excess charge [e] of each atom type of solvent accumulated by the solute.

rism_polar_: Total polar_1 polar_2 ...

Solvent polarization contribution to the total excess chemical potential [kcal/mol] and the
contribution from each solvent atom type. Only present when polardecomp=1.

rism_apolar: Total apolar_1 apolar_2 ...

Cavity formation and dispersion contribution to the total excess chemical potential [kcal/mol]
and the contribution from each solvent atom type. Only present when polardecomp=1.
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rism_polGF_: Total polarGF_1 polarGF_2 ...

Solvent polarization contribution to the Gaussian fluctuation total excess chemical potential
[kcal/mol] and the contribution from each solvent atom type. Only present when
polardecomp=1.

rism_apolGF: Total apolarGF_1 apolarGF_2 ...

Cavity formation and dispersion contribution to the Gaussian fluctuation total excess chemical
potential [kcal/mol] and the contribution from each solvent atom type. Only present when
polardecomp=1.

11.5.5 Compiling MPI 3D-RISM

Executables compiled with mpinab and 3D-RISM must link to both C and Fortran MPI li-
braries, which is not the default behaviour of most MPI compilers. As there are a wide variety
of MPI implementations and no standards for naming Fortran libraries, 3D-RISM is not in-
cluded by default when compiling mpinab. The additional steps required to include 3D-RISM
in mpinab are

1. If

a) you are using OpenMPI or MPICH2, proceed to step 2.

b) you are not using OpenMPI or MPICH2, identify the Fortran 77 libraries corre-
sponding to your MPI implementation. These will be found in the lib directory for
your MPI implementation and will likely contain “f” or “f77” in the file name. Set
the XTRA_FLIBS environment variable to contain the compiler directive to link the
library.
For example, the OpenMPI and MPICH2 library files are libmpi_f77.a and
libfmpich.a respectively (the suffix may vary) and XTRA_FLIBS could be explicitly
set as:

OpenMPI export XTRA_FLIBS=-lmpi_f77

MPICH2 export XTRA_FLIBS=-lfmpich

2. Run configure and specify both -mpi and -rismmpi. For example:
./configure -mpi -rismmpi gnu

3. For dynamically linked executables (the default), set your LD_LIBRARY_PATH environ-
ment variable to the location of your MPI library:
export LD_LIBRARY_PATH=$MPIHOME/lib where
$MPIHOME is the base directory for you MPI installation.

11.6 rism3d.snglpnt

3D-RISM functionality is also available in the command line tools rism3d.snglpnt and
rism3d.snglpnt.MPI installed at compile time. These programs perform single point 3D-RISM
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calculations on trajectories and individual solute snapshots. No other processing is done to the
structures so unwanted solvent molecules should be removed before hand. Except for mini-
mization and molecular dynamics, all 3D-RISM features are available. Thermodynamic data is
always output (see Section 11.5.4). Note that these executables are built by NAB so please see
Section 11.5.5 on ensuring rism3d.snglpnt.MPI is built.

11.6.1 Usage

3D-RISM specific command line keywords generally correspond to keyword options avail-
able in NAB’s mm_options (see Section 19.1). If run without input, rism3d.snglpnt prints default
settings for all parameters.

--pdb PDB file (Required, input.) PDB file for the solute. Coordinates are only used if a restart
or trajectory file is not supplied.

--prmtop prmtop file (Required, input.) Parameter topology file for the solute.

--rst restart file (Optional, input.) Coordinates for the solute in restart format.

--nc NetCDF file (Optional, input.) Trajectory for the solute in NetCDF format.

--xvv XVV file (Required, input.) Bulk solvent susceptibility file from 1D-RISM (see
http://ambermd.org/formats.html).

--guv GUV root (Optional, output.) Root name for 3D solvent pair distribution files.

--cuv CUV root (Optional, output.) Root name for 3D solvent direct correlation files.

--huv HUV root (Optional, output.) Root name for 3D solvent total correlation files.

--uuv UUV root (Optional, output.) Root name for 3D solvent potential [kT ] files.

--asymp asymptotics root (Optional, output.) Root name for 3D real-space long range asymp-
totics for total and direct correlation files. This will produce one file for each of C
and H for each frame requested and does not include the solvent site charge. Multi-
ply the distribution by the solvent site charge to obtain the long-range asymptotics
for that site.

--quv QUV root (Optional, output.) Root name for 3D solvent charge density distribution files.
This is the charge density [e/Å] at each grid point with contributions from all sol-
vent types.

--chgdist charge distribution root (Optional, output.) Root name for 3D solvent charge dis-
tribution files. This gives a point charge [e] at each grid point with contributions
from all solvent types.

--volfmt (Optional.) Format of volumetric data files. May be dx for DX files or xyzv for
XYZV format (see http://ambermd.org/formats.html).
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--closure closure name (Optional.) A list of one or more of KH, HNC or PSEn where “n” is
a positive integer. If more than one closure is provided, the 3D-RISM solver will
use the closures in order to obtain a solution for the last closure in the list when
no previous solutions are available. The solution for the last closure in the list is
used for all output. This can be useful for difficult to converge calculations (see
§11.2.4).

--closureorder closure order (Deprecated.) Specifies the order of the PSE-n closure if the
closure name is given as “PSE” or “PSEN” (no integers).

--noasympcorr (Optional.) Turn off long range asymptotic corrections for thermodynamic
output only. Long-range asymptotics are still used to calculate the solution.

--buffer distance (Optional.) Minimum distance between the solute and the edge of the sol-
vent box. Use this with --grdspc. Incompatible with --ng and --solvbox.

--solvcut distance (Optional.) Set solute-solvent interaction cut off distance. If no value is
specified then the buffer distance is used. If a buffer distance is not provided, the
cut off must be explicitly set. Note that Coulomb interactions are interpolated and
not truncated beyond the cut off. See [191] for details.

--grdspc 3D grid spacing (Optional.) Comma separated linear grid spacings for x, y and z
dimensions. Use this with --buffer. Incompatible with --ng and --solvbox.

--ng 3D grid points (Optional.) Comma separated number of grid points for x, y and z dimen-
sions. Use this with --solvbox. Incompatible with --buffer and --grdspc.

--solvbox 3D box length (Optional.) Comma separated solvation box side length for x, y and
z dimensions. Use this with --ng. Incompatible with --buffer and --grdspc.

--tolerance residual target (Optional.) A list of maximum residual values for solution con-
vergence. When used in combination with a list of closures it is possible to define
different tolerances for each of the closures. This can be useful for difficult to con-
verge calculations (see §11.2.4). For the sake of efficiency, it is best to use as high
a tolerance as possible for all but the last closure. Three formats of list are possible.

one tolerance All closures but the last use a tolerance of 1. The last tolerance in
the list is used by the last closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance in the list. The last
tolerance in the list is used by the last closure.

n tolerances Tolerances from the list are assigned to the closure list in order.

--mdiis_del step size (Optional.) MDIIS step size.

--mdiis_nvec # of vectors (Optional.) Number of previous iterations MDIIS uses to predict a
new solution.

--maxstep step number (Optional.) Maximum number of iterative steps per solution.
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--npropagate # old solutions (Optional.) Number of previous solutions to use in predicting a
new solution.

--polarDecomp (Optional.) Decomposes solvation free energy into polar and non-polar com-
ponents. Note that this typically requires 80% more computation time.

--centering method (Optional.) Select how solute is centered in the solvent box.

-4 Center-of-geometry with grid-point rounding. Center on first step only.

-3 Center-of-mass with grid-point rounding. Center on first step only.

-2 Center-of-geometry. Center on first step only.

-1 Center-of-mass. Center on first step only.

0 No centering. Dangerous.

1 Center-of-mass. Center on every step. Recommended for molecular dynamics.

2 Center-of-geometry. Center on every step. Recommended for minimization.

3 Center-of-mass with grid-point rounding.

4 Center-of-geometry with grid-point rounding.

--verbose level (Optional.)

0 No output.

1 Print the number of iterations required to converge.

2 Print convergence details for each iteration.

347





12 MMPBSA.py

Note: Amber now has three(!) scripts to carry out MM-PBSA-like calculations. The one
described here (the “python” version) is more recent, generally simpler to use, and has a more
active support community for answering questions. The amberlite code (described in Chapter
6) is more limited, and focussed on protein-ligand interactions; it is a great place for users new
to AmberTools to begin. The version described in the Amber12 manual (the “perl” version)
continues to be updated, and has some specialized features. Most new users should try the
python or amberlite versions first.

None of these should be considered as a “black-box”, and users should be familiar with Am-
ber before attempting these sorts of calculations. These scripts automate a series of calculations,
and cannot trap all the types of errors that might occur. You should be sure that you know how
to carry out an MM-PBSA calculation “by hand” (i.e., without using the scripts); if you don’t
understand in detail what is going on, you will have no good reason to trust the results.

12.1 Introduction

This section describes the use of the python script MMPBSA.py [227] to perform Molecular
Mechanics / Poisson Boltzmann (or Generalized Born) Surface Area (MM/PB(GB)SA) calcu-
lations. This is a post-processing method in which representative snapshots from an ensemble
of conformations are used to calculate the free energy change between two states (typically a
bound and free state of a receptor and ligand). Free energy differences are calculated by com-
bining the so-called gas phase energy contributions that are independent of the chosen solvent
model as well as solvation free energy components (both polar and non-polar) calculated from
an implicit solvent model for each species. Entropy contributions to the total free energy may
be added as a further refinement. The entropy calculations can be done in either a HCT Gen-
eralized Born solvation model [228, 229] or in the gas phase using a mmpbsa_py_nabnmode
program written in the nab programming language, or via the quasi-harmonic approximation in
ptraj.

The gas phase free energy contributions are calculated by sander within the Amber pro-
gram suite or mmpbsa_py_energy within the AmberTools package according to the force field
with which the topology files were created. The solvation free energy contributions may be
further decomposed into an electrostatic and hydrophobic contribution. The electrostatic por-
tion is calculated using the Poisson Boltzmann (PB) equation, the Generalized Born method,
or the Reference Interaction Site Model (RISM). The PB equation is solved numerically by
either the pbsa program included with AmberTools or by the Adaptive Poisson Boltzmann
Solver (APBS) program through the iAPBS interface with Amber (for more information, see
http://www.poissonboltzmann.org/apbs). The hydrophobic contribution is approximated by the
LCPO method [159] implemented within sander or the molsurf method as implemented in
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cpptraj.
MM/PB(GB)SA typically employs the approximation that the configurational space explored

by the systems are very similar between the bound and unbound states, so every snapshot for
each species is extracted from the same trajectory file, although MMPBSA.py will accept sepa-
rate trajectory files for each species. Furthermore, explicit solvent and ions are stripped from the
trajectory file(s) to hasten convergence by preventing solvent-solvent interactions from domi-
nating the energy terms. A more detailed explanation of the theory can be found in Srinivasan,
et. al.[110] You may also wish to refer to reviews summarizing many of the applications of this
model,[112, 114] as well as to papers describing some of its applications.[115–119]

Many popular types of MM/PBSA calculations can be performed using just AmberTools,
while some of the more advanced functionality requires the sander program from Amber.

12.2 Preparing for an MM/PB(GB)SA calculation

MM/PB(GB)SA is often a very useful tool for obtaining relative free energies of binding
when comparing ligands. Perhaps its biggest advantage is that it is very computationally inex-
pensive compared to other free energy calculations, such as TI or FEP. Following the advice
given below before any MD simulations are run will make running MMPBSA.py successfully
much easier.

12.2.1 Building Topology Files

MMPBSA.py requires at least three, usually four, compatible topology files. If you plan on
running MD in explicit water, you will need a solvated topology file of the entire complex, and
you will always need a topology for the entire complex, one for just the receptor, and a final
one for just the ligand. Moreover, they must be compatible with one another (i.e., each must
have the same charges for the same atoms, the same force field must be used for all three of the
required prmtops, and they must have the same PBRadii set, see LEaP for description of
pbradii). Thus, it is strongly advised that all prmtop files are created with the same script. We
run through a typical example here, though leave some of the details to other sections and
other tutorials. We will start with a system that is a large protein binding a small, one-residue
ligand. We will assume that a docked structure has already been obtained as a PDB and that
two separate PDBs have been constructed, receptor.pdb and LIG.pdb. We will also assume that
a MOL2 file was created from LIG.pdb, residue name ’LIG’, was built with charges already
derived (either through antechamber or some other method), and an frcmod file for ’LIG’ that
contains all missing parameters have already been created. Furthermore, we will use the
FF12SB force field for this example. A sample script file called, for instance, mmpbsa_leap.in,
is shown below

source leaprc.ff12SB

loadAmberParams LIG.frcmod

LIG = loadMol2 LIG.mol2

receptor = loadPDB receptor.pdb

complex = combine {receptor LIG}

set default PBRadii mbondi2
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saveAmberParm LIG lig.top lig.crd

saveAmberParm receptor rec.top rec.crd

saveAmberParm complex com.top com.crd

solvateOct complex TIP3PBOX 15.0

saveAmberParm complex com_solvated.top com_solvated.crd

quit

The above script, when executed using the command

tleap -f mmpbsa_leap.in

should produce four prmtop files, lig.top, rec.top, com.top, and com_solvated.top. Topology
files created in this manner will make running MMPBSA.py far easier. This is, of course, the
simplest case, but we briefly describe some other examples. MMPBSA.py will guess the mask
for both the receptor and ligand inside the complex topology file as long as the ligand residues
appear continuously in the complex topology file. Therefore, if you’re adding two ligands,
combine them consecutively in the complex (rather than one residue at the beginning and one
at the end, for instance). If you have done this, you should allow MMPBSA.py to guess the
masks since it provides a good error check.

12.2.2 Using ante-MMPBSA.py

ante-MMPBSA.py is a python utility that allows you to create compatible complex, receptor,
and ligand topology files from a solvated topology file, or compatible receptor and ligand
topology files from a complex topology file. The usage statement for ante-MMPBSA.py is

Usage: ante-MMPBSA.py [options]

Options:

-h, --help show this help message and exit

-p PRMTOP, --prmtop=PRMTOP

Input "dry" complex topology or solvated complex

topology

-c COMPLEX, --complex-prmtop=COMPLEX

Complex topology file created by stripping PRMTOP of

solvent

-r RECEPTOR, --receptor-prmtop=RECEPTOR

Receptor topology file created by stripping COMPLEX of

ligand

-l LIGAND, --ligand-prmtop=LIGAND

Ligand topology file created by stripping COMPLEX of

receptor

-s STRIP_MASK, --strip-mask=STRIP_MASK

Amber mask of atoms needed to be stripped from PRMTOP

to make the COMPLEX topology file

-m RECEPTOR_MASK, --receptor-mask=RECEPTOR_MASK
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Amber mask of atoms needed to be stripped from COMPLEX

to create RECEPTOR. Cannot specify with -n/--ligand-

mask

-n LIGAND_MASK, --ligand-mask=LIGAND_MASK

Amber mask of atoms needed to be stripped from COMPLEX

to create LIGAND. Cannot specify with -m/--receptor-

mask

--radii=RADIUS_SET PB/GB Radius set to set in the generated topology

files. This is equivalent to "set PBRadii <radius>" in

LEaP. Options are bondi, mbondi2, mbondi3, amber6, and

mbondi and the default is to use the existing radii.

The input prmtop is required. It can either be a solvated, complex topology file or a complex
topology file with no solvent present. If a strip_mask is given, you must also provide a complex
topology file, and that complex topology file will be created by stripping strip_mask from the
input prmtop. If you wish to create receptor and ligand topology files (you must create both
or neither), provide BOTH a –receptor-prmtop and a –ligand-prmtop file name, as well as only
ONE of either –receptor-mask or –ligand-mask. Whichever mask you do NOT define will be
defined as the negated mask that you DID provide.

In short, you can use ante-MMPBSA.py to strip solvent from your prmtop for 3 applications.

1. Strip solvent from a solvated topology file and write out a non-solvated topology file.

2. Create ligand and receptor topologies from a complex topology by removing a given
ligand or receptor mask.

3. A combination of 1 and 2 in the same command.

12.2.3 Running Molecular Dynamics

Not many details will be given here because MM/PB(GB)SA is a post-processing trajectory
analysis technique. Molecular dynamics are run to generate an ensemble of snapshots upon
which to calculate the binding energy. This technique is most effective when the structures
are not correlated, which means that the simulated time between extracted snapshots should be
sufficiently large to avoid such correlation.

There are two techniques that can be employed when running these simulations with respect
to MMPBSA.py. The first is what’s called the “single trajectory protocol” and the second of
which is called the “multiple trajectory protocol”. The first method will extract the snapshots
for the complex, receptor, and ligand from the same trajectory. This is a faster method be-
cause it requires the simulation of only a single system, but makes the assumption that the
configurational space explored by the receptor and ligand is unchanged between the bound and
unbound states. The latter method eliminates this assumption at the cost of more simulations.
MMPBSA.py requires a complex trajectory, but will accept a receptor and/or ligand trajectory
as well. Any trajectory not given to the script will be extracted from the complex trajectory.
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12.3 Running MMPBSA.py

12.3.1 The input file

The input file was designed to be as syntactically similar to other programs in Amber as
possible. The input file has the same namelist structure as both sander and pmemd. The allowed
namelists are &general, &gb, &pb, &rism, &alanine_scanning, &nmode, and &decomp. The
input variables recognized in each namelist are described below, but those in &general are
typically variables that apply to all aspects of the calculation. The &gb namelist is unique
to Generalized Born calculations, &pb is unique to Poisson Boltzmann calculations, &rism is
unique to 3D-RISM calculations, &alanine_scanning is unique to alanine scanning calculations,
&nmode is unique to the normal mode calculations used to approximate vibrational entropies,
and &decomp is unique to the decomposition scheme. All of the input variables are described
below according to their respective namelists. Integers and floating point variables should be
typed as-is while strings should be put in either single- or double-quotes. All variables should
be set with “variable = value” and separated by commas. See the examples below. Variables
will usually be matched to the minimum number of characters required to uniquely identify that
variable within that namelist. Variables require at least 4 characters to be matched unless that
variable name has fewer than 4 characters (in which case the whole variable name is required).
For example, “star” in &general will match “startframe”. However, “stare” and “sta” will match
nothing.

&general namelist variables

debug_printlevel MMPBSA.py prints errors by raising exceptions, and not catching fatal er-
rors. If debug_printlevel is set to 0, then detailed tracebacks (effectively the call stack
showing exactly where in the program the error occurred) is suppressed, so only the error
message is printed. If debug_printlevel is set to 1 or higher, all tracebacks are printed,
which aids in debugging of issues. Default: 0. (Advanced Option)

endframe The frame from which to stop extracting snapshots from the full, concatenated tra-
jectory comprised of every trajectory file supplied on the command-line. (Default =
9999999)

entropy Specifies whether or not a quasi-harmonic entropy approximation is made with ptraj.
Allowed values are 0: Don’t. 1: Do (Default = 0)

interval The offset from which to choose frames from each trajectory file. For example, an
interval of 2 will pull every 2nd frame beginning at startframe and ending less than or
equal to endframe. (Default = 1)

keep_files The variable that specifies which temporary files are kept. All temporary files
have the prefix “_MMPBSA_” prepended to them (unless you change the prefix on the
command-line—see subsection Subsection 12.3.2 for details). Allowed values are 0, 1,
and 2.
0: Keep no temporary files
1: Keep all generated trajectory files and mdout files created by sander simulations
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2: Keep all temporary files. Temporary files are only deleted if MMPBSA.py completes
successfully
(Default = 1) A verbose level of 1 is sufficient to use -rewrite-output and recreate the
output file without rerunning any simulations.

ligand_mask The mask that specifies the ligand residues within the complex prmtop (NOT
the solvated prmtop if there is one). The default guess is generally sufficient and will
only fail as stated above. You should use the default mask assignment if possible because
it provides a good error catch. This follows the same description as the receptor_mask
above.

netcdf Specifies whether or not to use NetCDF trajectories internally rather than writing tem-
porary ASCII trajectory files. NOTE: NetCDF trajectories can be used as input for
MMPBSA.py regardless of what this variable is set to, but NetCDF trajectories are faster
to write and read. For very large trajectories, this could offer significant speedups, and
requires less temporary space. However, this option is incompatible with alanine scan-
ning. Default value is 0.
0: Do NOT use temporary NetCDF trajectories
1: Use temporary NetCDF trajectories

receptor_mask The mask that specifies the receptor residues within the complex prmtop (NOT
the solvated prmtop if there is one). The default guess is generally sufficient and will
only fail if the ligand residues are not found in succession within the complex prmtop.
You should use the default mask assignment if possible because it provides a good error
catch. It uses the “Amber mask” syntax described elsewhere in this manual. This will be
replaced with the default receptor_mask if ligand_mask (below) is not also set.

search_path Advanced option. By default, MMPBSA.py will only search for executables in
$AMBERHOME/bin. To enable it to search for binaries in your full PATH if they can’t be
found in $AMBERHOME/bin, set search_path to 1. Default 0 (do not search through the
PATH). This is particularly useful if you are using an older version of sander that is not in
AMBERHOME.

startframe The frame from which to begin extracting snapshots from the full, concatenated
trajectory comprised of every trajectory file placed on the command-line. This is always
the first frame read. (Default = 1)

strip_mask The variable that specifies which atoms are stripped from the trajectory file if a
solvated_prmtop is provided on the command-line. See 12.3.2. (Default = “:WAT:Cl-
:CIO:Cs+:IB:K+:Li+:MG2:Na+:Rb+”)

use_sander Forces MMPBSA.py to use sander for energy calculations, even when
mmpbsa_py_energy will suffice (Default 0)
0 - Use mmpbsa_py_energy when possible
1 - Always use sander

full_traj This variable is for calculations performed in parallel to control whether complete
trajectories are made of the complex, receptor, and ligand. In parallel calculations, a
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different trajectory is made for each processor to analyze only the selected frames for
that processor. A value of 0 will only create the intermediate trajectories analyzed by
each processor, while a value of 1 will additionally combine those trajectories to make a
single trajectory of all frames analyzed across all processors for the complex, receptor,
and ligand. (Default = 0)

verbose The variable that specifies how much output is printed in the output file. There are
three allowed values: 0, 1, and 2. A value of 0 will simply print difference terms, 1 will
print all complex, receptor, and ligand terms, and 2 will also print bonded terms if one
trajectory is used. (Default = 1)

&gb namelist variables (More thorough descriptions of each can be found in the Amber
manual)

ifqnt Specifies whether a part of the system is treated with quantum mechanics. 1: Use
QM/MM, 0: Potential function is strictly classical (Default = 0). This functionality re-
quires sander

igb Generalized Born method to use. See the description in the Amber manual. Allowed
values are 1, 2, 5, 7 and 8. (Default = 5) All models are now available with both
mmpbsa_py_energy and sander

qm_residues Comma- or semicolon-delimited list of complex residues to treat with quantum
mechanics. All whitespace is ignored. All residues treated with quantum mechanics
in the complex must be treated with quantum mechanics in the receptor or ligand to
obtain meaningful results. If the default masks are used, then MMPBSA.py will figure
out which residues should be treated with QM in the receptor and ligand. Otherwise,
skeleton mdin files will be created and you will have to manually enter qmmask in the
ligand and receptor topology files. There is no default, this must be specified.

qm_theory Which semi-empirical Hamiltonian should be used for the quantum calculation.
No default, this must be specified. See its description in the QM/MM section of the
manual for options.

qmcharge_com The charge of the quantum section for the complex. See the description of
qmcharge in the AmberTools manual. (Default = 0)

qmcharge_lig The charge of the quantum section of the ligand. (Default = 0)

qmcharge_rec The charge of the quantum section for the receptor. (Default = 0)

qmcut The cutoff for the qm/mm charge interactions. See the description in the AmberTools
manual. (Default = 9999.0)

saltcon Salt concentration in Molarity. (Default = 0.0)

surfoff Offset to correct (by addition) the value of the non-polar contribution to the solvation
free energy term (Default 0.0)
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surften Surface tension value (Default = 0.0072). Units in kcal/mol/2

molsurf When set to 1, use the molsurf algorithm to calculate the surface area for the nonpolar
solvation term. When set to 0, use LCPO (Linear Combination of Pairwise Overlaps).
(Default 0)

probe Radius of the probe molecule (supposed to be the size of a solvent molecule), in
Angstroms, to use when determining the molecular surface (only applicable when mol-
surf is set to 1). Default is 1.4.

msoffset Offset to apply to the individual atomic radii in the system when calculating the
molsurf surface. See the description of the molsurf action command in cpptraj. Default
is 0.

&pb namelist variables (More thorough descriptions of each can be found in the
AmberTools manual)

cavity_offset Offset value used to correct non-polar free energy contribution (Default = -
0.5692) This is not used for APBS.

cavity_surften Surface tension. (Default = 0.0378 kcal/mol Angstrom2). Unit conversion to
kJ done automatically for APBS.

exdi External dielectric constant (Default = 80.0)

fillratio The ratio between the longest dimension of the rectangular finite-difference grid and
that of the solute (Default = 4.0)

indi Internal dielectric constant (Default = 1.0)

inp Nonpolar optimization method (Default = 2)

istrng Ionic strength in Molarity. It is converted to mM for PBSA and kept as M for APBS.
(Default = 0.0)

linit Maximum number of iterations of the linear Poisson Boltzmann equation to try (Default
= 1000)

prbrad Solvent probe radius in Angstroms. Allowed values are 1.4 and 1.6 (Default = 1.4)

radiopt The option to set up atomic radii according to 0: the prmtop, or 1: pre-computed values
(see Amber manual for more complete description). (Default = 1)

sander_apbs Option to use APBS for PB calculation instead of the built-in PBSA solver. This
will work only through the iAPBS interface built into sander.APBS. Instructions for this
can be found online at the iAPBS/APBS websites. Allowed values are 0: Don’t use
APBS, or 1: Use sander.APBS. (Default = 0)

scale Resolution of the Poisson Boltzmann grid. It is equal to the reciprocal of the grid spacing.
(Default = 2.0)
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&alanine_scanning namelist variables

mutant_only Option to perform specified calculations only for the mutants. Allowed values
are 0: Do mutant and original or 1: Do mutant only (Default = 0)

Note that all calculation details are controlled in the other namelists, though for alanine scanning
to be performed, the namelist must be included (blank if desired)

&nmode namelist variables

dielc Distance-dependent dielectric constant (Default = 1.0)

drms Convergence criteria for minimized energy gradient. (Default = 0.001)

maxcyc Maximum number of minimization cycles to use per snapshot in sander. (Default =
10000)

nminterval∗ Offset from which to choose frames to perform nmode calculations on (Default =
1)

nmendframe∗ Frame number to stop performing nmode calculations on (Default = 1000000)

nmode_igb Value for Generalized Born model to be used in calculations. Options are 0: Vac-
uum, 1: HCT GB model [228, 229] (Default 1)

nmode_istrng Ionic strength to use in nmode calculations. Units are Molarity. Non-zero
values are ignored if nmode_igb is 0 above. (Default = 0.0)

nmstartframe∗ Frame number to begin performing nmode calculations on (Default = 1)

* These variables will choose a subset of the frames chosen from the variables in the &general
namelist. Thus, the “trajectory” from which snapshots will be chosen for nmode calculations
will be the collection of snapshots upon which the other calculations were performed.

&decomp namelist variables

csv_format Print the decomposition output in a Comma-Separated-Variable (CSV) file. CSV
files open natively in most spreadsheets. If set to 1, this variable will cause the data to be
written out in a CSV file, and standard error of the mean will be calculated and included
for all data. If set to 0, the standard, ASCII format will be used for the output file. Default
is 1 (CSV-formatted output file)

dec_verbose Set the level of output to print in the decmop_output file.
0 - DELTA energy, total contribution only
1 - DELTA energy, total, sidechain, and backbone contributions
2 - Complex, Receptor, Ligand, and DELTA energies, total contribution only
3 - Complex, Receptor, Ligand, and DELTA energies, total, sidechain, and backbone
contributions
Note: If the values 0 or 2 are chosen, only the Total contributions are required, so only
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those will be printed to the mdout files to cut down on the size of the mdout files and the
time required to parse them. However, this means that -rewrite-output cannot be used to
change the default verbosity to print out sidechain and/or backbone energies, but it can
be used to reduce the amount of information printed to the final output. The parser will
extract as much information from the mdout files as it can, but will complain and quit if
it cannot find everything it’s being asked for.
Default = 0

idecomp Energy decomposition scheme to use:
1 - Per-residue decomp with 1-4 terms added to internal potential terms
2 - Per-residue decomp with 1-4 EEL added to EEL and 1-4 VDW added to VDW poten-
tial terms.
3 - Pairwise decomp with 1-4 terms added to internal potential terms
4 - Pairwise decomp with 1-4 EEL added to EEL and 1-4 VDW added to VDW potential
terms
(No default. This must be specified!) This functionality requires sander.

print_res Select residues from the complex prmtop to print. The receptor/ligand residues will
be automatically figured out if the default mask assignments are used. If you specify your
own masks, you will need to modify the mdin files created by MMPBSA.py and rerun
MMPBSA.py with the -use-mdins flag. Note that the DELTAs will not be computed in
this case. This variable accepts a sequence of individual residues and/or ranges. The
different fields must be either comma- or semicolon-delimited. For example: print_res =
“1, 3-10, 15, 100”, or print_res = “1; 3-10; 15; 100”. Both of these will print residues 1,
3 through 10, 15, and 100 from the complex prmtop and the corresponding residues in
either the ligand and/or receptor prmtops. (Default: print all residues)*

* Please note: Using idecomp=3 or 4 (pairwise) with a very large number of printed residues
and a large number of frames can quickly create very, very large temporary mdout files. Large
print selections also demand a large amount of memory to parse the mdout files and write
decomposition output file (~500 MB for just 250 residues, since that’s 62500 pairs!) It is not
unusual for the output file to take a significant amount of time to print if you have a lot of data.
This is most applicable to pairwise decomp, since the amount of data scales as O(N2).

&rism namelist variables*

buffer Minimum distance between solute and edge of solvation box. Specify this with grdspc
below. Mutually exclusive with ng and solvbox. Set buffer < 0 if you wish to use ng and
solvbox. (Default = 14 Å)

closure The approximation to the closure relation. Allowed choices are kh (Kovalenko-Hirata),
hnc (Hypernetted-chain), or psen (Partial Series Expansion of order-n) where “n” is a
positive integer (e.g., “pse3”). (Default = ‘kh’)

closureorder (Deprecated) The order at which the PSE-n closure is truncated if closure is
specified as “pse” or “psen” (no integers). (Default = 1)
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grdspc Grid spacing of the solvation box. Specify this with buffer above. Mutually exclusive
with ng and solvbox. (Default = 0.5 Å)

ng Number of grid points to use in the x, y, and z directions. Used only if buffer < 0. Mutually
exclusive with buffer and grdspc above, and paired with solvbox below. No default, this
must be set if buffer < 0. Define like “ng=1000,1000,1000”

polardecomp Decompose the solvation free energy into polar and non-polar contributions.
Note that this will increase computation time by roughly 80%. 0: Don’t decompose
solvation free energy. 1: Decompose solvation free energy. (Default = 0)

rism_verbose Level of output in temporary RISM output files. May be helpful for debugging
or following convergence. Allowed values are 0 (just print the final result), 1 (additionally
prints the total number of iterations for each solution), and 2 (additionally prints the
residual for each iteration and details of the MDIIS solver). (Default = 0)

solvbox Length of the solvation box in the x, y, and z dimensions. Used only if buffer < 0.
Mutually exclusive with buffer and grdspc above, and paired with ng above. No default,
this must be set if buffer < 0. Define like “solvbox=20,20,20”

solvcut Cutoff used for solute-solvent interactions. The default is the value of buffer. There-
fore, if you set buffer < 0 and specify ng and solvbox instead, you must set solvcut to a
non-zero value or the program will quit in error. (Default = buffer)

thermo Which thermodynamic equation you want to use to calculate solvation properties. Op-
tions are “std”, “gf”, or “both” (case-INsensitive). “std” uses the standard closure rela-
tion, “gf” uses the Gaussian Fluctuation approximation, and “both” will print out separate
sections for both. (Default = “std”). Note that all data are printed out for each RISM sim-
ulation, so no choice is any more computationally demanding than another. Also, you
can change this option and use the -rewrite-output flag to obtain a different printout after-
the-fact.

tolerance Upper bound of the precision requirement used to determine convergence of the
self-consistent solution. This has a strong effect on the cost of 3D-RISM calculations.
(Default = 1e-5).

* 3D-RISM calculations are performed with the rism3d.snglpnt program built with Amber-
Tools, written by Tyler Luchko. It is the most expensive, yet most statistical mechanically
rigorous solvation model available in MMPBSA.py. See the section about RISM in the Amber-
Tools manual for a more thorough description of options and theory. A list of references can
be found there, too. One advantage of 3D-RISM is that an arbitrary solvent can be chosen; you
just need to change the xvvfile specified on the command line (see 12.3.2).

Sample input files

Sample input file for GB and PB calculation

&general

startframe=5, endframe=100, interval=5,
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verbose=2, keep_files=0,

/

&gb

igb=5, saltcon=0.150,

/

&pb

istrng=0.15, fillratio=4.0

/

--------------------------------------------------------

Sample input file for Alanine scanning

&general

verbose=2,

/

&gb

igb=2, saltcon=0.10

/

&alanine_scanning

/

--------------------------------------------------------

Sample input file with nmode analysis

&general

startframe=5, endframe=100, interval=5,

verbose=2, keep_files=2,

/

&gb

igb=5, saltcon=0.150,

/

&nmode

nmstartframe=2, nmendframe=20, nminterval=2,

maxcyc=50000, drms=0.0001,

/

--------------------------------------------------------

Sample input file with decomposition analysis

&general

startframe=5, endframe=100, interval=5,

/

&gb

igb=5, saltcon=0.150,

/

&decomp

idecomp=2, dec_verbose=3,

print_res=”20, 40-80, 200”

/

--------------------------------------------------------

Sample input file for QM/MMGBSA
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&general

startframe=5, endframe=100, interval=5,

ifqnt=1, qmcharge=0, qm_residues=”100-105, 200”

qm_theory=”PM3”

/

&gb

igb=5, saltcon=0.100,

/

--------------------------------------------------------

Sample input file for MM/3D-RISM

&general

startframe=5, endframe=100, interval=5,

/

&rism

polardecomp=1, thermo=’gf’

/

A few important notes about input files. Comments are allowed by placing a # at the beginning
of the line (whitespace is ignored). Variable initialization may span multiple lines. In-line
comments (i.e., putting a # for a comment after a variable is initialized in the same line) is
not allowed and will result in an input error. Variable declarations must be comma-delimited,
though all whitespace is ignored. Finally, all lines between namelists are ignored, so comments
may be put before each namelist without using #.

12.3.2 Calling MMPBSA.py from the command-line

MMPBSA.py is invoked through the command line as follows:

Usage: MMPBSA.py [Options]

Options:

--help, -h, --h, -H

show this help message and exit

-O

Overwrite existing output files

-i input_file

MM/PBSA input file

-o output_file

Final MM/PBSA statistics file. Default

FINAL_RESULTS_MMPBSA.dat

-sp solvated_prmtop

Solvated complex topology file

-cp complex_prmtop

Complex topology file. Default “complex_prmtop”

-rp receptor_prmtop

Receptor topology file

-lp ligand_prmtop
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Ligand topology file

-y mdcrd1,mdcrd2,...,mdcrdN

Input trajectories to analyze. Default mdcrd

-do decompout

Decomposition statistics summary file. Default

FINAL_DECOMP_MMPBSA.dat

-eo energyout

CSV-format output of all energy terms for every frame in

every calculation. File name forced to end in .csv

-deo dec_energies

CSV-format output of all decomposition energy terms for

every frame. File name forced to end in .csv

-yr receptor_mdcrd1,receptor_mdcrd2,...,receptor_mdcrdN

Receptor trajectory file for multiple trajectory approach

-yl ligand_mdcrd1,ligand_mdcrd2,...,ligand_mdcrdN

Ligand trajectory file for multiple trajectory approach

-mc mutant_complex_prmtop

Alanine scanning mutant complex topology file

-ml mutant_ligand_prmtop

Alanine scanning mutant ligand topology file

-mr mutant_receptor_prmtop

Alanine scanning mutant receptor topology file

-slp solvated_ligand_prmtop

Solvated ligand topology file

-srp solvated_receptor_prmtop

Solvated receptor topology file

-xvvfile xvvfile

XVV file for 3D-RISM. Default

$AMBERHOME/dat/mmpbsa/spc.xvv

-prefix prefix

Beginning of every intermediate file name generated

-make-mdins

Create the Input files for each calculation and quit

-use-mdins

Use existing input files for each calculation

-rewrite-output

Don’t rerun any calculations, just parse existing output

files

--clean

Clean temporary files from previous run

-make-mdins and -use-mdins are intended to give added flexibility to user input. If the
MM/PBSA input file does not expose a variable you require, you may use the -make-mdins flag
to generate the MDIN files and then quit. Then, edit those MDIN files, changing the variables
you need to, then running MMPBSA.py with -use-mdins to use those modified files.
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--clean will remove all temporary files created by MMPBSA.py in a previous calculation.
--version will display the program version and exit.

12.3.3 Running MMPBSA.py

12.3.3.1 Serial version

This version is installed with Amber during the serial install of AmberTools. AMBERHOME
must be set, or it will quit on error. If any changes are made to the modules, MMPBSA.py
must be remade so the updated modules are found by MMPBSA.py. An example
command-line call is shown below:

MMPBSA.py -O -i mmpbsa.in -cp com.top -rp rec.top -lp lig.top -y traj.crd

The tests, found in ${AMBERHOME}/test/mmpbsa_py provide good examples for running
MMPBSA.py calculations.

12.3.3.2 Parallel (MPI) version

This version is installed with Amber during the parallel install. The python package mpi4py
is included with the MMPBSA.py source code and must be successfully installed in order to
run the MPI version of MMPBSA.py. It is run in the same way that the serial version is above,
except MPI directions must be given on the command line as well. Note, if mpi4py does not
install correctly, you must install it yourself in order to use MMPBSA.py.MPI. One note: at a
certain level, running RISM in parallel may actually hurt performance, since previous solutions
are used as an initial guess for the next frame, hastening convergence. Running in parallel
loses this advantage. Also, due to the overhead involved in which each thread is required to
load every topology file when calculating energies, parallel scaling will begin to fall off as the
number of threads reaches the number of frames. A usage example is shown below:

mpirun -np 2 MMPBSA.py.MPI -O -i mmpbsa.in -cp com.top -rp rec.top \

-lp lig.top -y traj.crd

12.3.4 Types of calculations you can do

There are many different options for running MMPBSA.py. Among the types of calculations
you can do are:

1. Normal binding free energies, with either PB or GB implicit solvent models. Each
can be done with either 1, 2, or 3 different trajectories, but the complex, receptor, and
ligand topology files must all be defined. The complex mdcrd must always be pro-
vided. Whichever trajectories of the receptor and/or ligand that are NOT specified will
be extracted from the complex trajectory. This allows a 1-, 2-, or 3-trajectory analy-
sis. All PB calculations and GB models can be performed with just AmberTools via the
mmpbsa_py_energy program installed with MMPBSA.py.
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2. Stability calculations with any calculation type. If you only specify the complex prmtop
(and leave receptor and ligand prmtop options blank), then a “stability” calculation will
be performed, and you will get statistics based on only a single system. Any additional re-
ceptor or ligand information given will be ignored, but note that if receptor and/or ligand
topologies are given, it will no longer be considered a stability calculation. The previ-
ous statement refers principally to mutated receptor/ligand files or extra ligand/receptor
trajectory files.

3. Alanine scanning with either PB or GB implicit solvent models. All trajectories will be
mutated to match the mutated topology files, and whichever calculations that would be
carried out for the normal systems are also carried out for the mutated systems. Note that
only 1 mutation is allowed per simulation, and it must be to an alanine. If mutant_only
is not set to 1, differences resulting from the mutations are calculated. This option is
incompatible with intermediate NetCDF trajectories (see the netcdf = 1 option above).
This has the same program requirements as option 1 above.

4. Entropy corrections. An entropy term can be added to the free energies calculated above
using either the quasi-harmonic approximation or the normal mode approximation. Cal-
culations will be done for the normal and mutated systems (alanine scanning) as re-
quested. Normal mode calculations are done with the mmpbsa_py_nabnmode program
included with AmberTools.

5. Decomposition schemes. The energy terms will be decomposed according to the decom-
position scheme outlined in the idecomp variable description. This should work with all
of the above, though entropy terms cannot be decomposed. APBS energies cannot be
decomposed, either. Neither can PBSA surface area terms. This functionality requires
sander from the Amber 11 (or later) package.

6. QM/MMGBSA. This is a binding free energy (or stability calculation) using the Gen-
eralized Born solvent model allowing you to treat part of your system with a quantum
mechanical Hamiltonian. See “Advanced Options” for tips about optimizing this option.
This functionality requires sander from the Amber package.

7. MM/3D-RISM. This is a binding free energy (or stability calculation) using the 3D-RISM
solvation model. This functionality is performed with rism3d.snglpnt built with Amber-
Tools.

12.3.5 The Output File

The header of the output file will contain information about the calculation. It will show a
copy of the input file as well as the names of all files that were used in the calculation (topology
files and coordinate file(s)). If the masks were not specified, it prints its best guess so that you
can verify its accuracy, along with the residue name of the ligand (if it is only a single residue).

The energy and entropy contributions are broken up into their components as they are in
sander and nmode or ptraj. The contributions are further broken into Ggas and Gsolv. The
polar and non-polar contributions are EGB (or EPB) and ESURF (or ECAVITY / ENPOLAR),
respectively for GB (or PB) calculations.
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By default, bonded terms are not printed for any one-trajectory simulation. They are com-
puted and their differences calculated, however. They are not shown (nor included in the total)
unless specifically asked for because they should cancel completely. A single trajectory does
not produce any differences between bond lengths, angles, or dihedrals between the complex
and receptor/ligand structures. Thus, when subtracted they cancel completely. This includes
the BOND, ANGLE, DIHED, and 1-4 interactions. If inconsistencies are found, these values
are displayed and inconsistency warnings are printed. When this occurs the results are gener-
ally useless. Of course this does not hold for the multiple trajectory protocol, and so all energy
components are printed in this case.

Finally, all warnings generated during the calculation that do not result in fatal errors are
printed after calculation details but before any results.

12.3.6 Temporary Files

MMPBSA.py creates working files during the execution of the script beginning with the
prefix _MMPBSA_. The variable “keep_files” controls how many of these files are kept after
the script finishes successfully. If the script quits in error, all files will be kept. You can clean
all temporary files from a directory by running MMPBSA –clean described above.

If MMPBSA.py does not finish successfully, several of these files may be helpful in diagnos-
ing the problem. For that reason, every temporary file is described below. Note that not every
temporary file is generated in every simulation. At the end of each description, the lowest value
of “keep_files” that will retain this file will be shown in parentheses.

_MMPBSA_gb.mdin Input file that controls the GB calculation done in sander. (2)

_MMPBSA_pb.mdin Input file that controls the PB calculation done in sander. (2)

_MMPBSA_gb_decomp_com.mdin Input file that controls the GB decomp calculation for the
complex done in sander. (2)

_MMPBSA_gb_decomp_rec.mdin Input file that controls the GB decomp calculation for the
receptor done in sander. (2)

_MMPBSA_gb_decomp_lig.mdin Input file that controls the GB decomp calculation for the
ligand done in sander. (2)

_MMPBSA_pb_decomp_com.mdin Input file that controls the PB decomp calculation for the
complex done in sander. (2)

_MMPBSA_pb_decomp_rec.mdin Input file that controls the PB decomp calculation for the
receptor done in sander. (2)

_MMPBSA_pb_decomp_lig.mdin Input file that controls the PB decomp calculation for the
ligand done in sander. (2)

_MMPBSA_gb_qmmm_com.mdin Input file that controls the GB QM/MM calculation for the
complex done in sander. (2)
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_MMPBSA_gb_qmmm_rec.mdin Input file that controls the GB QM/MM calculation for the
receptor done in sander. (2)

_MMPBSA_gb_qmmm_lig.mdin Input file that controls the GB QM/MM calculation for the
ligand done in sander. (2)

_MMPBSA_complex.mdcrd.# Trajectory file(s) that contains only those complex snapshots
that will be processed by MMPBSA.py. (1)

_MMPBSA_ligand.mdcrd.# Trajectory file(s) that contains only those ligand snapshots that
will be processed by MMPBSA.py. (1)

_MMPBSA_receptor.mdcrd.# Trajectory file(s) that contains only those receptor snapshots
that will be processed by MMPBSA.py. (1)

_MMPBSA_complex_nc.# Same as _MMPBSA_complex.mdcrd.#, except in the NetCDF for-
mat. (1)

_MMPBSA_receptor_nc.# Same as _MMPBSA_receptor.mdcrd.#, except in the NetCDF for-
mat. (1)

_MMPBSA_ligand_nc.# Same as _MMPBSA_ligand.mdcrd.#, except in the NetCDF format.
(1)

_MMPBSA_dummycomplex.inpcrd Dummy inpcrd file generated by
_MMPBSA_complexinpcrd.in for use with imin=5 functionality in sander.
(1)

_MMPBSA_dummyreceptor.inpcrd Same as above, but for the receptor. (1)

_MMPBSA_dummyligand.inpcrd Same as above, but for the ligand. (1)

_MMPBSA_complex.pdb Dummy PDB file of the complex required to set molecule up in nab
programs

_MMPBSA_receptor.pdb Dummy PDB file of the receptor required to set molecule up in nab
programs

_MMPBSA_ligand.pdb Dummy PDB file of the ligand required to set molecule up in nab
programs

_MMPBSA_complex_nm.mdcrd.# Trajectory file(s) for each thread with snapshots used for
normal mode calculations on the complex. (1)

_MMPBSA_receptor_nm.mdcrd.# Trajectory file for each thread with snapshots used for nor-
mal mode calculations on the receptor. (1)

_MMPBSA_ligand_nm.mdcrd.# Trajectory file for each thread with snapshots used for normal
mode calculations on the ligand. (1)
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_MMPBSA_ptrajentropy.in Input file that calculates the entropy via the quasi-harmonic ap-
proximation. This file is processed by ptraj. (2)

_MMPBSA_avgcomplex.pdb PDB file containing the average positions of all complex confor-
mations processed by _MMPBSA_cenptraj.in. It is used as the reference for the
_MMPBSA_ptrajentropy.in file above. (1)

_MMPBSA_complex_entropy.out File into which the entropy results from
_MMPBSA_ptrajentropy.in analysis on the complex are dumped. (1)

_MMPBSA_receptor_entropy.out Same as above, but for the receptor. (1)

_MMPBSA_ligand_entropy.out Same as above, but for the ligand. (1)

_MMPBSA_ptraj_entropy.out Output from running ptraj using _MMPBSA_ptrajentropy.in.
(1)

_MMPBSA_complex_gb.mdout.# sander output file containing energy components of all
complex snapshots done in GB. (1)

_MMPBSA_receptor_gb.mdout.# sander output file containing energy components of all re-
ceptor snapshots done in GB. (1)

_MMPBSA_ligand_gb.mdout.# sander output file containing energy components of all ligand
snapshots done in GB. (1)

_MMPBSA_complex_pb.mdout.# sander output file containing energy components of all
complex snapshots done in PB. (1)

_MMPBSA_receptor_pb.mdout.# sander output file containing energy components of all re-
ceptor snapshots done in PB. (1)

_MMPBSA_ligand_pb.mdout.# sander output file containing energy components of all ligand
snapshots done in PB. (1)

_MMPBSA_complex_rism.out.# rism3d.snglpnt output file containing energy components of
all complex snapshots done with 3D-RISM (1)

_MMPBSA_receptor_rism.out.# rism3d.snglpnt output file containing energy components of
all receptor snapshots done with 3D-RISM (1)

_MMPBSA_ligand_rism.out.# rism3d.snglpnt output file containing energy components of all
ligand snapshots done with 3D-RISM (1)

_MMPBSA_pbsanderoutput.junk.# File containing the information dumped by sander.APBS
to STDOUT. (1)

_MMPBSA_ligand_nm.out.# Output file from mmpbsa_py_nabnmode that contains the en-
tropy data for the ligand for all snapshots. (1)
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_MMPBSA_receptor_nm.out.# Output file from mmpbsa_py_nabnmode that contains the en-
tropy data for the receptor for all snapshots. (1)

_MMPBSA_complex_nm.out.# Output file from mmpbsa_py_nabnmode that contains the en-
tropy data for the complex for all snapshots. (1)

_MMPBSA_mutant_... These files are analogs of the files that only start with _MMPBSA_
described above, but instead refer to the mutant system of alanine scanning calcu-
lations.

_MMPBSA_*out.# These files are thread-specific files. For serial simulations, only #=0 files
are created. For parallel, #=0 through NUM_PROC - 1 are created.

12.3.7 Advanced Options

The default values for the various parameters as well as the inclusion of some variables
over others in the general MMPBSA.py input file were chosen to cover the majority of all
MM/PB(GB)SA calculations that would be attempted while maintaining maximum simplic-
ity. However, there are situations in which MMPBSA.py may appear to be restrictive and
ill-equipped to address. Attempts were made to maintain the simplicity described above while
easily providing users with the ability to modify most aspects of the calculation easily and
without editing the source code.

-make-mdins This flag will create all of the mdin and input files used by sander and
nmode so that additional control can be granted to the user beyond the variables
detailed in the input file section above. The files created are _MMPBSA_gb.mdin
which controls GB calculation; _MMPBSA_pb.mdin which controls the PB calculation;
_MMPBSA_sander_nm_min.mdin which controls the sander minimization of snapshots
to be prepared for nmode calculations; and _MMPBSA_nmode.in which controls the
nmode calculation. If no input file is specified, all files above are created with default
values, and _MMPBSA_pb.mdin is created for AmberTools’s pbsa. If you wish to create
a file for sander.APBS, you must include an input file with “sander_apbs=1” specified to
generate the desired input file. Note that if an input file is specified, only those mdin files
pertinent to the calculation described therein will be created!

-use-mdins This flag will prevent MMPBSA.py from creating the input files that
control the various calculations (_MMPBSA_gb.mdin, _MMPBSA_pb.mdin,
_MMPBSA_sander_nm_min.mdin, and _MMPBSA_nmode.in). It will instead at-
tempt to use existing input files (though they must have those names above!) in their
place. In this way, the user has full control over the calculations performed, however
care must be taken. The mdin files created by MMPBSA.py have been tested and
are (generally) known to be consistent. Modifying certain variables (such as imin=5)
may prevent the script from working, so this should only be done with care. It is
recommended that users start with the existing mdin files (generated by the -make-mdins
flag above), and add and/or modify parameters from there.
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strip_mask This input variable allows users to control which atoms are stripped from the
trajectory files associated with solvated_prmtop. In general, counterions and water
molecules are stripped, and the complex is centered and imaged (so that if iwrap caused
the ligand to “jump” to the other side of the periodic box, it is replaced inside the ac-
tive site). If there is a specific metal ion that you wish to include in the calculation, you
can prevent ptraj from stripping this ion by NOT specifying it in strip_mask. Note that
strip_mask does nothing if no solvated_prmtop is provided.

QM/MMGBSA There are a lot of options for QM/MM calculations in sander, but not
all of those options were made available via options in the MMPBSA.py input
file. In order to take advantage of these other options, you’ll have to make use
of the -make-mdins and -use-mdins flags as detailed above and change the resulting
_MMPBSA_gb_qmmm_com/rec/lig.mdin files to fit your desired calculation. Addition-
ally, MMPBSA.py suffers all shortcomings of sander, one of those being that PB and
QM/MM are incompatible. Therefore, only QM/MMGBSA is a valid option right now.

12.4 Python API

The aim of the MMPBSA.py API is to provide you with direct access to the raw data pro-
duced during a MMPBSA.py calculation. By default, MMPBSA.py calculates an average, stan-
dard deviation, and standard error of the mean for all of the generated data sets, but does not
support custom analyses. The API reads an _MMPBSA_info file, from which it will determine
what kind of calculation you performed, then automatically parse the output files and load the
data into arrays.

The keep_files variable in the &general section must be set to 1 or 2 in order to keep
enough files for the API to work. It currently does NOT load decomposition data into avail-
able data structures. The topology files you used in the MMPBSA.py calculation must also be
available in the location specified in the _MMPBSA_info file.

Using the API

The main class in the API is mmpbsa_data in the API module of the MMPBSA_mods package.
By default, the MMPBSA_mods package is installed to $AMBERHOME/bin during installation. To
have access to that package in a Python script or shell, $AMBERHOME/bin must be searched
for packages and modules. This can be done in one of two ways:

1. Adding $AMBERHOME/bin to PYTHONPATH

(e.g., export PYTHONPATH=$PYTHONPATH:$AMBERHOME/bin)

2. Adding $AMBERHOME/bin to sys.path inside a Python interpreter or script prior to im-
porting anything from MMPBSA_mods, as demonstrated below

import os

import sys

sys.path.append(os.path.join(os.getenv(’AMBERHOME’), ’bin’))

369



12 MMPBSA.py

Table 12.1: List and description of calc_key dict keys that may be present in instances of the
mmpbsa_data class.

Dictionary Key (calc_key) Calculation Type
’gb’ Generalized Born Results
’pb’ Poisson-Boltzmann Results

’rism gf’ Gaussian Fluctuation 3D-RISM Results
’rism std’ Standard 3D-RISM Results
’nmode’ Normal Mode Analysis Results
’qh’ Quasi-harmonic Approximation Results

The function load_mmpbsa_info takes the name of an MMPBSA.py info file (typically
_MMPBSA_info) and returns a populated mmpbsa_data instance with all of the parsed data. An
example code snippet that creates a mmpbsa_data instance from the information in
_MMPBSA_info is shown below.

from MMPBSA_mods import API as MMPBSA_API

data = MMPBSA_API.load_mmpbsa_info(’_MMPBSA_info’)

Properties of mmpbsa_data

The mmpbsa_data class is a nested dictionary structure (mmpbsa_data is actually derived
from dict). The various attributes of mmpbsa_data are described below followed by the de-
fined operators.

Attributes

If the numpy package is installed and available, all data arrays will be numpy.ndarray
instances. Otherwise, all data arrays will be array.array instances with the ’d’ data type
specifier (for a double precision float). The data is organized in an mmpbsa_data instance in
the following manner:

mmpbsa_data_instance[calc_key][system_component][energy_term]

In this example, calc_key is a dict key that is paired to another dict
(mmpbsa_data_instance is the first-level dict, in this case). The keys of these second-level
dict instances (system_component) pair to another dict. The keys of these inner-most
(third-level) dict instances are paired with the data arrays for that energy term. The various
dictionary keys are listed below for each level. If alanine scanning was performed, the
mmpbsa_data_instance also has a “mutant” attribute that contains the same dictionary
structure as mmpbsa_data does for the normal system. The only difference is that the data is
accessed as follows:

mmpbsa_data_instance.mutant[calc_key][system_component][energy_term]
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Table 12.2: List and description of system_component keys that may be present in instances
of the mmpbsa_data class.

Dictionary Key (system_component) Description
’complex’ Data sets for the complex. (Stability & Binding)
’receptor’ Data sets for the receptor. (Binding only)
’ligand’ Data sets for the ligand. (Binding only)

Table 12.3: List and description of energy_term keys that may be present in instances of the
mmpbsa_data class. The allowed values of energy_term depend on the value of
calc_key above in Table 12.1. The energy_term keys are listed for each calc_key
enumerated above, accompanied by a description. The RISM keys are the same
for both ’rism gf’ and ’rism std’ although the value of ’POLAR SOLV’ and
’APOLAR SOLV’ will differ depending on the method chosen. Those keys marked
with * are specific to the CHARMM force field used through chamber. Those arrays
are all 0 for normal Amber topology files.

Description ’gb’ ’pb’ RISM

Bond energy ’BOND’ ’BOND’ ’BOND’

Angle energy ’ANGLE’ ’ANGLE’ ’ANGLE’

Dihedral Energy ’DIHED’ ’DIHED’ ’DIHED’

Urey-Bradley* ’UB’ ’UB’ —
Improper Dihedrals* ’IMP’ ’IMP’ —

Correction Map* ’CMAP’ ’CMAP’ —
1-4 van der Waals energy ’1-4 VDW’ ’1-4 VDW’ ’1-4 VDW’

1-4 Electrostatic energy ’1-4 EEL’ ’1-4 EEL’ ’1-4 EEL’

van der Waals energy ’VDWAALS’ ’VDWAALS’ ’VDWAALS’

Electrostatic energy ’EEL’ ’EEL’ ’EEL’

Polar solvation energy ’EGB’ ’EPB’ ’POLAR SOLV’

Non-polar solvation energy ’ESURF’ ’ENPOLAR’ ’APOLAR SOLV’

Total solvation free energy ’G solv’ ’G solv’ ’G solv’

Total gas phase free energy ’G gas’ ’G gas’ ’G gas’

Total energy ’TOTAL’ ’TOTAL’ ’TOTAL’

Table 12.4: Same as Table 12.3 for the entropy data.
Description ’nmode’ ’qh’

Translational entropy ’Translational’ ’Translational’

Rotational entropy ’Rotational’ ’Rotational’

Vibrational entropy ’Vibrational’ ’Vibrational’

Total entropy ’Total’ ’Total’
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Note, all keys are case-sensitive, and if a space appears in the key, it must be present in
your program. Also, if polar/non-polar decomposition is not performed for 3D-RISM, then the
’POLAR SOLV’ and ’APOLAR SOLV’ keys are replaced with the single key ’ERISM’

Defined operators

In-place addition: It extends all of the arrays that are common to both mmpbsa_data

instances. This is useful if, for instance, you run two MMPBSA.py calculations, and you use
-prefix <new_prefix> for the second simulation. Assuming that <new_prefix> is
_MMPBSA2_ for the second MMPBSA.py calculation, the following pseudo-code will generate
an mmpbsa_data instance with all of the data in concatenated arrays. The psuedo-code
assumes MMPBSA_mods.API was imported as demonstrated in Subsection 12.4.

data = MMPBSA_API.load_mmpbsa_info(’_MMPBSA_info’)

data += MMPBSA_API.load_mmpbsa_info(’_MMPBSA2_info’)

Example API Usage

In many cases, the autocorrelation function of the energy can aid in the analysis of MM/PBSA
data, since it provides a way of determining the statistical independence of your data points. For
example, 1000 correlated snapshots provide less information, and therefore less statistical cer-
tainty, than 1000 uncorrelated snapshots. The standard error of the mean calculation performed
by MMPBSA.py assumes a completely uncorrelated set of snapshots, which means that it is a
lower bound of the true standard error of the mean, and a plot of the autocorrelation function
may help determine the actual value.

The example program below will calculate the autocorrelation function of the total energy
(complex only for both the normal and alanine mutant systems) from a GB calculation and
plot the resulting code using matplotlib.

import os

import sys

# append AMBERHOME/bin to sys.path

sys.path.append(os.path.join(os.getenv(’AMBERHOME’), ’bin’))

# Now import the MMPBSA API

from MMPBSA_mods import API as MMPBSA_API

import matplotlib.pyplot as plt

import numpy as np

data = MMPBSA_API.load_mmpbsa_info(’_MMPBSA_info’)

total = data[’gb’][’complex’][’TOTAL’].copy()

data = MMPBSA_API.load_mmpbsa_info(’_MMPBSA_info’)

total_mut = data.mutant[’gb’][’complex’][’TOTAL’].copy()

# Create a second copy of the data set. The np.correlate function does not

# normalize the correlation function, so we modify total and total2 to get
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# that effect

total -= total.mean()

total /= total.std()

total2 = total.copy() / len(total)

acor = np.correlate(total, total2, ’full’)

total_mut -= total_mut.mean()

total_mut /= total_mut.std()

total2_mut = total_mut.copy() / len(total_mut)

acor_mut = np.correlate(total_mut, total2_mut, ’full’)

# Now generate the ’lag’ axis

xdata = np.arange(0, len(total))

# The acor data set is symmetric about the origin, so only accept the

# positive lag times. Graph the result

plt.plot(xdata, acor[len(acor)//2:], xdata, acor_mut[len(acor)//2:])

plt.show()

Decomposition Data

When performing decomposition analysis, the various decomp data is stored in a separate
tree of dicts referenced with the ‘decomp’ key. The key sequence is similar to the sequence
for the ‘normal’ data described above, where decomp is followed by the solvent model (GB
or PB), followed by the species (complex, receptor, or ligand), followed by the decomposition
components (total, backbone, or sidechain), followed by the residue number (or residue pair for
pairwise decomposition), finally followed by the contribution (internal, van der Waals, electro-
statics, etc.) The available keys are shown in Figure 12.1 on page 374 (and each key is described
afterwards).

Decomp Key Descriptions

gb All Generalized Born results

pb All Poisson-Boltzmann results

complex All results from the complex trajectory

receptor All results from the receptor trajectory

ligand All results from the ligand trajectory

TDC All results from the total decomposition

SDC All results from the sidechain decomposition

BDC All results from the backbone decomposition
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Figure 12.1: Tree of dict keys following the ‘decomp’ key in a mmpbsa_data instance.374
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# All data from residue number “#” in per-residue decomposition (same residue numbering
scheme as in each respective topology file)

#-## All interaction energies between residues “#” and “##” (same residue numbering scheme
as in each respective topology file)

int Internal energy contributions (see the idecomp variable description above)

vdw van der Waals energy contributions

eel Electrostatic energy contributions

pol Polar solvation free energy contributions

sas Non-polar solvation free energy contributions

tot Total free energy contributions (sum of previous 5).

375





13 mdgx: A Developmental Molecular
Simulation Engine

David S. Cerutti

The mdgx simulations package is a molecular dynamics engine with functionality that mim-
ics some of sander and pmemd, but featuring simple C code and an atom sorting routine that
simplifies the flow of information during force calculations. With the availability of pmemd and
its GPU-compatible variant for efficient, long-timescale simulations, and the extensive develop-
ment of thermodynamic integration, free energy calculations, and enhanced sampling methods
that has taken place in sander, the principal purpose of mdgx is to provide a tool for radical
redesign of the basic molecular dynamics algorithms and models. Currently, mdgx supports
modest parallel capabilities, but the limiting factor is load-balancing; the molecular dynam-
ics routines are designed for much higher parallelism. The first application of mdgx was to
demonstrate the feasibility of multiple reciprocal space meshes spanning different regions of
the simulation cell at different resolutions.[230] Future applications, discussed in more detail
later in this chapter, pertain to new charge distributions with significant numbers of off-atom
“virtual” force centers.

While it is capable of performing molecular dynamics based on standard prmtop topology,
inpcrd starting coordinates files, and input files in a format very much like the mdin files,
it should be emphasized that mdgx is really a program for experts with knowledge of classical
dynamics algorithms. There is currently no minimization algorithm in place, so mdgx cannot yet
be used as a standalone program for converting coordinates from an experiment into a trajectory.
However, mdgx does have the capability to perform dynamics in isothermal as well as isobaric
ensembles while incorporating some of the more advanced features of sander and pmemd. With
continued development, it is on a course to become a production molecular dynamics code for
general use.

13.1 Input and Output

Input command files for mdgx may be similar to the mdin format used by sander and pmemd.
One requirement of mdgx that is not found in sander is that each of the &namelist segments of
the input file must begin with the identifier of the &namelist on its own line and end with the
keyword &end on its own separate line. However, the &namelist format is not strictly enforced
in mdgx, not all sander input variables are available in mdgx, and some new input variables have
been added. All mdgx input variables can also be identified by aliases that may be lengthier than
their sander counterparts but may make the input easier for a human to parse.

All mdgx &namelists and their associated variables may be browsed by running the mdgx
program itself; running the program with no command line arguments will produce basic in-
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structions for usage and a list of command-line arguments to display each &namelist. Certain
directives to mdgx may be supplied as either part of the input file or on the command line; in
particular, the names of the topology, input coordinates, and output files may be specified in ei-
ther manner. Also, the random number generator seed and thermodynamic integration coupling
parameter λ may be specified on the command line. However, if the same variable is declared
both on the command line and in the input file, the command-line input will take precedence.
This predominance makes it possible to execute multiple related mdgx runs based on a single
input file. Units of input variables follow the sander and pmemd conventions.

The mdgx program will read standard AMBER prmtop files using its own routines and
perform basic tests of the topology to identify common problems such as omitted disulfide
bonds or “D” to “L” chirality flips in the standard amino acids; any potential problems are
reported in the mdout output diagnostics files, but do not immediately lead the program to halt.
In addition to the standard information contained in an AMBER topology file, mdgx is being
developed to also be able to read other sorts of information given certain directives in the input
command (mdin) file. As will be discussed later, mdgx is able to read auxiliary information
that modifies the topology specified by a prmtop file, adding virtual sites or changing the
nonbonded parameters of specified atoms. (These changes are not written back into the original
prmtop.)

Output files produced by mdgx follow the AMBER .crd and NetCDF formats for coordinates
and velocities. Forces on all atoms can also be printed over the course of a trajectory. Separate
suffixes may be applied to the mdout output diagnostic information, trajectory files, energy,
and restart files, as specified by the user. mdgx also has the capability to print outputs from a
single trajectory into multiple segments if the user specifies a value of the nfistep variable that
is a factor of the sander-related nstlim variable. In such a case, mdgx will print files of the
format [base name]###.[suffix], where [base name] is a base file name supplied by the user, ###
is a number of the segment beginning at zero, and [suffix] is a file extension supplied by the
user (for instance, “rst” for restart files, “out” for mdout output diagnostics). The number of
segments is determined by the ratio of nstlim to nfistep; the former indicates the total number
of dynamics steps, the latter the number of steps in each segment. At the start of dynamics
mdgx will check for the existence of complete output diagnostics and restart files (as indicated
by a special three-line ASCII mark) starting at segment 0 and continuing until a missing output
diagnostics file is encountered, even if file overwriting (the sander-related “-O” command-line
option) has been specified. (Not allowing file overwriting will only cause the program to abort
if, on a subsequent segment for which complete output diagnostics and restart files do not
exist, some other output such as a trajectory coordinates file does exist.) The intention of this
elaborate scheme is to permit one long run to be broken into many segments without halting
the program, and to provide an internal means of checkpointing a run if the program must be
restarted. Because the changes to the output format are potentially dramatic, the nfistep variable
must be set deliberately; any value that is not a factor of nstlim will result in nfistep being set to
zero and outputs will be printed to files named [base name].[suffix].

The mdgx program also provides its own output format for force diagnostics. In sander,
information relating the bond, angle, torsion, and nonbonded direct and reciprocal space forces
is only available by running in “debugging” mode as specified by the &debugf namelist block.
In mdgx, such output is available by setting the sander-related imin variable to 2; the output is
produced in ASCII format with numerous comments to make the results comprehensible to a
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human.

13.2 Installation

mdgx is installed as part of the AmberTools package. The program relies on the FFTW 3.3
and NetCDF libraries already distributed as part of AmberTools.

13.3 Special Algorithmic Features of mdgx

While it does not currently support the breadth of molecular dynamics algorithms offered
by the pmemd or sander programs, mdgx does have capabilities that set it apart from other
simulators in the AMBER software package.

First, mdgx can perform molecular simulations at constant volume with the “Multi-Level
Ewald” implementation of Particle Mesh Ewald [230] electrostatics. This algorithm breaks the
one reciprocal space mesh used in most Particle:Particle / Particle:Mesh techniques into multi-
ple slabs spanning subdomains of the simulations cell and a much coarser variant of the global
mesh for reuniting the subdomains. The intention of this algorithm is to provide a means for
distributing and mitigating the communications required for solving the system’s long-ranged
electrostatics. mdgx also provides an implementation of standard Smooth Particle Mesh Ewald
electrostatics [231], with the added generality of independent interpolation orders in each of
the three mesh dimensions. These features may be accessed through control variables in the
&ewald namelist.

Another feature of mdgx, ported to pmemd in Amber13, is the Monte-Carlo barostat, avail-
able by specifying ntp > 0 and barostat = 2. This remarkably simple barostat makes vol-
ume moves, rescales system coordinates to match the new unit cell dimensions, and uses the
Metropolis criterion to compare the energies of the original and trial configurations:

χacc = min
[

1,
(

V new

V old

)N
exp
(
− 1

kT

(
Unew−Uold +P

(
V new−V old

))) ]
In the above formula, the probability of accepting a move χ is determined by the product

of two factors. The first factor is the ratio of volumes V in the trial (new) and initial (old)
configurations taken to the power of the number of particles in the system N. (Note that in
the presence of rigid constraints, each rigidly constrained group of atoms counts as only one
particle.) The second factor is a Boltzmann-weighted probability based on the sum of the
potential energy of the system U and the pressure-volume work that the system does on its
surroundings. In the above formula, the pressure P and temperature T are arbitrary parameters
of the barostat: specifically, P is the external pressure (pres0 in sander input), and T is set
to match the external temperature of the thermostat in use. In this barostat, the system kinetic
energy does not directly play a role in determining the system volume. However, in a condensed
system of real particles the kinetic and potential energies quickly exchange, and even in the case
of an ideal gas the two factors balance out such that the familiar ideal gas law is recovered so
long as the temperature T given to the barostat and the actual temperature of the gas particles
match. Currently, this barostat is set up to rescale the volume isotropically, but in principle
anisotropic volume changes and even alterations of the unit cell angles are feasible.
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A principal advantage of the Monte-Carlo barostat is that no computation of the virial is nec-
essary: the barostat can be applied at whatever frequency the user requires, and will maintain
the proper system volume so long as moves are accepted at a frequency much greater than the
rate at which the system might spontaneously move to configurations which change its equi-
librium volume under the applied external pressure P. The default of attempting one barostat
move by increasing or decreasing the system volume by up to one-tenth of a percent of its initial
volume appears to result in a good acceptance ratio. The default of attempting the moves every
100 steps of dynamics, about every 100 to 200 femtoseconds, should be sufficient to accom-
modate most processes of interest and produce sound equilibrium statistics on the timescale of
nanoseconds. Because the moves only require recalculation of the energy (which is done with
merely a few additions and multiplications in special cases), the Monte-Carlo barostat may also
have a speed advantage over the methods currently implemented in sander and pmemd.

13.4 Customizable Virtual Site Support in mdgx

It is not completely feasible to perform molecular dynamics with massless particles. How-
ever, for many useful cases in which the locations of massless particles are determined by the
locations of two or more atoms with mass, it is possible to perform dynamics by using the chain
rule to transfer forces from the “virtual sites” to the massive particles. These constructions,
enumerated below, provide a means for breaking out of the “one atom, one site” paradigm that
has dominated classical molecular dynamics, but the prmtop format utilized by the sander
and pmemd programs does not always provide a straightforward means of expressing the rela-
tionships between virtual sites and their parent (or “frame”) atoms and the sander and pmemd
programs only support the most widely used cases of virtual sites (e.g. TIP4P and TIP5P water).

The mdgx program provides a means for adding any number of virtual sites to an existing
force field, with custom charges and even Lennard-Jones properties. The only limitations with
the virtual sites are that no new bonded terms may be added, that the virtual sites carry zero
mass, and that each virtual site location be determined by two or three frame atoms on the
same residue which do have mass. The constructions below follow those outlined in the GRO-
MACS manual; a four-point frame construction devised by the GROMACS team is not yet
implemented, but a “zeroth” frame type is available in mdgx which allows, without changing
the prmtop, run-time modification of existing atomic non-bonded parameters.

In the Fig. 13.1, the &rule namelist variables for specifying each virtual site constructor
are superimposed on atoms, vectors, and angles. In Style 1, the virtual site lies along the line
determined by two atoms; v12 denotes the fraction of the distance between the two atoms at
which to place the virtual site. In Style 2, the virtual site lies in the plane determined by three
atoms at a point determined by a combination of the displacements between atoms 1 and 2
and atoms 2 and 3. Virtual sites of Styles 1 and 2 are located by linear combinations of the
positions of their frame atoms. In Style 3, the virtual site is located along the line described
by frame atom 1 and a point between frame atoms 2 and 3 (v23 denoting the fraction of this
distance), at a fixed distance v1e from frame atom 1. Style 4, perhaps the most mathematically
challenging frame type to define but very useful and intuitively comprehensible, places a virtual
site at a fixed distance v1e from frame atom 1 such that the angle illustrated has the value theta
(specified in radians in the &rule namelist). The virtual site remains in the plane of the frame
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Figure 13.1: Frame styles in mdgx.

atoms, and frame atom 3, which must not be colinear with the other frame atoms, orients the
sign of theta. Virtual sites of Style 5 are defined as sites of Style 2, but projected normal to the
plane according to a multiple v12x13 of the cross product of the vectors between frame atoms
1 and 2 and frame atoms 1 and 3. Note that virtual sites of Styles 1, 2, and 5 will stretch with
their frames, whereas 3 and 4 will not. The stretching will be minor if the frame atoms are
bonded as shown in the figure. Due to the manner in which virtual sites are positioned in mdgx,
frame atoms 2 and 3, and the virtual site when placed, must lie within half the van-der Waals
non-bonded cutoff of frame atom 1. This should seldom if ever be a problem. A complete list
of &rule namelist variables follows in the table.
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Name Alias Description
frame? FrameAtom? When ? is 1, 2, or 3, this specifies the frame atoms needed for

virtual site construction
epname ExtraPoint The name of the virtual site

atom AtomName The name of the virtual site (alternate specifications)
style FrameStyle The frame style to use (see descriptions in the preceding

figure); acceptable values are 0 through 5
excl? Exclude? The virtual site is definitively 1:1 bound to frame atom 1 and

thereby inherits all 1:2, 1:3, and 1:4 neighbors of frame atom 1,
but if ? is 2 or 3 then the virtual site will also be considered 1:1
to frame atoms 2 or 3 and inherit their bonded neighbors as
well. This will not affect the 1:2, 1:3, and 1:4 neighbor lists of
the frame atoms themselves.

v12 Vector12

Defined according to frame type; see preceding paragraph and
illustration.

v1e Vector1E
v13 Vector13

theta Theta
v23 Vector23

v12x13 Vector12x13
q Charge Charge of the virtual site

sig Sigma Lennard-Jones σ and ε parameters of the virtual site
eps Epsilon

residue ResidueName The residue to which extra points will be added. Because it is
specified according to the four-character name, there is some
possibility for ambiguity as terminal residues often have the
same names as residues in the middle of a chain. Therefore, in
order to add a virtual site to an the amino terminus of
N-terminal alanine but skip over alanines within a polypeptide,
the N-terminal alanine would have to be given a new name
within the prmtop.

The purpose of the zeroth frame type is to round out a temporary solution to the problem
of testing virtual sites configurations in Amber; ultimately, the best solution is to incorporate
all virtual site constructions into LEaP and expand the prmtop format to accommodate them.
However, for experimentation and validation the mdgx approach of adding particles to an exist-
ing topology is straightforward, faster than creating new topologies starting with antechamber,
and will remain available as part of the program for the foreseeable future. It is possible in
mdgx (noting that the rigid geometry of the massive atoms is the same throughout all TIP water
models) to simulate TIP4P[61] or TIP5P[61] water starting from a prmtop containing TIP3P
water, although it is more convenient and perhaps marginally faster to simulate beginning with
a prmtop specifying the more complex water model.

Virtual sites added in this manner follow the neighbor conventions described in the accompa-
nying AMBER manual: virtual sites are counted as “1:1” neighbors of their first parent atoms
and then inherit all 1:2 (bond), 1:3 (angle), and 1:4 nonbonded neighbors of the first parent
atom. It is also possible to endow virtual sites with neighbors of other parent atoms, effec-
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tively declaring the virtual sites to be 1:1 neighbors of more than one atom. The neighbor list
updates implied by adding virtual sites do not get applied retroactively, however, so multiple
frame atoms do not become 1:1 neighbors of each other. Because of the exclusions implied by
different frame constructions, care should be taken when defining parent atoms. For instance, in
the chlorinated ethane derivative below virtual sites of frame type 1 (v12 = −0.3, with chlorines
being frame atom 1 and the bonded carbons being frame atom 2) can be shown to significantly
improve the electrostatic fit to quantum-mechanical MP2 calculations.

In principle, the frame atom 1 may be defined as the carbon, with the chlorine (which is
actually closest to the virtual site) merely defining the direction of the virtual site projection.
However, this construction omits interactions between virtual sites on opposite ends of the
molecule, and as a result the torsional conformations of the molecule are drastically altered (so
much so that the hydration free energy in explicit solvent simulations changes by more than
3 kcal/mol). If the chlorines themselves are made frame atom 1 in each virtual site frame, the
virtual sites become 1:4 neighbors to one another and interact by a slightly screened electrostatic
potential. The effects on the torsional distribution and resulting hydration free energy are then
much more modest. This trichloroethane represents an extreme case, but more subtle examples
abound. In general, virtual sites can change the charge distribution of a molecule to roughly the
same degree that refitting an atom-centered charge model to new quantum data does. Ideally,
torsional parameters would be refitted in all cases to accommodate the new electrostatic model.

13.5 Restrained Electrostatic Potential Fitting in mdgx

Because of the extensive capabilities for adding virtual sites, mdgx also contains an internal
means of assigning charges to them. The Restrained Electrostatic Potential (RESP) method-
ology is the basis for charge assignment based on quantum-mechanical electrostatic potential
data, but the details differ somewhat from the implementation in antechamber.

The basic concept of fitting charges to reproduce the electrostatic potential of a molecule, by
finding the solution with least squared error in the presence of restraints, is carried over from
the original Kollmann RESP. However, instead of Langrangian constraints, equivalent charges
are unified as single variables in the fit, and penalty functions are added to the fitting matrix
to enforce total charge constraints. Where mdgx excels is in the control it gives the user over
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what fitting data will be used. Rather than relying on a quantum-chemistry package to select
a particular surface around a molecule, mdgx will read the electrostatic potential due to that
molecule on a regular grid and select points from that grid based on a solvent-accessible region
determined by the actual Lennard-Jones parameters of the model. Because most solvent models
make use of hydrogen atoms with modest or non-existent steric properties, mdgx also considers
points which may not be accessible to the solvent probe but might be accessible to a hydrogen
atom connected to that probe. mdgx will read a prmtop describing the system and also, if
required, a Virtual Sites rule file, so that partial charges may be fitted for any virtual sites that
the user wishes to add. Once fitting is complete, mdgx can return a new Virtual Sites rule file
that will apply the fitted charges to the original prmtop in future simulations.

Fitting is called by its own separate &fit namelist, and triggers a distinct run mode in the
sense that the program will terminate after the fit is complete. The options available in the &fit
namelist include:

Name Alias Description
phi# QMPhi# Names of additional electrostatic potentials to use in fitting.

The files are read as formatted Gaussian cubegen output,
containing electrostatic potentials sampled on a regular grid
and a list of molecular coordinates which is expected to match
the atoms found in the prmtop.

auxphi# AuxPhi# An auxiliary electrostatic potential to use in fitting, also in
formatted Gaussian cubegen output, corresponding to phi#.
The effect of specifying an auxiliary potential is to have a
single set of charges fit to reproduce the average of the two
potentials. This feature supports development of fixed-charge
force fields if one posits that the correct charges of a
non-polarizable model would sit halfway between the charges
of a fully polarized molecule in some solvent reaction field and
the charges of an unpolarized molecule in the gas phase.

eprules EPRules If specified, mdgx will output all fitted charges in the form of a
Virtual Sites rule file, which can be given as input to
subsequent simulations to modify the original prmtop and
apply the fitted charge model.

conf ConfFile If specified, mdgx will output the first molecular conformation,
complete with any added virtual sites, in PDB format for
inspection. This is useful for understanding exactly what
model is being fitted.

qtot TotalQ The total charge constraint in units of the proton charge; the
sum of all fitted charges is required to equal this value. Default
0.0.

minq# MinimizeQ# Restrain the charges of a group of atoms to zero by the weight
given in minqwt. The groups are specified in ambmask format.

equalq# EqualizeQ# Restrain the charges of a group of atoms to have the same
values. Groups are specified in ambmask format.
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Name Alias Description
minqwt MinQWeight Weight used for restraining values of charges to zero; as more

and more fitting data is included (either through a higher
sampling density of the electrostatic potential due to each
molecular conformation or additional molecular
conformations) higher values of minqwt may be needed to keep
the fitted charges small. However, with more data the need to
restrain charges may diminish as well.

phiwt# PhiWeight# The weights assigned to electrostatic potentials specified by
phi#. This modulates the importance of one molecular
configuration, and the electrostatic potential it implies, in the
fit. Default 1.0 for all files phi#.

nfpt FitPoints The number of fitting points to select from each electrostatic
potential grid. The points nearest the molecule, which satisfy
the limits set by the solvent probe and point-to-point distances
as defined below, will be selected for the fit. Default 1000.

psig ProbeSig The Lennard-Jones σ parameter of the solvent probe. Default
3.16435 (TIP4P oxygen).

peps ProbeEps The Lennard-Jones ε parameter of the solvent probe. Default
0.16275 (TIP4P oxygen).

parm ProbeArm The probe arm; points on the electrostatic potential grid that
would be inaccessible to the solvent probe may still be
included in the fit if they are within the probe arm’s reach.
Default 0.9572Å (TIP oxygen-hydrogen bond distance).

pnrg StericLimit The maximum Lennard-Jones energy of the solvent probe at
which a point will qualify for inclusion in the fit. Default 3.0
kcal/mol.

flim Proximity The minimum proximity of any two points to be included in
the fit. Default 0.4Å.

hbin HistogramBin If hist is specified, mdgx will print a histogram reporting the
number of fitting points falling within any particular distance
of some atom of the molecule. This parameter controls the
discretization of the histogram.

maxmem MaxMemory Because fitting matrices can become very large in some cases
(in particular, those involving multiple systems with correlated
partial charges), mdgx offers this parameter as a safeguard
against creating a matrix that may inadvertently take up too
much memory. Values for this argument may be integers, or
integers followed immediately (no spaces) with terms such as
“GB,” “Mb,” or “kB” (case-insensitive) for giga/mega/kilo
bytes. Default 1GB.

verbose Verbose Unless set to zero by the user, mdgx will print periodic updates
and record milestones from the fitting run in terminal output.

Many options in the &fit namelist may be specified with numbers, denoted by # in the table
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above. The # represents any number from 1 to 256, but declining to state a number simply
implies the first member of the series. Skips in the series are forbidden. An example of a &fit
namelist is given below. In this particular problem, ECl2 and ECl3 were the names of virtual
sites not in the original topology file but specified by a Virtual Sites rule file.

&fit

QMPhi1 Conf12/pcm12.cube,

QMPhi2 Conf13/pcm13.cube,

QMPhi3 Conf14/pcm14.cube,

pnrg 2.0,

nfpt 15000,

minqwt 175.0,

EqualizeQ1 ’@H1,H2’

EqualizeQ2 ’@Cl2,Cl3’

EqualizeQ3 ’@ECl2,ECl3’

MinimizeQ = ’@E*’

EPRules frag.xpt

ConfFile f6xp.pdb

&end

Virtual site constructions have strong support in mdgx to rapidly translate between an imagined
model and a practical simulation.

13.6 Bonded Term Fitting in mdgx

Having the capabilities to read multiple topologies and coordinate sets, compute energies, and
to optimize parameter sets made a bonded parameter fitting module a natural extension of mdgx.
Like the RESP fitting module, the bond parameter fitting routines can read multiple systems and
conformations and determine the best overall values for harmonic bond, harmonic angle, and
torsion Fourier series appearing in multiple contexts. The while the RESP module is limited to
512 systems and conformations and makes its fitting matrices based on thousands of data points
from each one, there is no practical limit to the number of systems and conformations that the
bond parameter fitting module can muster, although it seeks only to make the total internal
energy of each conformation match a single target value (presumably obtained from quantum
mechanics). This duplicates some functionality in the paramfit program described in Chapter 3,
but with the added capability of correlating parameters that appear in many different molecules.
Results are written to several different files: the forcedump file (-d option on the command
line or in the &files namelist) stores fitted parameters in the standard Amber parameter file
format (i.e. parm99.dat), mdout provides extensive analysis of the fit and sampling of each
fitted parameter in the data set, and then creates a complete report of the correlations, system
by system, if requested.

Bonded term fitting is called by including the &param namelist in an inpue file. If detected,
this namelist will send mdgx into a distinct run mode and then have the program terminate. The
options available in the &param namelist include:
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Name Alias Description
sys System A fitting data point. This keyword must be followed by three

items: the name of a topology file, the name of a corresponding
coordinate file, and the energy of this system in the stated
conformation.

bonds FitBonds Requests a linear least-squares fit for bond stiffnesses in the
system.

angles FitAngles Requests a linear least-squares fit for angle stiffnesses in the
system.

torsions FitTorsions Requests a linear least-squares fit for torsion stiffnesses in the
system.

fith FitH Request that a specific torsion parameter be included in linear
least-squares fitting.

fitscnb FitLJ14 Requests a linear least-squares fit for Lennard-Jones 1:4
scaling factors.

fitscee FitEE14 Requests a linear least-squares fit for electrostatic 1:4 scaling
factors.

repall ReportAll Flag to activate output of all parameters encountered during the
fitting procedure, including those that were not adjusted by the
fit but nonetheless contributed to the molecular mechanics
energies. Default is 1 (write all parameters to the Amber
parameter file), appropriate for creating a parm##.dat file to
specify a new force field. Set to 0 to create files more akin to
frcmod files.

verbose ShowProgress Alert the user as to the progress of the fitting procedure. Runs
involving thousands of molecular conformations and hundreds
of parameters can generally be completed in a few minutes.
Default is 1 (ON). Set to zero to suppress output.

elimsig ElimOutliers Flag to activate removal of molecular conformations whose
energies are far outside the norm for other conformations of
the same system. Default 0 (do not remove outliers).

ctol ConfTol Tolerance for deviation from the mean energy value, specified
as a function of the standard deviation for all conformations of
the same system. Conformations of a system which exceed this
threshold will be reported if verbose is set to 1, and removed
from consideration if elimsig is set to 1. Default 5.0 sigmas.

eunits EnergyUnits Units of the target energy values. Default Hartrees. Acceptable
values include Hartree/Atomic, kJ/kilojoules, and j/joules.
Case insensitive.

accrep AccReport Accuracy report on the fit. Contains extensive analysis on the
resulting parameters, in MatLab format.

title ParmTitle Parameter file title. This is not a file name, but rathr the title
appearing on the first line of the printed file named by the -d
command line / &files namelist argument.

scnb Vdw14Fac Sets a universal 1:4 scaling factor for van-der Waals
interactions. Use this input to change the scaling on all systems
simultaneously.

scee Elec14Fac Sets a universal 1:4 scaling factor for electrostatic interactions.
Use this input to change the scaling on all systems
simultaneously.

brst BondRest General value for harmonic restraints on bond stiffness
constants.

arst AngleRest General value for harmonic restraints on angle stiffness
constants.

hrst DihedralRest General value for harmonic restraints on torsion stiffness
constants.
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13.7 Thermodynamic Integration

A rudimentary implementation of thermodynamic integration is available in mdgx. This fa-
cility is not fully developed, but does permit users to test changes in hydration free energy or
other consequences of new charge models, such as those that include virtual sites. The only sig-
nificant similarity to sander is that there are two trajectories propagated simultaneously using a
mixture of the forces obtained at each endpoint; otherwise the implementation is very different.
In mdgx, both trajectories are propagated by the same processor, so it is feasible to run TI in
serial mode, without a parallel build. A single input file carries all the necessary information for
a thermodynamic integration run, including the names of the topologies describing the initial
and final states of the system and the path for changing between them. A single output file
contains all the relevant information concerning the energies of the system at each endpoint and
the derivative of the potential with respect to the coupling parameter λ .

Parameters specific for thermodynamic integration in mdgx include:
Name Alias Description

icfe RunTI Flag to turn on thermodynamic integration (default 0, set to 1
to activate)

klambda MixOrder The exponent on terms involving the coupling parameter λ

(see the AMBER manual; default 1)
clambda MixFactor The value of the coupling parameter λ (default 0.0)
nsynch SynchTI Frequency at which to explicitly synchronize the two

trajectories. In principle, this should never be necessary but to
prevent some corner case from occurring the nsynch is set to
1000 steps by default. A brief report of activity required to
synchronize coordinates appears in the output file every time
this routine is called.

The mdgx program can accept up to two topologies, for the initial and final states of the sys-
tem. The topologies are specified by the argument “-p#” on the command line or the arguments
“Topology#” or “-p#” in the mdin input file, where # is blank, 1, or 2. A blank value of # corre-
sponds to 1. Different Virtual Site rules files may be specified for each topology with the “-xpt#”
option on the command line and the “-xpt#” or “EPRules#” options in the mdin file. Assigning
the same topology file to both -p1 and -p2 parameters but assigning a Virtual Sites rule file to
one of them is a way to test the energetic consequences of changing the charge model found in
some standard force field to one that includes new virtual sites.

Thermodynamic integration routines in mdgx can handle topologies of different numbers of
atoms. Unique atoms are each endpoint are considered points with mass but no other proper-
ties at the other endpoint. This functionality is not yet mature, so “experts only!” With the
future addition of soft-core repulsive potentials for smooth growth and removal of atoms, this
functionality will become more robust and accessible to end users.

13.8 Future Directions and Goals of the mdgx Project

While it does draw on adaptations of some code found in the sander program, mdgx is not
a re-implementation of a subset of sander’s functionality. Many of the algorithms used by
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mdgx differ from those used by sander and pmemd, including the velocity version of the Verlet
integrator, the domain decomposition for nonbonded interactions, and an atomic, as opposed to
a molecular, virial calculation (if the virial is computed at all). This independence of the mdgx
program may create some difficulties when trying to compare mdgx results from simulations
to sander and pmemd, but efforts are being made to unify the input and output conventions
of each program. The simple C implementation in mdgx should be adaptable and expandable,
and the nexus of capabilities for reading topologies, computing forces and energies, executing
dynamics, and fitting parameters make the program a useful tool for testing and comparing new
algorithms.

With this release, mdgx offers parallel scaling to 8 or more CPUs, for a roughly five- to
six-fold speed advantage over its serial implementation. The current project goal is to scale
efficiently to 64 processors, to reach a level of parallelism that is sufficient for scientific inquiry
on modern computational physics problems. The higher parallelism is intended to come with
support for easily expanding the attributes of atoms, to create an excellent tool for performing
new types of simulations.
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14.1 ambpdb

NAME ambpdb - convert amber-format coordinate files to pdb format

SYNOPSIS

ambpdb [ -p prmtop-file ][ -tit title ] [ -pqr|-bnd|-atm|-mol2]
[ -aatm ] [-bres ] [-noter] [-ext] [-offset #] [-bin] [-first]

ambpdb is a filter to take a coordinate "restart" file from an AMBER dynamics or minimization
run (on STDIN) and prepare a pdb-format file (on STDOUT). The program assumes that a
prmtop file is available, from which it gets atom and residue names.

OPTIONS

-help Print a usage summary to the screen.

-tit The title, if given, will be output as a REMARK at the top of the file. It should be
protected by quotes or double quotes if it contains spaces or special characters.

-pqr If -pqr is set, output will be in the format needed for the electrostatics programs
that need charge and radius information.

-atm creates files used by Mike Connolly’s surface area/volume programs.

-bnd creates a file that lists the bonds in the molecule, one per line.

-mol2 creates a TRIPOS mol2 file with all of the residues and bond information present
in the topology file.

-aatm This switch controls whether the output atom names follow Amber or Brookhaven
(PDB) formats. With the default (when this switch is not set), atom names will
be placed into four columns following the rules used by the Protein Data Base in
Version 3.

-bin If -bin is set, an unformatted (binary) "restart" file is read instead of a formatted
one (default). Please note that no detection of the byte ordering happens, so binary
files should be read on the machine they were created on.

391



14 Miscellaneous utilities

-bres If -bres (Brookhaven-residue-names) is not set (the default), Amber-specific atom
names (like CYX, HIE, RG5, etc.) will be kept in the pdb file; otherwise, these will
be converted to PDB-standard names (CYS, HIS, G, in the above example). Note
that setting -bres creates a naming ambiguity between protonated and unprotonated
forms of amino acids.

If you plan to re-read the pdb file back into Amber programs, you should use the
default behavior; for programs that demand stricter conformance to Brookhaven
standards, set -bres.

-first If -first is set, a pdb file augmented by additional information about hydrogen
bonds, salt bridges, and hydrophobic tethers is generated, which can serve as in-
put to the stand alone version of the FIRST software by D. J. Jacobs, L. A. Kuhn,
and M. F. Thorpe to analyze the rigidity / flexibility of protein and nucleic acid
structures.[232, 233] The criteria to include hydrophobic tethers differ for pro-
tein and nucleic acid structures. Note that currently not all modified RNA nucleo-
sides are explicitly considered and that DNA structures are treated according to a
parametrization derived for RNA structures. Details about the RNA parametriza-
tion can be found in ref.[234] .

-noter If -noter is set, the output PDB file not include TER cards between molecules.
Otherwise, TER cards will be added whenever there is not bond between adja-
cent residues. Note that this means there will be a TER card between each water
molecule, for example, unless -noter is set. The PDB is idiosyncratic about TER
cards: they are generally present between separate protein chains, but generally not
present between cofactors or solvent molecules. This behavior is not mimicked by
ambpdb.

-ext Use the “extended” pdb information in the prmtop file to recover the chain IDs and
residue numbers that were present in the original pdb file used to make the prmtop
file.

-offset If a number is given here, it will be added to all residue numbers in the output
pdb file. This is useful if you want the first residue (which is always "1" in an
Amber prmtop file, to be a larger number, (say to more closely match a file from
Brookhaven, where initial residues may be missing). Note that the number you
provide is one less than what you want the first residue to have.

Residue numbers greater than 9999 will not "fit" into the Brookhaven format;
ambpdb actually prints mod(resno,10000); that is, after 9999, the residue number
re-cycles to 0.

FILES Assumes that a prmtop file (with that name, or the one given in the −p option) exists
in the current directory; reads AMBER coordinates from STDIN, and writes pdb-file to
STDOUT.

BUGS Inevitably, various niceties of the Brookhaven format are not as well supported as they
should be. The protonate program can be used to fix up hydrogen atom names, but that
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functionality should really be integrated here. There is no good solution to the PDB
problem of using the same residue name for different chemical species; depending on
how the output file is to be used, the two options supported (setting or not setting -bres)
may or may not suffice. Radii used for the -pqr option are hardwired into the code,
requiring a recompilation if they are to be changed. Atom name output may be incorrect
for atoms with two-character atomic symbols, like calcium or iron. The -offset flag is
a very limited start toward more flexible handling of residue numbers; in the future (we
hope!) Amber prmtop files will keep track of the "original" residue identifiers from input
pdb files, so that this information would be available on output.

14.2 reduce

Reduce is a program for adding hydrogens to a Protein DataBank (PDB) molecular structure
file. It was developed by J. Michael Word at Duke University in the lab of David and Jane
Richardson. Reduce is described in: Word, et. al. (1999) Asparagine and Glutamine: Using
Hydrogen Atom Contacts in the Choice of Side-chain Amide Orientation, J. Mol. Biol. 285,
1733-1747.

Both proteins and nucleic acids can have hydrogens added. HET groups can also be pro-
cessed as long as the atom connectivity is provided. A slightly modified version of the con-
nectivity table provided by the PDB is included. The latest version of reduce is available at
http://kinemage.biochem.duke.edu/. The version bundled with AmberTools 1.4 is re-
duce.3.14.080821. See the files in $AMBERHOME/AmberTools/src/reduce for more informa-
tion. The information below is taken from the README.usingReduce.txt file.

14.2.1 Running reduce

In most circumstances, the recommended command when using reduce to add hydrogens to
a PDB file and standardize the bond lengths of existing hydrogens is

reduce -build coordfile.pdb > coordfileH.pdb

which includes the optimization of adjustable groups (OH, SH, NH3+, Met-CH3, and Asn, Gln
and His sidechain orientation). When speed is important, the -build option can be dropped;
hydrogens will still be added, but not His side-chain NH hydrogens, and side-chains will not be
flipped. For even greater speed, but even less accuracy, adding -nooh and -noadj will skip the
OH and SH hydrogens and eliminate optimization altogether. Input is from the specified PDB
format coordinate file and the new, updated PDB coordinates are written to "standard output",
here redirected to a file with the ’>’ symbol.

Disulfides, covalent modifications, and connection of the ribose-phosphate nucleic acid back-
bone, are recognized and any hydrogens eliminated by bonding are skipped. When an amino
acid main-chain nitrogen is not connected to the preceding residue or some other group, reduce
treats it as the N-terminus and constructs an NH3+ only if the residue number is less than or
equal to an adjustable limit (1, by default). Otherwise, it considers the residue to be the observ-
able beginning of an actually-connected fragment and does not protonate the nitrogen. Reduce
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does not protonate carboxylates (including the C-terminus) because it does not specifically con-
sider pH, instead modeling a neutral environment.

Hydrogens are positioned with respect to the covalently bonded neighbors and these are
identified by name. Nonstandard atom names are the primary cause of missing or misplaced
hydrogens. If reduce tries to process a file which contains hydrogens with nonstandard names,
the existing hydrogens may not be recognized and may interfere with the generation of new
hydrogens. The solution may be to remove existing hydrogens before further processing.

Hydrogens can be removed from a pdb format file with reduce.

reduce -trim 1abcH > 1abc

This can be used, for example, to update the orientation of Asn/Gln/His side chains where the
H atoms are not wanted; first build the hydrogens and then trim them back out. Trimming
can occasionally be fooled if a hydrogen has been given a non-standard name. The most com-
mon example of this comes from left-justified atom names: gamma hydrogens masquerade as
mercury atoms! In this case, manual editing may be required.

14.2.2 General input flags

The following brief description of the command line flags is displayed with the -h flag:

$ reduce -h

reduce: version 2.20 6/03/03, Copyright 1997-2003, J. Michael Word

arguments: [-flags] filename or -

Adds hydrogens to a PDB format file and writes to standard output.

(note: By default, HIS sidechain NH protons are not added. See -BUILD)

Flags:

-Trim remove (rather than add) hydrogens

-NOOH remove hydrogens on OH and SH groups

-OH add hydrogens on OH and SH groups (default)

-HIS create NH hydrogens on HIS rings

-FLIPs allow complete ASN, GLN and HIS sidechains to flip

(usually used with -HIS)

-NOHETh do not attempt to add NH proton on Het groups

-ROTNH3 allow lysine NH3 to rotate (default)

-NOROTNH3 do not allow lysine NH3 to rotate

-ROTEXist allow existing rotatable groups (OH, SH, Met-CH3) to rotate

-ROTEXOH allow existing OH & SH groups to rotate

-ALLMEthyls allow all methyl groups to rotate

-ONLYA only adjust ’A’ conformations (default)

-ALLALT process adjustments for all conformations

-NOROTMET do not rotate methionine methyl groups

-NOADJust do not process any rot or flip adjustments

-BUILD add H, including His sc NH, then rotate and flip groups

(except for pre-existing methionine methyl hydrogens)

(same as: -OH -ROTEXOH -HIS -FLIP)
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-Keep keep bond lengths as found

-NBonds# remove dots if cause within n bonds (default=3)

-Model# which model to process (default=1)

-Nterm# max number of nterm residue (default=1)

-DENSity#.# dot density (in dots/A^2) for VDW calculations (Real)

-RADius#.# probe radius (in A) for VDW calculations (Real, default=0)

-OCCcutoff#.# occupancy cutoff for adjustments (default=0.01)

-H2OOCCcutoff#.# occupancy cutoff for water atoms (default=0.66)

-H2OBcutoff# B-factor cutoff for water atoms (Integer, default=40)

-PENalty#.# fraction of std. bias towards original orientation

-HBREGcutoff#.# over this gap regular HBonds bump (default=0.6)

-HBCHargedcut#.# over this gap charged HBonds bump (default=0.8)

-BADBumpcut#.# at this gap a bump is ’bad’ (default=0.4)

-METALBump#.# H ’bumps’ metals at radius plus this (default=0.865)

-NONMETALBump#.# ’bumps’ nonmetal at radius plus this (default=0.125)

-SEGIDmap "seg,c..." assign chainID based on segment identifier field

-Xplor use Xplor conventions for naming polar hydrogens

-NOCon drop conect records

-LIMIT# max num iter. for exhaustive search (default=100000)

-NOTICKs do not display the set orientation ticker during processing

-SHOWSCore display scores for each orientation considered during proce

-FIX "filename" if given, file specifies orientations for adjustable groups

-DB "filename" file to search for het info

note: can also redirect with unix environment variable: REDUCE_HET_DICT

-Quiet do not write extra info to the console

-REFerence display citation reference

-Help more extensive description of command line arguments

14.2.3 Fixing an orientation

At times it is useful to control the flip state or rotation angle of an adjustable group when
adding hydrogens, either because the correct orientation has already been established, allowing
the optimization time to be reduced, or because a non-optimal orientation is sought.

One of the command line flags (-fix myfile.txt) takes a file containing information about
which conformation to set for one or more adjustable groups. The colon delimited format is
similar to the orientation data that reduce prints in the header file

action:residueID:comment

(one line for each group to be fixed) and because spacing matters in the residue identifier string,
the easiest way to produce this file is to copy and edit USER MOD records from reduce output.
The action can be one of three kinds, depending on residue type: O to leave in the original
orientation, F to flip the orientation, and R# to rotate a dihedral to an angle of #deg. Using
either O or F with His sidechains allows the protonation state to vary; to specify a particular
orientation and protonation state use F# where # is the number of the state (1, 2 or 3 for the

395



14 Miscellaneous utilities

original orientation with H (1) only on NE2, (2) only on ND1, or (3) doubly protonated; 4-6 for
the corresponding three flipped states).

14.2.4 Cliques

The current version of reduce uses brute-force enumeration to optimize the conformations
of adjustable groups. If a ’clique’ of adjustable groups is too large (> ~7) this sort of search
technique is inadequate–the enumeration will be abandoned and these groups will be left in
their original conformations. The cuttoff point is based on the total number of permutations,
which the user can control with the -limit# option. Although we are considering more powerful
search techniques for these situations, some work-around strategies have been developed.

First check to see if distinct chainIDs are provided for each chain. Reduce does not support
files which specify chain information only in the segID field and can get confused.

Examination of the clique may reveal that the orientations of one or more groups are obvi-
ous; for instance, they may interact with obligate H-bond donors or acceptors. By fixing the
orientation of these groups (as described above), the total number of permutations is reduced.
This is especially effective if it breaks the clique into smaller sum-cliques or singletons.

An alternative way to break up cliques is to rotate all the methionine CH3s and
lysine/N-terminus NH3+s in an initial pass, then keep them fixed in a second pass.

reduce -nooh inputfile | reduce -build -norotmet -norotnh3 - > outputfileH

The single dash towards the end of the command line tells reduce to read data piped (’|’) from
the first pass rather than from a file. A fiew NH3+ H-bonds may have inferior geometry with
this two pass approach but the result is otherwise comparable to using -build alone and can
be combined with the previous approach, if necessary. With this technique, unusual cliques
requiring many hours to process have been converted into several smaller problems which wer
all solved in a matter of minutes.

14.2.5 Contact

If you use reduce, I would appreciate any comments you send my way.
J. Michael Word
e-mail: mike.word@duke.edu voice: (919)483-3522
Richardson Lab, Biochemistry Department, Duke University ,Durham, NC USA 27710

14.3 elsize

NAME

elsize - Given the structure, estimates its effective electrostatic size

(parameter Arad ) need by the ALPB model.

SYNOPSIS
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Usage: elsize input-pqr-file [-options]

-det an estimate based on structural invariants. DEFAULT.

-ell an estimate via elliptic integral (numerical).

-elf same as above, but via elementary functions.

-abc prints semi-axes of the effective ellipsoid.

-tab prints all of the above into a table without header.

-hea prints same table as -tab but with a header.

-deb prints same as -tab with some debugging information.

-xyz uses a file containing only XYZ coordinates.

DESCRIPTION

elsize is a program originally written by G. Sigalov to estimate the effective electrostatic size
of a structure via a quick, analytical method. The algorithm is presented in detail in Ref. .[235]
You will need your structure in a pqr format as input, which can be easily obtained from the
prmtop and inpcrd files using ambpdb utility described above:

ambpdb -p prmtop -pqr < inpcrd > input-file-pqr

After that you can simply do: elsize input-file-pqr , the value of electrostatic size in Angstroms
will be output on stdout. The source code is in the src/etc/ directory, its comments contain
more extensive description of the options and give an outline of the algorithm. A somewhat
less accurate estimate uses just the XYZ coordinates of the molecule and assumes the default
radius size of for all atoms:

elsize input-file-xyz

This option is not recommended for very small compounds. The code should not be used on
structures made up of two or more completely disjoint" compounds – while the code will still
produce a finite value of Arad , it is not very meaningful. Instead, one should obtain estimates
for each compound separately.

14.4 Utilities for Molecular Crystal Simulations

David S. Cerutti

Simulations of biomolecular crystals are in principle no different than any of the simulations
that AMBER does in periodic boundary conditions. However, the setup of these systems is not
trivial and probably cannot be accomplished with the LEaP software. Of principal importance
are the construction of the solvent conditions (packing precise amounts of multiple solvent
species into the simulation cell), and tailoring the unit cell dimensions to accommodate the
inherently periodic nature of the system. The LEaP software, designed to construct simulations
of molecules in solution, will overlay a pre-equilibrated solvent mask over the (biomolecular)
solute, tile that mask throughout the simulation cell, and then prune solvent residues which
clash with the solute. The result of this procedure is a system which will likely contract under
constant pressure dynamics as the pruning process has left vacuum bubbles at the solute:solvent
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interface. Simulations of biomolecular crystals require that the simulation cell begin at a size
corresponding to the crystallographic unit cell, and deviate very little from that size over the
course of equilibration and onset of constant pressure dynamics. This demands a different
strategy for placing solvent in the simulation cell. Four programs in the AmberTools release
are designed to accomplish this. An example of their use in given in a web-based tutorial at
http://ambermd.org/tutorials/advanced/tutorial13/XtalTutor1.html .

For brevity, only basic descriptions of the programs are given in this manual. All of the
programs may be run with command line input; the input options to each program may be
listed by running each program with no arguments.

14.4.1 UnitCell

A macromolecular crystal contains many repeating unit cells which stack like blocks in three
dimensional space just as simulation cells do in periodic boundary conditions. Each unit cell, in
turn, may contain multiple symmetry-related clusters of atoms. A PDB file contains one set of
coordinates for the irreducible unit of the crystal, the “asymmetric unit,” and also information
about the crystal space group and unit cell dimensions. The UnitCell program reads PDB files,
seeking the SMTRY records within the REMARKs to enumerate the rotation and translation
operations which may be applied to the coordinates given in the PDB file to reconstuct one
complete unit cell.

14.4.2 PropPDB

Simulations in periodic boundary conditions require a minimum unit cell size: the simulation
cell must be able to enclose a sphere of at least the nonbonded direct space cutoff radius plus
a small buffer region for nonbonded pairlist updates. Many biomolecular crystal unit cells
come in “shoebox” dimensions that may have one very short side; many unit cells are also not
rectangular but triclinic, meaning that the size of the largest sphere they can enclose is further
reduced. For these reasons, and perhaps to ensure that the rigid symmetry imposed by periodic
boundary conditions does not create artifacts (crystallographic unit cells are equivalent when
averaged over all time and space, but are not necessarily identical at any given moment), it may
be necessary to include multiple unit cells within the simulation cell. This is the purpose of
the PropPDB program: to propagate a unit cell in one or more directions so that the complete
simulation cell meets minimum size requirements.

14.4.3 AddToBox

The AddToBox program handles placement of solvent within a crystal unit cell or supercell
(as may be created by PropPDB). As described in the introduction, the basic strategy is to place
solvent such that added solvent molecules do not clash with biomolecule solutes, but may clash
with one another initially. This compromise is necessary because enough solvent must be added
to the system to ensure that the correct unit cell dimensions are maintained in the long run, but it
is not acceptable to place solvent within the interior of a biomolecule where it might not belong
and never escape.
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The AddToBox program takes a PDB file providing the coordinates of a complete biomolecu-
lar unit cell or supercell (argument -c), the dimensions by which that supercell repeats in space
(-X, -Y, -Z for the three box edge lengths, and -al, -bt, and -gm for the three unit cell angles), a
PDB file describing the solvent residue to add (argument -a), and the number of copies of that
solvent molecule to add (argument -na). AddToBox inherently assumes that the biomolecular
unit cell it is initially presented may contain some amount of solvent already, and according to
the AMBER convention of listing macromolecular solute atoms first and solvent last assumes
that the first -P atoms in the file are the protein (or biomolecule). AddToBox will then color a
very fine grid “black” if the grid point is within a certain distance of a biomolecular atom (ar-
gument -RP) or other solvent atom (argument -RW); the grid is “white” otherwise (the grid is
stored in binary for memory efficiency). AddToBox will the make a copy of the solvent residue
and randomly rotate and translate it somewhere within the unit cell. If all atoms of the solvent
residue land on “white” grid voxels, the solvent molecule will become part of the system and
the grid around the newly added solvent will be blacked out accordingly. If the solvent molecule
cannot be placed, this process will be repeated until a million consecutive failures are encoun-
tered, at which point the program will terminate. If AddToBox has not placed the requested
number of solvent molecules by the time it terminates, the -V option can be used to order the
program to recursively call itself with progressively smaller solvent buffer distances until all the
requested solvent can be placed. The output of the AddToBox program is another PDB named
by the -o option.

Successful operation of AddToBox may take practice. If multiple solvent species are required,
as is the case with heterogenous crystallization solutions, AddToBox may be called repeatedly
with each input molecular cell being the previous call’s output. When considering crystal solva-
tion, the order of addition is important! It is recommended that rare species, such as trace buffer
reagents, be added first, with large -RW argument to ensure that they are dispersed throughout
the available crystal void zones. Large solvent species such as MPD (an isohexane diol com-
monly used in crystallization conditions) or should be added second, and with a sufficiently
large -RW argument that methyl groups and ring systems cannot become interlocked (which
will likely lead to SHAKE / vlimit errors). Small and abundant species such as water should be
added last, as they can go anywhere that space remains.

It is likely that the unobservable “void” regions between biomolecules in most crystals do
not contain solvent species in proportion to their abundance in the crystallization solution–the
vast majority of these regions are within a few Ångstroms of some biomolecular surface, and
different biomolecular functional groups will preferentially interact with some types of solvent
over others. Also, in many crystals some solvent molecules are observed; in many of these, the
amount of solvent observed is such that it would be impossible to pack other species into the unit
cell in proportion to their abundances in the crystallization fluid. In these cases, we recommend
estimating the amount of volume that must be filled with solvent apart from solvent which has
already been observed in the crystal, and filling this void with solvent in proportion to the
composition of the crystallization fluid. For example, if a crystal were grown in a 1:1 mole-to-
mole water/ethanol mixture, and the crystal coordinates as deposited in the PDB contained 500
water molecules and 3 ethanol molecules, we would use AddToBox to add water and ethanol
in a 1:1 ratio until the system contained enough solvent to maintain the correct volume during
equilibrium dynamics at constant pressure.

Finally, it is difficult to estimate exactly how much solvent will be needed to maintain the
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correct equilibrium volume; the advisable approach is simply to make an initial guess and script
the setup so that, over multiple runs and reconstructions, the correct system composition can be
found. We recommend matching the equilibrium unit cell volume to within 0.3% to keep this
simulation parameter within the error of most crystallographic measurements. While errors of
0.5-1% will show up quickly after constant pressure dynamics begin, a 10 to 20ns simulation
may be needed to ensure that the correct equilibrium volume has been achieved.

14.4.4 ChBox

After the complex process of adding solvent, the LEaP program may be used to produce a
topology and initial set of coordinates based on the PDB file produced by AddToBox. By using
the SetBox command, LEaP will create a periodic system without adding any more solvent on
its own. The only problem with using LEaP at this point is that the program will fail to realize
that the system does tile in three dimensions if only the box dimensions are set properly. If vi-
sualized, the output of UnitCell / PropPDB will likely look jagged, but the output of AddToBox,
containing lots of added water, will make it obvious how parts of biomolecules jutting out one
face of the box fit neatly into open spaces on an opposite face. The topology produced by LEaP
needs no editing; only the last line of the coordinates does. This can be done manually, but the
ChBox program automates the process, taking the same coordinates supplied to AddToBox and
grafting them into the input coordinates file.

14.5 MdoutAnalyzer.py

MdoutAnalyzer.py is a simple script designed to help you rapidly parse and analyze the
energy components printed in the output files from sander and pmemd. You can use it as
follows:

MdoutAnalyzer.py <mdout1> <mdout2> <mdout3> ... <mdoutN>

Where each mdout file is combined into a single data set. A GUI window will open up with
buttons for every energy component parsed from the mdout file followed by a button for each
type of graphical analysis you can do on the data shown below.

A second window has options to control how the graphs will appear. Help is available in the
<Help> menu at the top of the main window. Note, mdout files must be from the same type
of simulation (or at least have all of the same energy components printed inside) in order to be
combined.

Right-clicking on each energy button brings up a little window describing what that energy
term is.
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Nucleic acid builder (nab) is a high-level language that facilitates manipulations of macro-
molecules and their fragments. nab uses a C-like syntax for variables, expressions and control
structures (if, for, while) and has extensions for operating on molecules (new types and a large
number of builtins for providing the necessary operations). We expect nab to be useful in model
building and coordinate manipulation of proteins and nucleic acids, ranging in size from fairly
small systems to the largest systems for which an atomic level of description makes good com-
putational sense. As a programming language, it is not a solution or program in itself, but
rather provides an environment that eases many of the bookkeeping tasks involved in writing
programs that manipulate three-dimensional structural models.

The current implementation is version 6.0, and incorporates the following main features:

1. Objects such as points, atoms, residues, strands and molecules can be referenced and
manipulated as named objects. The internal manipulations involved in operations like
merging several strands into a single molecule are carried out automatically; in most
cases the programmer need not be concerned about the internal data structures involved.

2. Rigid body transformations of molecules or parts of molecules can be specified with a
fairly high-level set of routines. This functionality includes rotations and translations
about particular axis systems, least-squares atomic superposition, and manipulations of
coordinate frames that can be attached to particular atomic fragments.

3. Additional coordinate manipulation is achieved by a tight interface to distance geome-
try methods. This allows allows relationships that can be defined in terms of internal
distance constraints to be realized in three-dimensional structural models. nab includes
subroutines to manipulate distance bounds in a convenient fashion, in order to carry out
tasks such as working with fragments within a molecule or establishing bounds based on
model structures.

4. Force field calculations (e.g. molecular dynamics and minimization) can be carried out
with an implementation of the AMBER force field. This works in both three and four
dimensions, but periodic simulations are not (yet) supported. However, the generalized
Born models implemented in Amber are also implemented here, which allows many in-
teresting simulations to be carried out without requiring periodic boundary conditions.
The force field can be used to carry out minimization, molecular dynamics, or normal
mode calculations. Conformational searching and docking can be carried out using a
"low-mode" (LMOD) procedure that performs sampling exploring the potential energy
surface along low-frequency vibrational directions.

5. nab also implements a form of regular expressions that we call atom regular expressions,
which provide a uniform and convenient method for working on parts of molecules.

401



15 NAB: Introduction

6. Many of the general programming features of the awk language have been incorporated in
nab. These include regular expression pattern matching, hashedarrays (i.e., arrays with
strings as indices), the splitting of strings into fields, and simplified string manipulations.

7. There are built-in procedures for linking nab routines to other routines written in C or
Fortran, including access to most library routines normally available in system math li-
braries.

Our hope is that nab will serve to formalize the step-by-step process that is used to build com-
plex model structures, and will facilitate the management and use of higher level symbolic
constraints. Writing a program to create a structure forces more of the model’s assumptions to
be explicit in the program itself. And an nab description can serve as a way to show a model’s
salient features, much like helical parameters are used to characterize duplexes.

The first three chapters of this document both introduces the language through a series of
sample programs, and illustrates the programming interfaces provided. The examples are cho-
sen not only to show the syntax of the language, but also to illustrate potential approaches to the
construction of some unusual nucleic acids, including DNA double- and triple-helices, RNA
pseudoknots, four-arm junctions, and DNA-protein interactions. A separate reference manual
(in Chapter 4) gives a more formal and careful description of the requirements of the language
itself.

The basic literature reference for the code is T. Macke and D.A. Case. Modeling unusual
nucleic acid structures. In Molecular Modeling of Nucleic Acids, N.B. Leontes and J. SantaLu-
cia, Jr., eds. (Washington, DC: American Chemical Society, 1998), pp. 379-393. Users are
requested to include this citation in papers that make use of NAB.

The authors thank Jarrod Smith, Garry Gippert, Paul Beroza, Walter Chazin, Doree Sitkoff
and Vickie Tsui for advice and encouragement. Special thanks to Neill White (who helped in
updating documentation, in preparing the distance geometry database, and in testing and porting
portions of the code), and to Will Briggs (who wrote the fiber-diffraction routines). Thanks also
to Chris Putnam and M.L. Dodson for bug reports.

15.1 Background

Using a computer language to model polynucleotides follows logically from the fundamental
nature of nucleic acids, which can be described as “conflicted” or “contradictory” molecules.
Each repeating unit contains seven rotatable bonds (creating a very flexible backbone), but
also contains a rigid, planar base which can participate in a limited number of regular interac-
tions, such as base pairing and stacking. The result of these opposing tendencies is a family of
molecules that have the potential to adopt a virtually unlimited number of conformations, yet
have very strong preferences for regular helical structures and for certain types of loops.

The controlled flexibility of nucleic acids makes them difficult to model. On one hand, the
limited range of regular interactions for the bases permits the use of simplified and more abstract
geometric representations. The most common of these is the replacement of each base by a
plane, reducing the representation of a molecule to the set of transformations that relate the
planes to each other. On the other hand, the flexible backbone makes it likely that there are
entire families of nucleic acid structures that satisfy the constraints of any particular modeling
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problem. Families of structures must be created and compared to the model’s constraints. From
this we can see that modeling nucleic acids involves not just chemical knowledge but also three
processes-abstraction, iteration and testing-that are the basis of programming.

Molecular computation languages are not a new idea. Here we briefly describe some past
approaches to nucleic acid modeling, to provide a context for nab.

15.1.1 Conformation build-up procedures

MC-SYM[236–238] is a high level molecular description language used to describe single
stranded RNA molecules in terms of functional constraints. It then uses those constraints to
generate structures that are consistent with that description. MC-SYM structures are created
from a small library of conformers for each of the four nucleotides, along with transformation
matrices for each base. Building up conformers from these starting blocks can quickly generate
a very large tree of structures. The key to MC-SYM’s success is its ability to prune this tree,
and the user has considerable flexibility in designing this pruning process.

In a related approach, Erie et al.[239] used a Monte-Carlo build-up procedure based on sets
of low energy dinucleotide conformers to construct longer low energy single stranded sequences
that would be suitable for incorporation into larger structures. Sets of low energy dinucleotide
conformers were created by selecting one value from each of the sterically allowed ranges
for the six backbone torsion angles and χ . Instead of an exhaustive build- up search over a
small set of conformers, this method samples a much larger region of conformational space
by randomly combining members of a larger set of initial conformers. Unlike strict build-up
procedures, any member of the initial set is allowed to follow any other member, even if their
corresponding torsion angles do not exactly match, a concession to the extreme flexibility of
the nucleic acid backbone. A key feature determined the probabilities of the initial conformers
so that the probability of each created structure accurately reflected its energy.

Tung and Carter[240, 241] have used a reduced coordinate system in the NAMOT (nucleic
acid modeling tool) program to rotation matrices that build up nucleic acids from simplified
descriptions. Special procedures allow base-pairs to be preserved during deformations. This
procedure allows simple algorithmic descriptions to be constructed for non-regular structures
like intercalation sites, hairpins, pseudoknots and bent helices.

15.1.2 Base-first strategies

An alternative approach that works well for some problems is the "base-first" strategy,
which lays out the bases in desired locations, and attempts to find conformations of the sugar-
phosphate backbone to connect them. Rigid-body transformations often provide a good way
to place the bases. One solution to the backbone problem would be to determine the relation-
ship between the helicoidal parameters of the bases and the associated backbone/sugar torsions.
Work along these lines suggests that the relationship is complicated and non-linear.[242] How-
ever, considerable simplification can be achieved if instead of using the complete relationship
between all the helicoidal parameters and the entire backbone, the problem is limited to describ-
ing the relationship between the helicoidal parameters and the backbone/sugar torsion angles of
single nucleotides and then using this information to drive a constraint minimizer that tries to
connect adjacent nucleotides. This is the approach used in JUMNA,[243] which decomposes
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the problem of building a model nucleic acid structure into the constraint satisfaction problem
of connecting adjacent flexible nucleotides. The sequence is decomposed into 3’-nucleotide
monophosphates. Each nucleotide has as independent variables its six helicoidal parameters,
its glycosidic torsion angle, three sugar angles, two sugar torsions and two backbone torsions.
JUMNA seeks to adjust these independent variables to satisfy the constraints involving sugar
ring and backbone closure.

Even constructing the base locations can be a non-trivial modeling task, especially for non-
standard structures. Recognizing that coordinate frames should be chosen to provide a simple
description of the transformations to be used, Gabarro-Arpa et al.[244] devised “Object Com-
mand Language” (OCL), a small computer language that is used to associate parts of molecules
called objects, with arbitrary coordinate frames defined by sets of their atoms or numerical
points. OCL can “link” objects, allowing other objects’ positions and orientations to be de-
scribed in the frame of some reference object. Information describing these frames and links is
written out and used by the program MORCAD[245] which does the actual object transforma-
tions.

OCL contains several elements of a molecular modeling language. Users can create and
operate on sets of atoms called objects. Objects are built by naming their component atoms
and to simplify creation of larger objects, expressions, IF statements, an iterated FOR loop and
limited I/O are provided. Another nice feature is the equivalence between a literal 3-D point and
the position represented by an atom’s name. OCL includes numerous built-in functions on 3-
vectors like the dot and cross products as well as specialized molecular modeling functions like
creating a vector that is normal to an object. However, OCL is limited because these language
elements can only be assembled into functions that define coordinate frames for molecules that
will be operated on by MORCAD. Functions producing values of other data types and stand-
alone OCL programs are not possible.

15.2 Methods for structure creation

As a structure-generating tool, nab provides three methods for building models. They are
rigid-body transformations, metric matrix distance geometry, and molecular mechanics. The
first two methods are good initial methods, but almost always create structures with some dis-
tortion that must be removed. On the other hand, molecular mechanics is a poor initial method
but very good at refinement. Thus the three methods work well together.

15.2.1 Rigid-body transformations

Rigid-body transformations create model structures by applying coordinate transformations
to members of a set of standard residues to move them to new positions and orientations where
they are incorporated into the growing model structure. The method is especially suited to
helical nucleic acid molecules with their highly regular structures. It is less satisfactory for
more irregular structures where internal rearrangement is required to remove bad covalent or
non-bonded geometry, or where it may not be obvious how to place the bases.

nab uses the matrix type to hold a 4×4 transformation matrix. Transformations are applied to
residues and molecules to move them into new orientations or positions. nab does not require
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that transformations applied to parts of residues or molecules be chemically valid. It simply
transforms the coordinates of the selected atoms leaving it to the user to correct (or ignore) any
chemically incorrect geometry caused by the transformation.

Every nab molecule includes a frame, or “handle” that can be used to position two molecules
in a generalization of superimposition. Traditionally, when a molecule is superimposed on a
reference molecule, the user first forms a correspondence between a set of atoms in the first
molecule and another set of atoms in the reference molecule. The superimposition algorithm
then determines the transformation that will minimize the rmsd between corresponding atoms.
Because superimposition is based on actual atom positions, it requires that the two molecules
have a common substructure, and it can only place one molecule on top of another and not at
an arbitrary point in space.

The nab frame is a way around these limitations. A frame is composed of three orthonormal
vectors originally aligned along the axes of a right handed coordinate frame centered on the
origin. nab provides two builtin functions setframe() and setframep() that are used to reposition
this frame based on vectors defined by atom expressions or arbitrary 3-D points, respectively.
To position two molecules via their frames, the user moves the frames so that when they are
superimposed via the nab builtin alignframe(), the two molecules have the desired orientation.
This is a generalization of the methods described above for OCL.

15.2.2 Distance geometry

nab’s second initial structure-creation method is metric matrix distance geometry,[246, 247]
which can be a very powerful method of creating initial structures. It has two main strengths.
First, since it uses internal coordinates, the initial position of atoms about which nothing is
known may be left unspecified. This has the effect that distance geometry models use only the
information the modeler considers valid. No assumptions are required concerning the positions
of unspecified atoms. The second advantage is that much structural information is in the form
of distances. These include constraints from NMR or fluorescence energy transfer experiments,
implied propinquities from chemical probing and footprinting, and tertiary interactions inferred
from sequence analysis. Distance geometry provides a way to formally incorporate this infor-
mation, or other assumptions, into the model-building process.

Distance geometry converts a molecule represented as a set of interatomic distances into a
3-D structure. nab has several builtin functions that are used together to provide metric matrix
distance geometry. A bounds object contains the molecule’s interatomic distance bounds matrix
and a list of its chiral centers and their volumes. The function newbounds() creates a bounds
object containing a distance bounds matrix containing initial upper and lower bounds for every
pair of atoms, and a list of the molecule’s chiral centers and their volumes. Distance bounds
for pairs of atoms involving only a single residue are derived from that residue’s coordinates.
The 1,2 and 1,3 distance bounds are set to the actual distance between the atoms. The 1,4
distance lower bound is set to the larger of the sum of the two atoms van der Waals radii or
their syn (torsion angle = 0o) distance, and the upper bound is set to their anti (torsion angle
= 180o) distance. newbounds() also initializes the list of the molecule’s chiral centers. Each
chiral center is an ordered list of four atoms and the volume of the tetrahedron those four atoms
enclose. Each entry in a nab residue library contains a list of the chiral centers composed
entirely of atoms in that residue.
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Once a bounds object has been initialized, the modeler can use functions to tighten, loosen or
set other distance bounds and chiralities that correspond to experimental measurements or parts
of the model’s hypothesis. The functions andbounds() and orbounds() allow logical manipula-
tion of bounds. setbounds_from_db() Allows distance information from a model structure or
a database to be incorporated into a part of the current molecule’s bounds object, facilitating
transfer of information between partially-built structures.

These primitive functions can be incorporated into higher-level routines. For example the
functions stack() and watsoncrick() set the bounds between the two specified bases to what they
would be if they were stacked in a strand or base-paired in a standard Watson/Crick duplex,
with ranges of allowed distances derived from an analysis of structures in the Nucleic Acid
Database.

After all experimental and model constraints have been entered into the bounds object, the
function tsmooth() applies “triangle smoothing” to pull in the large upper bounds, since the
maximum distance between two atoms can not exceed the sum of the upper bounds of the
shortest path between them. Random pairwise metrization[248] can also be used to help ensure
consistency of the bounds and to improve the sampling of conformational space. The function
embed() finally takes the smoothed bounds and converts them into a 3-D object. The newly
embedded coordinates are subject to conjugate gradient refinement against the distance and
chirality information contained in bounds. The call to embed() is usually placed in a loop to
explore the diversity of the structures the bounds represent.

15.2.3 Molecular mechanics

The final structure creation method that nab offers is molecular mechanics. This includes
both energy minimization and molecular dynamics - simulated annealing. Since this method
requires a good estimate of the initial position of every atom in a structure, it is not suitable for
creating initial structures. However, given a reasonable initial structure, it can be used to remove
bad initial geometry and to explore the conformational space around the initial structure. This
makes it a good method for refining structures created either by rigid body transformations or
distance geometry. nab has its own 3-D/4-D molecular mechanics package that implements
several AMBER force fields and reads AMBER parameter and topology files. Solvation effects
can also be modelled with generalized Born continuum models.

Our hope is that nab will serve to formalize the step-by-step process that is used to build
complex model structures. It will facilitate the management and use of higher level symbolic
constraints. Writing a program to create a structure forces one to make explicit more of the
model’s assumptions in the program itself. And an nab description can serve as a way to
exhibit a model’s salient features, much like helical parameters are used to characterize du-
plexes. So far, nab has been used to construct models for synthetic Holliday junctions,[249]
calcyclin dimers,[250] HMG-protein/DNA complexes,[251] active sites of Rieske iron-sulfur
proteins,[252] and supercoiled DNA.[253] The Examples chapter below provides a number of
other sample applications.
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15.3 Compiling nab Programs

Compiling nab programs is very similar to compiling other high-level language programs,
such as C and Fortran. The command line syntax is

nab [-O] [-c] [-v] [-noassert] [-nodebug] [-o file] [-Dstring] file(s)

where

-O optimizes the object code

-c suppresses the linking stage with ld and produces a .o file

-v verbosely reports on the compile process

-noassert causes the compiler to ignore assert statements

-nodebug causes the compiler to ignore debug statements

-o file names the output file

-Dstring defines string to the C preprocessor

Linking Fortran and C object code with nab is accomplished simply by including the source
files on the command line with the nab file. For instance, if a nab program bar.nab uses a C
function defined in the file foo.c, compiling and linking optimized nab code would be
accomplished by

nab -O bar.nab foo.c

The result is an executable a.out file.

15.4 Parallel Execution

The generalized Born energy routines (for both first and second derivatives) include directives
that will allow for parallel execution on machines that support this option. Once you have some
level of comfort and experience with the single-CPU version, you can enable parallel execution
by supplying one of several parallelization options (-openmp, -mpi or -scalapack) to configure,
by re-building the NAB compiler and by recompiling your NAB program.

The -openmp option enables parallel execution under OpenMP on shared- memory machines.
To enable OpenMP execution, add the -openmp option to configure, re-build the NAB compiler
and re-compile your NAB program. Then, if you set the OMP_NUM_THREADS environment
variable to the number of threads that you wish to perform parallel execution, the Born energy
computation will execute in parallel.

The -mpi option enables parallel execution under MPI on either clusters or shared-memory
machines. To enable MPI execution, add the -mpi option to configure and re-build the NAB
compiler. You will not need to modify your NAB programs; just execute them with an mpirun

command.
The -scalapack option enables parallel execution under MPI on either clusters or shared-

memory machines, and in addition uses the Scalable LAPACK (ScaLAPACK) library for par-
allel linear algebra computation that is required to calculate the second derivatives of the gen-
eralized Born energy, to perform Newton-Raphson minimization or to perform normal mode
analysis. For computations that do not involve linear algebra (such as conjugate gradients min-
imization or molecular dynamics) the -scalapack option functions in the same manner as the
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-mpi option. Do not use the -mpi and -scalapack options simultaneously. Use the -scalapack
option only when ScaLAPACK has been installed on your cluster or shared-memory machine.

In order that the -mpi or -scalapack options result in a correct build of the NAB compiler, the
configure script must specify linking of the MPI library, or ScaLAPACK and BLACS libraries,
as part of that build. These libraries are specified for Sun machines in the solaris_cc section
of the configure script. If you want to use MPI or ScaLAPACK on a machine other than a
Sun machine, you will need to modify the configure script to link these libraries in a manner
analogous to what occurs in the solaris_cc section of the script.

There are three options to specify the manner in which NAB supports linear algebra com-
putation. The -scalapack option discussed above specifies ScaLAPACK. The -perflib option
specifies Sun TM Performance Library TM , a multi-threaded implementation of LAPACK. If
neither -scalapack nor -perflib is specified, then linear algebra computation will be performed
by a single CPU using LAPACK. In this last case, the Intel MKL library will be used if the
MKL_HOME environment variable is set at configure time. Absent that, if a GOTO environment
variable is found, the GotoBLAS libraries will be used.

The parallel execution capability of NAB was developed primarily on Sun machines, and has
also been tested on the SGI Altix platform. But it has been much less widely-used than have
other parts of NAB, so you should certainly run some tests with your system to ensure that
single-CPU and parallel runs give the same results.

The $AMBERHOME/benchmarks/nab directory has a series of timing benchmarks that can
be helpful in assessing performance. See the README file there for more information.

15.5 First Examples

This section introduces nab via three simple examples. All nab programs in this user manual
are set in Courier, a typewriter style font. The line numbers at the beginning of each line are
not parts of the programs but have been added to make it easier to refer to specific program
sections.

15.5.1 B-form DNA duplex

One of the goals of nab was that simple models should require simple programs. Here is an
nab program that creates a model of a B-form DNA duplex and saves it as a PDB file.� �

1 // Program 1 - Average B-form DNA duplex

2 molecule m;

3

4 m = bdna( "gcgttaacgc" );

5 putpdb( "gcg10.pdb", m );� �
Line 2 is a declaration used to tell the nab compiler that the name m is a molecule variable,

something nab programs use to hold structures. Line 4 creates the actual model using the
predefined function bdna(). This function’s argument is a literal string which represents the
sequence of the duplex that is to be created. Here’s how bdna() converts this string into a
molecule. Each letter stands for one of the four standard bases: a for adenine, c for cytosine, g

408



15.5 First Examples

for guanine and t for thymine. In a standard DNA duplex every adenine is paired with thymine
and every cytosine with guanine in an antiparallel double helix. Thus only one strand of the
double helix has to be specified. As bdna() reads the string from left to right, it creates one
strand from 5’ to 3’ (5’-gcgttaacgc -3’), automatically creating the other antiparallel strand
using Watson/Crick pairing. It uses a uniform helical step of 3.38 Å rise and 36.0o twist.
Naturally, nab has other ways to create helical molecules with arbitrary helical parameters and
even mismatched base pairs, but if you need some “average” DNA, you should be able to get it
without having to specify every detail. The last line uses the nab builtin putpdb() to write the
newly created duplex to the file gcg10.pdb.

Program 1 is about the smallest nab program that does any real work. Even so, it contains
several elements common to almost all nab programs. The two consecutive forward slashes in
line 1 introduce a comment which tells the nab compiler to ignore all characters between them
and the end of the line. This particular comment begins in column 1, but that is not required as
comments may begin in any column. Line 3 is blank. It serves no purpose other than to visually
separate the declaration part from the action part. nab input is free format. Runs of white space
characters—spaces, tabs, blank lines and page breaks—act like a single space which is required
only to separate reserved words like molecule from identifiers like m. Thus white space can be
used to increase readability.

15.5.2 Superimpose two molecules

Here is another simple nab program. It reads two DNA molecules and superimposes them
using a rotation matrix made from a correspondence between their C1’ atoms.� �

1 // Program 2 - Superimpose two DNA duplexes

2 molecule m, mr;

3 float r;

4

5 m = getpdb( "test.pdb" );

6 mr = getpdb( "gcg10.pdb" );

7 superimpose( m, "::C1’", mr, "::C1’" );

8 putpdb( "test.sup.pdb", m );

9 rmsd( m, "::C1’", mr, "::C1’", r );

10 printf( "rmsd = %8.3fn", r );� �
This program uses three variables—two molecules, m and mr and one float, r. An nab dec-

laration can include any number of variables of the same type, but variables of different types
must be in separate declarations. The builtin function getpdb() reads two molecules in PDB
format from the files test.pdb and gcg10.pdb into the variables m and mr. The superimposi-
tion is done with the builtin function superimpose(). The arguments to superimpose() are two
molecules and two “atom expressions”. nab uses atom expressions as a compact way of speci-
fying sets of atoms. Atom expressions and atom names are discussed in more detail below but
for now an atom expression is a pattern that selects one or more of the atoms in a molecule. In
this example, they select all atoms with names C1’.

superimpose() uses the two atom expressions to associate the corresponding C1’ carbons in
the two molecules. It uses these correspondences to create a rotation matrix that when applied
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to m will minimize the root mean square deviation between the pairs. It applies this matrix to
m, “moving” it on to mr. The transformed molecule m is written out to the file test.sup.pdb
in PDB format using the builtin function putpdb(). Finally the builtin function rmsd() is used
to compute the actual root mean square deviation between corresponding atoms in the two
superimposed molecules. It returns the result in r, which is written out using the C-like I/O
function printf(). rmsd() also uses two atom expressions to select the corresponding pairs. In
this example, they are the same pairs that were used in the superimposition, but any set of pairs
would have been acceptable. An example of how this might be used would be to use different
subsets of corresponding atoms to compute trial superimpositions and then use rmsd() over all
atoms of both molecules to determine which subset did the best job.

15.5.3 Place residues in a standard orientation

This is the last of the introductory examples. It places nucleic acid monomers in an orien-
tation that is useful for building Watson/Crick base pairs. It uses several atom expressions to
create a frame or handle attached to an nab molecule that permits easy movement along impor-
tant “molecular directions”. In a standard Watson/Crick base pair the C4 and N1 atoms of the
purine base and the H3, N3 and C6 atoms of the pyrimidine base are colinear. Such a line is
obviously an important molecular direction and would make a good coordinate axis. Program
3 aligns these monomers so that this hydrogen bond is along the Y-axis.� �

1 // Program 3 - orient nucleic acid monomers

2 molecule m;

3

4 m = getpdb( "ADE.pdb" );

5 setframe( 2, m, // also for GUA

6 "::C4",

7 "::C5", "::N3",

8 "::C4", "::N1" );

9 alignframe( m, NULL );

10 1putpdb( "ADE.std.pdb", m );

11

12 m = getpdb( "THY.pdb" );

13 setframe( 2, m, // also for CYT & URA

14 "::C6",

15 "::C5", "::N1",

16 "::C6", "::N3" );

17 alignframe( m, NULL );

18 putpdb( "THY.std.pdb", m );� �
This program uses only one variable, the molecule m. Execution begins on line 4 where the

builtin getpdb() is used to read in the coordinates of an adenine (created elsewhere) from the file
ADE.pdb. The nab builtin setframe() creates a coordinate frame for this molecule using vectors
defined by some of its atoms as shown in Figure 15.1. The first atom expression (line 6) sets the
origin of this coordinate frame to be the coordinates of the C4 atom. The two atom expressions
on line 7 set the X direction from the coordinates of the C5 to the coordinates of the N3. The
last two atom expressions set the Y direction from the C4 to the N1. The Z-axis is created by
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Figure 15.1: ADE and THY after execution of Program 3.

the cross product X×Y. Frames are thus like sets of local coordinates that can be attached to
molecules and used to facilitate defining transformations; a more complete discussion is given
in the section Frames below.

nab requires that the coordinate axes of all frames be orthogonal, and while the X and Y axes
as specified here are close, they are not quite exact. setframe() uses its first parameter to specify
which of the original two axes is to be used as a formal axis. If this parameter is 1, then the
specified X axis becomes the formal X axis and Y is recreated from Z×X; if the value is 2, then
the specified Y axis becomes the formal Y axis and X is recreated from Y×Z. In this example
the specified Y axis is used and X is recreated. The builtin alignframe() transforms the molecule
so that the X, Y and Z axes of the newly created coordinate frame point along the standard X,
Y and Z directions and that the origin is at (0,0,0). The transformed molecule is written to the
file ADE.std.pdb. A similar procedure is performed on a thymine residue with the result that the
hydrogen bond between the H3 of thymine and the N1 of adenine in a Watson Crick pair is now
along the Y axis of these two residues.

15.6 Molecules, Residues and Atoms

We now turn to a discussion of ways of describing and manipulating molecules. In addition to
the general-purpose variable types like float, int and string, nab has three types for working with
molecules: molecule, residue and atom. Like their chemical counterparts, nab molecules are
composed of residues which are in turn composed of atoms. The residues in an nab molecule
are organized into one or more named, ordered lists called strands. Residues in a strand are
usually bonded so that the “exiting” atom of residue i is connected to the “entering” atom of
residue i+1. The residues in a strand need not be bonded; however, only residues in the same
strand can be bonded.

Each of the three molecular types has a complex internal structure, only some of which is
directly accessible at the nab level. Simple elements of these types, like the number of atoms
in a molecule or the X coordinate of an atom are accessed via attributes—a suffix attached to a
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molecule, residue or atom variable. Attributes behave almost like int, float and string variables;
the only exception being that some attributes are read only with values that can t be changed.
More complex operations on these types such as adding a residue to a molecule or merging two
strands into one are handled with builtin functions. A complete list of nab builtin functions and
molecule attributes can be found in the nab Language Reference.

15.7 Creating Molecules

The following functions are used to create molecules. Only an overview is given here; more
details are in chapter 3.

molecule newmolecule();

int addstrand( molecule m, string str );

residue getresidue( string rname, string rlib );

residue transformres( matrix mat, residue res, string aex );

int addresidue( molecule m, string str, residue res );

int connectres( molecule m, string str,

int rn1, string atm1, int rn2, string atm2 );

int mergestr( molecule m1, string str1, string end1,

molecule m2, string str2, string end2 );

The general strategy for creating molecules with nab is to create a new (empty) molecule then
build it one residue at a time. Each residue is fetched from a residue library, transformed
to properly position it and added to a growing strand. A template showing this strategy is
shown below. mat, m and res are respectively a matrix, molecule and residue variable declared
elsewhere. Words in italics indicate general instances of things that would be filled in according
to actual application.� �

1 ...

2 m = newmolecule();

3 addstrand( m, \fIstr-1\fC );

4 ...

5 for( ... ){

6 ...

7 res = getresidue( \fIres-name\fC, \fIres-lib\fC );

8 res = transformres( mat, res, NULL );

9 addresidue( m, \fIstr-name\fC, res );

10 ...

11 }

12 ...� �
In line 2, the function newmolecule() creates a molecule and stores it in m. The new molecule

is empty—no strands, residues or atoms. Next addstrand() is used to add a strand named str-1.
Strand names may be up to 255 characters in length and can include any characters except white
space. Each strand in a molecule must have a unique name. There is no limit on the number of
strands a molecule may have.

The actual structure would be created in the loop on lines 5-11. Each time around the loop,
the function getresidue() is used to extract the next residue with the name res-name from some
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residue library res-lib and stores it in the residue variable res. Next the function transformres()
applies a transformation matrix, held in the matrix variable mat to the residue in res, which
places it in the orientation and position it will have in the new molecule. Finally, the function
addresidue() appends the transformed residue to the end of the chain of residues in the strand
str-name of the new molecule.

Residues in each strand are numbered from 1 to N, where N is the number of residues in that
strand. The residue order is the order in which they were inserted with addresidue(). While
nab does not require it, nucleic acid chains are usually numbered from 5’ to 3’ and proteins
chains from the N-terminus to the C-terminus. The residues in nucleic acid strands and protein
chains are usually bonded with the outgoing end of residue i bonded to the incoming end of
residue i+1. However, as this is not always the case, nab requires the user to explicitly make all
interresidue bonds with the builtin connectres().

connectres() makes bonds between two atoms in different residues of the same strand of a
molecule. Only residues in the same strand can be bonded. connectres() takes six arguments.
They are a molecule, the name of the strand containing the residues to be bonded, and two
pairs each of a residue number and the name of an atom in that residue. As an example, this
call to connectres(),

connectres( m, "sense", i, "O3’", i+1, "P" );

connects an atom named "O3’" in residue i to an atom named "P" in residue i+1, creating the
phosphate bond that joins two nucleic acid monomers.

The function mergestr() is used to either move or copy the residues in one strand into another
strand. Details are provided in chapter 3.

15.8 Residues and Residue Libraries

nab programs build molecules from residues that are parts of residue libraries,
which are exactly those distributed with the Amber molecular mechanics programs (see
http://ambermd.org/).

nab provides several functions for working with residues. All return a valid residue on
success and NULL on failure. The function getres() is written in nab and it source is shown
below. transformres() which applies a coordinate transformation to a residue and is discussed
under the section Matrices and Transformations.

residue getresidue( string resname, string reslib );

residue getres( string resname, string reslib );

residue transformres( matrix mat, residue res, string aexp );

getresidue() extracts the residue with name resname from the residue library reslib. reslib is
the name of a file that either contains the residue information or contains names of other files
that contain it. reslib is assumed to be in the directory $NABHOME/reslib unless it begins with
a slash (/)

A common task of many nab programs is the translation of a string of characters into a
structure where each letter in the string represents a residue. Generally, some mapping of one
or two character names into actual residue names is required. nab supplies the function getres()
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that maps the single character names a, c, g, t and u and their 5’ and 3’ terminal analogues into
the residues ADE, CYT, GUA, THY and URA. Here is its source:� �

1 // getres() - map 1 letter names into 3 letter names

2 residue getres( string rname, string rlib )

3 {

4 residue res;

5 string map1to3[ hashed ]; // convert residue names

6

7 map1to3["A"] = "ADE"; map1to3["C"] = "CYT";

8 map1to3["G"] = "GUA"; map1to3["T"] = "THY";

9 map1to3["U"] = "URA";

10

11 map1to3["a"] = "ADE"; map1to3["c"] = "CYT";

12 map1to3["g"] = "GUA"; map1to3["t"] = "THY";

13 map1to3["u"] = "URA";

14

15 if( r in map1to3 ) {

16 res = getresidue( map1to3[ r ], rlib );

17 }else{

18 fprintf( stderr, "undefined residue %s\\n", r );

19 exit( 1 );

20 }

21 return( res );

22 };� �
getres() is the first of several nab functions that are discussed in this User Manual. The

following explanation will cover not just getres() but will serve as an introduction to user defined
nab functions in general.

An nab function is a named group of declarations and statements that is executed as a unit
by using the function’s name in an expression. nab functions can have special variables called
parameters that allow the same function to operate on different data. A function definition
begins with a header that describes the function, followed by the function body which is a list
of statements and declarations enclosed in braces ({}) and ends with a semicolon. The header to
getres() is on line 2 and the body is on lines 3 to 22.

Every nab function header begins with the reserved word that specifies its type, followed by
the function’s name followed by its parameters (if any) enclosed in parentheses. The
parentheses are always required, even if the function does not have parameters. nab functions
may return a single value of any of the 10 nab types. nab functions can not return arrays. In
symbolic terms every nab function header uses this template:

type name( parameters? )

The parameters (if present) to an nab function are a comma separated list of type variable
pairs:

type1 variable1, type2 variable2, ...
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An nab function may have any number of parameters, including none. Parameters may of any
of the 10 nab types, but unlike function values, parameters can be arrays, including hashed
arrays. The function getres() has two parameters, the two string variables resname and reslib.

Parameters to nab functions are “called by reference” which means that they contain the ac-
tual data—not copies of it—that the function was called with. When an nab function parameter
is assigned, the actual data in the calling function is changed. The only exception is when an
expression is passed as a parameter to an nab function. In this case, the nab compiler evalu-
ates the expression into a temporary (and invisible to the nab programmer) variable and then
operates on its contents.

Immediately following the function header is the function body. It is a list of declarations
followed by a list of statements enclosed in braces. The list of declarations, the list of statements
or both may be empty. getres() has several statements, and a single declaration, the variable res.
This variable is a local variables. Local variables are defined only when the function is active.
If a local variable has the same name as variable defined outside of a it the local variable hides
the global one. Local variables can not be parameters.

The statement part of getres() begins on line 6. It consists of several if statements organized
into a decision tree. The action of this tree is to translate one of the strings A, , , T, etc., or
their lower case equivalents into the corresponding three letter standard nucleic acid residue
name and then extract that residue from reslib using the low level residue library function ge-
tresidue(). The value returned by getresidue() is stored in the local variable res, except when
the input string is not one of those listed above. In that case, getres() writes a message to stderr
indicating that it can not translate the input string and sets res to the value NULL. nab uses NULL
to represent non-existent values of the types string, file, atom, residue, molecule and bounds.
A value of NULL generally means that a variable is uninitialized or that an error occurred in
creating it.

A function returns a value by executing a return statement, which is the reserved word return
followed by an expression. The return statement evaluates the expression, sets the function
value to it and returns control to the point just after the call. The expression is optional but if
present the type of the expression must be the same as the type of the function or both must
be numeric (int, float). If the expression is missing, the function still returns, but its value is
undefined. getres() includes one return statements on line 20. A function also returns with an
undefined value when it "runs off the bottom", i.e., executes the last statement before the closing
brace and that statement is not a return.

15.9 Atom Names and Atom Expressions

Every atom in an nab molecule has a name. This name is composed of the strand name, the
residue number and the atom name. As both PDB and off formats require that all atoms in a
residue have distinct names, the combination of strand name, residue number and atom name is
unique for each atom in a single molecule. Atoms in different molecules, however, may have
the same name.

Many nab builtins require the user to specify exactly which atoms are to be covered by the
operation. nab does this with special strings called atom expressions. An atom expression is
a pattern that matches one or more atom names in the specified molecule or residue. An atom
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expression consists of three parts—a strand part, a residue part and an atom part. The parts are
separated by colons (:). Not all three parts are required. An atom expression with no colons
consists of only a strand part; it selects all atoms in the selected strands. An atom expression
with one colon consists of a strand part and a residue part; it selects all atoms in the selected
residues in the selected strands. An empty part selects all strands, residues or atoms depending
on which parts are empty.

nab patterns specify the entire string to be matched. For example, the atom pattern C matches
only atoms named C , and not those named CA, HC, etc. To match any name that begins with C,
use C*, to match any name ending with C, use *C and to match a C in any position use *C*. An
atom expression is first parsed into its parts. The strand part is evaluated selecting one or more
strands in a molecule. Next the residue part is evaluated. Only residues in selected strands can
be selected. Finally the atom part is evaluated and only atoms in selected residues are selected.
Here are some typical atom expressions and the atoms they match.

:ADE: Select all atoms in any residue named ADE. All three parts are
present but both the strand and atom parts are empty. The atom
expression :ADE selects the same set of atoms.

::C,CA,N select all atoms with names C, CA or N in all residues in all
strands—typically the peptide backbone.

A:1-10,13,URA:C1’ Select atoms named C1’ (the glycosyl-carbons) in residues 1 to
10 and 13 and in any residues named URA in the strand named
A.

::C*[^’] Select all non-sugar carbons. The [^’] is an example of a
negated character class. It matches any character in the last
position except ’.

::P,O?P,C[3-5]?,O[35]? The nucleic acid backbone. This P selects phosphorous atoms.
The O?P matches phosphate oxygens that have various second
letters O1P, O2P or OAP or OBP. The C[3-5]? matches the
backbone carbons, C3’, C4’, C5’ or C3*, C4*, C5*. And the
O[35]? matches the backbone oxygens O3’, O5’ or O3*, O5*.

:: or : Select all atoms in the molecule.

An important property of nab atom expressions is that the order in which the strands,
residues, and atoms are listed is unimportant. That is, the atom expression "2,1:5,2,3:N1,C1’" is
the exact same atom expression as "1,2:3,2,5:C1’,N1". All atom expressions are reordered,
internal to nab, in increasing atom number. So, in the above example, the selected atoms will
be selected in the following sequence:

1:2:N1, 1:2:C1’, 1:3:N1, 1:3:C1’, 1:5:N1, 1:5:C1’, 2:2:N1, 2:2:C1’,

2:3:N1, 2:3:C1’, 2:5:N1, 2:5:C1’

The order in which atoms are selected internal to a specific residue are the order in which they
appear in a nab PDB file. As seen in the above example, N1 appears before C1’ in all nab
nucleic acid residues and PDB files.
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15.10 Looping over atoms in molecules

Another thing that many nab programs have to do is visit every atom of a molecule. nab
provides a special form of its for-loop for accomplishing this task. These loops have this form:

for( a in m ) stmt;

a and m represent an atom and a molecule variable. The action of the loop is to set a to each
atom in m in this order. The first atom is the first atom of the first residue of the first strand.
This is followed by the rest of the atoms of this residue, followed by the atoms of the second
residue, etc until all the atoms in the first strand have been visited. The process is then repeated
on the second and subsequent strands in m until a has been set to every atom in m. The order of
the strands in a molecule is the order in which they were created with addstrand(), the order of
the residues in a strand is the order in which they were added with addresidue() and the order
of the atoms in a residue is the order in which they are listed in the residue library entry that the
residue is based on.

The following program uses two nested for-in loops to compute all the proton-proton dis-
tances in a molecule. Distances less than cutoff are written to stdout. The program uses the
second argument on the command to hold the cutoff value. The program also uses the =∼ oper-
ator to compare a character string , in this case an atom name to pattern, specified as a regular
expression.� �

1 // Program 4 - compute H-H distances <= cutoff

2 molecule m;

3 atom ai, aj;

4 float d, cutoff;

5

6 cutoff = atof( argv[ 2 ] );

7 m = getpdb( "gcg10.pdb" );

8

9 for( ai in m ){

10 if( ai.atomname !~ "H" )continue;

11 for( aj in m ){

12 if( aj.tatomnum <= ai.tatomnum )continue;

13 if( aj.atomname !~ "H" )continue;

14 if(( d=distp(ai.pos,aj.pos))<=cutoff){

15 printf(

16 "%3d %-4s %-4s %3d %-4s %-4s %8.3f\\n",

17 ai.tresnum, ai.resname, ai.atomname,

18 aj.tresnum, aj.resname, aj.atomname,

19 d );

20 }

21 }

22 }� �
The molecule is read into m using getpdb(). Two atom variables ai and aj are used to hold

the pairs of atoms. The outer loop in lines 9-22 sets ai to each atom in m in the order discussed
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above. Since this program is only interested in proton-proton distances, if ai is not a proton, all
calculations involving that atom can be skipped. The if in line 10 tests to see if ai is a proton.
It does so by testing to see if ai’s name, available via the atomname attribute doesn’t match the
regular expression "H". If it doesn’t match then the program executes the continue statement
also on line 10, which has the effect of advancing the outer loop to its next atom.

>From the section on attributes, ai.atomname behaves like a character string. It can be com-
pared against other character strings or tested to see if it matches a pattern or regular expression.
The two operators, =∼ and !∼ stand for match and doesn’t-match They also inform the nab
compiler that the string on their right hand sides is to be treated like a regular expression. In
this case, the regular expression "H" matches any name that contains the letter H, or any proton
which is just what is required.

If ai is a proton, then the inner loop from 11-21 is executed. This sets aj to each atom in the
same order as the loop in 9. Since distance is reflexive (dist i, j = dist j, i ), and the distance
between an atom and itself is 0, the inner loop uses the if on line 12 to skip the calculation on
aj unless it follows ai in the molecule’s atom order. Next the if on line 13 checks to see if aj is
a proton, skipping to the next atom if it is not. Finally, the if on line 14 computes the distance
between the two protons ai and aj and if it is <= cutoff writes the information out using the
C-like I/O function printf().

15.11 Points, Transformations and Frames

nab provides three kinds of geometric objects. They are the types point and matrix and the
frame component of a molecule.

15.11.1 Points and Vectors

The nab type point is an object that holds three float values. These values can represent the
X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of
a point variable are accessed via attributes or suffixes added to the variable name. The three
point attributes are "x", "y" and "z". Many nab builtin functions use, return or create point values.
Details of operations on points are given in chapter 3.

15.11.2 Matrices and Transformations

nab uses the matrix type to hold a 4×4 transformation matrix. Transformations are applied
to residues and molecules to move them into new orientations and/or positions. Unlike a
general coordinate transformation, nab transformations can not alter the scale (size) of an
object. However, transformations can be applied to a subset of the atoms of a residue or
molecule changing its shape. For example, nab would use a transformation to rotate a group of
atoms about a bond. nab does not require that transformations applied to parts of residues or
molecules be chemically valid. It simply transforms the coordinates of the selected atoms
leaving it to the user to correct (or ignore) any chemically incorrect geometry caused by the
transformation. nab uses the following builtin functions to create and use transformations.

matrix newtransform( float dx, float dy, float dz,
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float rx, float ry, float rz );

matrix rot4( molecule m, string tail, string head, float angle );

matrix rot4p( point tail, point head, float angle );

matrix trans4( molecule m, string tail, string head, float distance );

matrix trans4p( point tail, point head, float distance );

residue transformres( matrix mat, residue r, string aex );

int transformmol( matrix mat, molecule m, string aex );

nab provides three ways to create a new transformation matrix. The function newtransform()
creates a transformation matrix from 3 translations and 3 rotations. It is intended to position
objects with respect to the standard X, Y, and Z axes located at (0,0,0). Here is how it works.
Imagine two coordinate systems, X, Y, Z and X’, Y’, Z’ that are initially superimposed. new-
transform() first rotates the the primed coordinate system about Z by rz degrees, then about Y
by ry degrees, then about X by rx degrees. Finally the reoriented primed coordinate system is
translated to the point (dx,dy,dz) in the unprimed system. The functions rot4() and rot4p() create
a transformation matrix that effects a clockwise rotation by an angle (in degrees) about an axis
defined by two points. The points can be specified implicitly by atom expressions applied to
a molecule in rot4() or explicitly as points in rot4p(). If an atom expression in rot4() selects
more that one atom, the average coordinate of all selected atoms is used as the point’s value.
(Note that a positive rotation angle here is defined to be clockwise, which is in accord with the
IUPAC rules for defining torsional angles in molecules, but is opposite to the convention found
in many other branches of mathematics.) Similarly, the functions trans4() and trans4p() create
a transformation that effects a translation by a distance along the axis defined by two points. A
positive translation is from tail to head.

transformres() applies a transformation to those atoms of res that match the atom expression
aex. It returns a copy of the input residue with the changed coordinates. The input residue is
unchanged. It returns NULL if the new residue could not be created. transformmol() applies a
transformation to those atoms of mol that match aex . Unlike transformres(), transformmol()
changes the coordinates of the input molecule. It returns the number of atoms selected by aex.
In both functions, the special atom expression NULL selects all atoms in the input residue or
molecule.

15.11.3 Frames

Every nab molecule includes a frame, a handle that allows arbitrary and precise movement
of the molecule. This frame is set with the nab builtins setframe() and setframep(). It is
initially set to the standard X, Y and Z directions centered at (0,0,0). setframe() creates a
coordinate frame from atom expressions that specify the the origin, the X direction and the Y
direction. If any atom expression selects more that one atom, the average of the selected
atoms’ coordinates is used. Z is created from X×Y. Since the initial X and Y directions are
unlikely to be orthogonal, the use parameter specifies which of the input X and Y directions is
to become the formal X or Y direction. If use is 1, X is chosen and Y is recreated from Z×X.
If use is 2, then Y is chosen and X is recreated from Y×Z. setframep() is identical except that
the five points defining the frame are explicitly provided.

int setframe( int use, molecule mol, string origin,
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string xtail, string xhead,

string ytail, string yhead );

int setframep( int use, molecule mol, point origin,

point xtail, point xhead,

point ytail, point yhead );

int alignframe( molecule mol, molecule mref );

alignframe() is similar to superimpose(), but works on the molecules’ frames rather than se-
lected sets of their atoms. It transforms mol to superimpose its frame on the frame of mref. If
mref is NULL, alignframe() superimposes the frame of mol on the standard X, Y and Z coordinate
system centered at (0,0,0).

Here’s how frames and transformations work together to permit precise motion between two
molecules. Corresponding frames are defined for two molecules. These frames are based on
molecular directions. alignframe() is first used to align the frame of one molecule along with the
standard X, Y and Z directions. The molecule is then moved and reoriented via transformations.
Because its initial frame was along these molecular directions, the transformations are likely to
be along or about the axes. Finally alignframe() is used to realign the transformed molecule on
the frame of the fixed molecule.

One use of this method would be the rough placement of a drug into a groove on a DNA
molecule to create a starting structure for restrained molecular dynamics. setframe() is used to
define a frame for the DNA along the appropriate groove, with its origin at the center of the
binding site. A similar frame is defined for the drug. alignframe() first aligns the drug on the
standard coordinate system whose axes are now important directions between the DNA and the
drug. The drug is transformed and alignframe() realigns the transformed drug on the DNA’s
frame.

15.12 Creating Watson Crick duplexes

Watson/Crick duplexes are fundamental components of almost all nucleic acid structures
and nab provides several functions for use in creating them. They are

residue getres( string resname, string reslib );

molecule bdna( string seq );

molecule fd_helix( string helix_type, string seq, string acid_type );

string wc_complement( string seq, string reslib, string natype );

molecule wc_basepair( residue sres, residue ares );

molecule wc_helix( string seq, string rlib, string natype,

string aseq, string arlib, string anatype, float xoff,

float incl, float twist, float rise, string opts );

All of these functions are written in nab allowing the user to modify or extend them as needed
without having to modify the nab compiler.

Note: If you just want to create a regular helical structure with a given sequence, use the
"fiber-diffraction" routine fd_helix(), which is discussed in Section 16.14. The methods dis-
cussed next are more general, and can be extended to more complicated problems, but they are
also much harder to follow and understand. The construction of "unusual" nucleic acids was the
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original focus of NAB; if you are using NAB for some other purpose (such as running Amber
force field calculations) you should probably skip to Chapter 19 at this point.

15.12.1 bdna() and fd_helix()

The function bdna() which was used in the first example converts a string into a Watson/Crick
DNA duplex using average DNA helical parameters.� �

1 // bdna() - create average B-form duplex

2 molecule bdna( string seq )

3 {

4 molecule m;

5 string cseq;

6 cseq = wc_complement( seq, "", "dna" );

7 m = wc_helix( seq, "", "dna",

8 cseq, "", "dna",

9 2.25, -4.96, 36.0, 3.38, "s5a5s3a3" );

10 return( m );

11 };� �
bdna() calls wc_helix() to create the molecule. However, wc_helix() requires both strands of

the duplex so bdna() calls wc_complement() to create a string that represents the Watson/Crick
complement of the sequence contained in its parameter seq. The string "s5a5s3a3" replaces
both the sense and anti 5’ terminal phosphates with hydrogens and adds hydrogens to both the
sense and anti 3’ terminal O3’ oxygens. The finished molecule in m is returned as the function’s
value. If any errors had occurred in creating m, it would have the value NULL, indicating that
bdna() failed.

Note that the simple method used in bdna() for constructing the helix is not very generic,
since it assumes that the internal geometry of the residues in the (default) library are appropriate
for this sort of helix. This is in fact the case for B-DNA, but this method cannot be trivially
generalized to other forms of helices. One could create initial models of other helical forms in
the way described above, and fix up the internal geometry by subsequent energy minimization.
An alternative is to directly use fiber-diffraction models for other types of helices. The fd_helix()
routine does this, reading a database of experimental coordinates from fiber diffraction data, and
constructing a helix of the appropriate form, with the helix axis along z. More details are given
in Section 16.14.

15.12.2 wc_complement()

The function wc_complement() takes three strings. The first is a sequence using the standard
one letter code, the second is the name of an nab residue library, and the third is the nucleic
acid type (RNA or DNA). It returns a string that contains the Watson/Crick complement of the
input sequence in the same one letter code. The input string and the returned complement string
have opposite directions. If the left end of the input string is the 5’ base then the left end of the
returned string will be the 3’ base. The actual direction of the two strings depends on their use.� �

1 // wc_complement() - create a string that is the W/C
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2 // complement of the string seq

3 string wc_complement( string seq, string rlib, string rlt )

4 // (note that rlib is unused: included only for backwards compatibility

5 {

6 string acbase, base, wcbase, wcseq;

7 int i, len;

8

9 if( rlt == "dna" ) acbase = "t";

10 else if( rlt == "rna" ) acbase = "u";

11 else{

12 fprintf( stderr,

13 "wc_complement: rlt (%s) is not dna/rna, no W/C comp.", rlt );

14 return( NULL );

15 }

16 len = length( seq );

17 wcseq = NULL;

18 for( i = 1; i <= len; i = i + 1 ){

19 base = substr( seq, i, 1 );

20 if( base == "a" || base == "A" ) wcbase = acbase;

21 else if( base == "c" || base == "C" ) wcbase = "g";

22 else if( base == "g" || base == "G" ) wcbase = "c";

23 else if( base == "t" || base == "T" ) wcbase = "a";

24 else if( base == "u" || base == "U" ) wcbase = "a";

25 else{

26 fprintf( stderr, "wc_complement: unknown base %sn", base );

27 return( NULL );

28 }

29 wcseq = wcseq + wcbase;

30 }

31 return( wcseq );

32 }� �

wc_complement() begins its work in line 9, where the nucleic acid type, as indicated by rlt
as DNA or RNA is used to determine the correct complement for an a. The complementary
sequence is created in the for loop that begins in line 18 and extends to line 30. The nab builtin
substr() is used to extract single characters from the input sequence beginning with with position
1 and working from left to right until entire input sequence has been converted. The if-tree from
lines 20 to 28 is used to set the character complementary to the current character, using the
previously determined acbase if the input character is an a or A. Any character other than the
expected a, c, g, t, u (or A, C, G, T, U) is an error causing wc_complement() to print an error
message and return NULL, indicating that it failed. Line 29 shows how nab uses the infix +
to concatenate character strings. When the entire string has been complemented, the for loop
terminates and the complementary sequence now in wcseq is returned as the function value.
Note that if the input sequence is empty, wc_complement() returns NULL, indicating failure.
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15.12.3 wc_helix() Overview

wc_helix() generates a uniform helical duplex from a sequence, its complement, two residue
libraries and four helical parameters: x-offset, inclination, twist and rise. By using two
residue libraries, wc_helix() can generate RNA/DNA heteroduplexes. wc_helix() returns an nab
molecule containing two strands. The string seq becomes the "sense" strand and the string aseq
becomes the "anti" strand. seq and aseq are required to be complementary although this is not
checked. wc_helix() creates the molecule one base pair at a time. seq is read from left to right,
aseq is read from right to left and corresponding letters are extracted and converted to residues
by getres(). These residues are in turn combined into an idealized Watson/Crick base pair by
wc_basepair(). An AT created by wc_basepair() is shown in Figure 2.

A Watson/Crick duplex can be modeled as a set of planes stacked in a helix. The num-
bers that describe the relationships between the planes and between the planes and the helical
axis are called helical parameters. Planes can be defined for each base or base pair. Six num-
bers (three displacements and three angles) can be defined for every pair of planes; however,
helical parameters for nucleic acid bases are restricted to the six numbers describing the the
relationship between the two bases in a base pair and the six numbers describing the relation-
ship between adjacent base pairs. A complete description of helical parameters can be found in
Dickerson.[254]

wc_helix() uses only four of the 12 helical parameters. It builds its helices from idealized
Watson/Crick pairs. These pairs are planar so the three intra base angles are 0. In addition the
displacements are displacements from the idealized Watson/Crick geometry and are also 0. The
A and the T in Figure 2 are in plane of the page. wc_helix() uses four of the six parameters
that relate a base pair to the helical axis. The helices created by wc_helix() have a single axis
(the Z axis, not shown) which is at the intersection of the X and Y axes of Figure 2. Now
imagine keeping the axes fixed in the plane of the paper and moving the base pair. X-offset
is the displacement along the X axis between the Y axis and the line marked Y’. A positive
X-offset is toward the arrow on the X-axis. Inclination is the rotation of the base pair about
the X axis. A rotation that moves the A above the plane of page and the T below is positive.
Twist involves a rotation of the base pair about the Z-axis. A counterclockwise twist is positive.
Finally, rise is a displacement along the Z-axis. A positive rise is out of the page toward the
reader.

15.12.4 wc_basepair()

The function wc_basepair() takes two residues and assembles them into a two stranded nab
molecule containing one base pair. Residue sres is placed in the "sense" strand and residue
ares is placed in the "anti" strand. The work begins in line 14 where newmolecule() is used to
create an empty molecule stored in m. Two strands, sense and anti are added using addstrand().
In addition, two more molecules are created, m_sense for the sense residue and m_anti for the
anti residue. The if-trees in lines 26-61 and 63-83 are used to select residue dependent atoms
that will be used to move the base pairs into a convenient orientation for helix generation.
The purine:C4 and pyrimidine:C6 distance which is residue dependent is also set. In line 62,
addresidue() adds sres to the strand sense of m_sense. In line 84, addresidue() adds ares to the
strand anti of m_anti. Lines 86 and 87 align the molecules containing the sense residue and anti
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Figure 15.2: ADE.THY from wc_basepair().

residue so that sres and ares are on top of each other. Line 88 creates a transformation matrix
that rotates m_anti ( containing ares ) 180o about the X-axis. After applying this transformation,
the two bases are still occupying the same space but ares is now antiparallel to sres. Line 90
creates a transformation matrix that displaces m_anti and ares along the Y-axis by sep. The
properly positioned molecules containing sres and ares are merged into a single molecule, m,
completing the base pair. Lines 97-98 move this base pair to a more convenient orientation for
helix generation. Initially the base as shown in Figure 15.2 is in the plane of page with origin
on the C4 of the A. The calls to setframe() and alignframe() move the base pair so that the origin
is at the intersection of the lines marked X and Y’.� �

1 // wc_basepair() - create Watson/Crick base pair

2 #define AT_SEP 8.29

3 #define CG_SEP 8.27

4

5 molecule wc_basepair( residue sres, residue ares )

6 {

7 molecule m, m_sense, m_anti;

8 float sep;

9 string srname, arname;

10 string xtail, xhead;

11 string ytail, yhead;

12 matrix mat;

13

14 m = newmolecule();

15 m_sense = newmolecule();

16 m_anti = newmolecule();

17 addstrand( m, "sense" );

18 addstrand( m, "anti" );

19 addstrand( m_sense, "sense" );

20 addstrand( m_anti, "anti" );
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21

22 srname = getresname( sres );

23 arname = getresname( ares );

24 ytail = "sense::C1’";

25 yhead = "anti::C1’";

26 if( ( srname == "ADE" ) || ( srname == "DA" ) ||

27 ( srname == "RA" ) || ( srname =~ "[DR]A[35]" ) ){

28 sep = AT_SEP;

29 xtail = "sense::C5";

30 xhead = "sense::N3";

31 setframe( 2, m_sense,

32 "::C4", "::C5", "::N3", "::C4", "::N1" );

33 }else if( ( srname == "CYT" ) || ( srname =~ "[DR]C[35]*" ) ){

34 sep = CG_SEP;

35 xtail = "sense::C6";

36 xhead = "sense::N1";

37 setframe( 2, m_sense,

38 "::C6", "::C5", "::N1", "::C6", "::N3" );

39 }else if( ( srname == "GUA" ) || ( srname =~ "[DR]G[35]*" ) ){

40 sep = CG_SEP;

41 xtail = "sense::C5";

42 xhead = "sense::N3";

43 setframe( 2, m_sense,

44 "::C4", "::C5", "::N3", "::C4", "::N1" );

45 }else if( ( srname == "THY" ) || ( srname =~ "DT[35]*" ) ){

46 sep = AT_SEP;

47 xtail = "sense::C6";

48 xhead = "sense::N1";

49 setframe( 2, m_sense,

50 "::C6", "::C5", "::N1", "::C6", "::N3" );

51 }else if( ( srname == "URA" ) || ( srname =~ "RU[35]*" ) ){

52 sep = AT_SEP;

53 xtail = "sense::C6";

54 xhead = "sense::N1";

55 setframe( 2, m_sense,

56 "::C6", "::C5", "::N1", "::C6", "::N3" );

57 }else{

58 fprintf( stderr,

59 "wc_basepair : unknown sres %s\\n",srname );

60 exit( 1 );

61 }

62 addresidue( m_sense, "sense", sres );

63 if( ( arname == "ADE" ) || ( arname == "DA" ) ||

64 ( arname == "RA" ) || ( arname =~ "[DR]A[35]" ) ){

65 setframe( 2, m_anti,

66 "::C4", "::C5", "::N3", "::C4", "::N1" );

67 }else if( ( arname == "CYT" ) || ( arname =~ "[DR]C[35]*" ) ){

68 setframe( 2, m_anti,

69 "::C6", "::C5", "::N1", "::C6", "::N3" );
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70 }else if( ( arname == "GUA" ) || ( arname =~ "[DR]G[35]*" ) ){

71 setframe( 2, m_anti,

72 "::C4", "::C5", "::N3", "::C4", "::N1" );

73 }else if( ( arname == "THY" ) || ( arname =~ "DT[35]*" ) ){

74 setframe( 2, m_anti,

75 "::C6", "::C5", "::N1", "::C6", "::N3" );

76 }else if( ( arname == "URA" ) || ( arname =~ "RU[35]*" ) ){

77 setframe( 2, m_anti,

78 "::C6", "::C5", "::N1", "::C6", "::N3" );

79 }else{

80 fprintf( stderr,

81 "wc_basepair : unknown ares %s\\n",arname );

82 exit( 1 );

83 }

84 addresidue( m_anti, "anti", ares );

85

86 alignframe( m_sense, NULL );

87 alignframe( m_anti, NULL );

88 mat = newtransform( 0., 0., 0., 180., 0., 0. );

89 transformmol( mat, m_anti, NULL );

90 mat = newtransform( 0., sep, 0., 0., 0., 0. );

91 transformmol( mat, m_anti, NULL );

92 mergestr( m, "sense", "last", m_sense, "sense", "first" );

93 mergestr( m, "anti", "last", m_anti, "anti", "first" );

94

95 freemolecule( m_sense ); freemolecule( m_anti );

96

97 setframe( 2, m, "::C1’", xtail, xhead, ytail, yhead );

98 alignframe( m, NULL );

99 return( m );

100 };� �
15.12.5 wc_helix() Implementation

The function wc_helix() assembles base pairs from wc_basepair() into a helical duplex. It
is a fairly complicated function that uses several transformations and shows how mergestr() is
used to combine smaller molecules into a larger one. In addition to creating complete duplexes,
wc_helix() can also create molecules that contain only one strand of a duplex. Using the spe-
cial value NULL for either seq or aseq creates a duplex that omits the residues for the NULL
sequence. The molecule still contains two strands, sense and anti, but the strand corresponding
to the NULL sequence has zero residues. wc_helix() first determines which strands are required,
then creates the first base pair, then creates the subsequent base pairs and assembles them into
a helix and finally packages the requested strands into the returned molecule.

Lines 20-34 test the input sequences to see which strands are required. The variables has_s
and has_a are flags where a value of 1 indicates that seq and/or aseq was requested. If an input
sequence is NULL, wc_complement() is used to create it and the appropriate flag is set to 0. The
nab builtin setreslibkind() is used to set the nucleic acid type so that the proper residue ( DNA
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or RNA ) is extracted from the residue library.
The first base pair is created in lines 42-63. The two letters corresponding the 5’ base of

seq and the 3’ base of aseq are extracted using the nab builtin substr(), converted to residues
using getresidue() and assembled into a base pair by wc_basepair(). This base pair is oriented
as in Figure 2 with the origin at the intersection of the lines X and Y’. Two transformations are
created, xomat for the x-offset and inmat for the inclination and applied to this pair.

Base pairs 2 to slen-1 are created in the for loop in lines 66-87. substr() is used to extract the
appropriate letters from seq and aseq which are converted into another base pair by getresidue()
and wc_basepair(). Four transformations are applied to these base pairs - two to set the x-
offset and the inclination and two more to set the twist and the rise. Next m2, the molecule
containing the newly created properly positioned base pair must be bonded to the previously
created molecule in m1. Since nab only permits bonds between residues in the same strand,
mergestr() must be used to combine the corresponding strands in the two molecules before
connectres() can create the bonds.

Because the two strands in a Watson/Crick duplex are antiparallel, adding a base pair to one
end requires that one residue be added after the last residue of one strand and that the other
residue added before the first residue of the other strand. In wc_helix() the sense strand is
extended after its last residue and the anti strand is extended before its first residue. The call to
mergestr() in line 79 extends the sense strand of m1 with the the residue of the sense strand of
m2. The residue of m2 is added after the "last" residue of of the sense strand of m1. The final
argument "first" indicates that the residue of m2 are copied in their original order m1:sense:last
is followed by m2:sense:first. After the strands have been merged, connectres() makes a bond
between the O3’ of the next to last residue (i-1) and the P of the last residue (i). The next call
to mergestr() works similarly for the residues in the anti strands. The residue in the anti strand
of m2 are copied into the the anti strand of m1 before the first residue of the anti strand of m1
m2:anti:last precedes m1:anti:first . After merging connectres() creates a bond between the O3’
of the new first residue and the P of the second residue.

Lines 121-130 create the returned molecule m3. If the flag has_s is 1, mergestr() copies the
entire sense strand of m1 into the empty sense strand of m3. If the flag has_a is 1, the anti
strand is also copied.� �

1 // wc_helix() - create Watson/Crick duplex

2 string wc_complement();

3 molecule wc_basepair();

4 molecule wc_helix(

5 string seq, string sreslib, string snatype,

6 string aseq, string areslib, string anatype,

7 float xoff, float incl, float twist, float rise,

8 string opts )

9 {

10 molecule m1, m2, m3;

11 matrix xomat, inmat, mat;

12 string arname, srname;

13 string sreslib_use, areslib_use;

14 string loup[ hashed ];

15 residue sres, ares;

16 int has_s, has_a;

427



15 NAB: Introduction

17 int i, slen;

18 float ttwist, trise;

19

20 has_s = 1; has_a = 1;

21 if( sreslib == "" ) sreslib_use = "all_nucleic94.lib";

22 else sreslib_use = sreslib;

23 if( areslib == "" ) areslib_use = "all_nucleic94.lib";

24 else areslib_use = areslib;

25

26 if( seq == NULL && aseq == NULL ){

27 fprintf( stderr, "wc_helix: no sequence\\n" );

28 return( NULL );

29 }else if( seq == NULL ){

30 seq = wc_complement( aseq, areslib_use, snatype );

31 has_s = 0;

32 }else if( aseq == NULL ){

33 aseq = wc_complement( seq, sreslib_use, anatype );

34 has_a = 0;

35 }

36

37 slen = length( seq );

38 loup["g"] = "G"; loup["a"] = "A";

39 loup["t"] = "T"; loup["c"] = "C";

40

41 // handle the first base pair:

42 setreslibkind( sreslib_use, snatype );

43 srname = "D" + loup[ substr( seq, 1, 1 ) ];

44 if( opts =~ "s5" )

45 sres = getresidue( srname + "5", sreslib_use );

46 else if( opts =~ "s3" && slen == 1 )

47 sres = getresidue( srname + "3", sreslib_use );

48 else sres = getresidue( srname, sreslib_use );

49

50 setreslibkind( areslib_use, anatype );

51 arname = "D" + loup[ substr( aseq, 1, 1 ) ];

52 if( opts =~ "a3" )

53 ares = getresidue( arname + "3", areslib_use );

54 else if( opts =~ "a5" && slen == 1 )

55 ares = getresidue( arname + "5", areslib_use );

56 else ares = getresidue( arname, areslib_use );

57 m1 = wc_basepair( sres, ares );

58 freeresidue( sres ); freeresidue( ares );

59 xomat = newtransform(xoff, 0., 0., 0., 0., 0. );

60 transformmol( xomat, m1, NULL );

61 inmat = newtransform( 0., 0., 0., incl, 0., 0.);

62 transformmol( inmat, m1, NULL );

63

64 // add in the main portion of the helix:

65 trise = rise; ttwist = twist;
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66 for( i = 2; i <= slen-1; i = i + 1 ){

67 srname = "D" + loup[ substr( seq, i, 1 ) ];

68 setreslibkind( sreslib, snatype );

69 sres = getresidue( srname, sreslib_use );

70 arname = "D" + loup[ substr( aseq, i, 1 ) ];

71 setreslibkind( areslib, anatype );

72 ares = getresidue( arname, areslib_use );

73 m2 = wc_basepair( sres, ares );

74 freeresidue( sres ); freeresidue( ares );

75 transformmol( xomat, m2, NULL );

76 transformmol( inmat, m2, NULL );

77 mat = newtransform( 0., 0., trise, 0., 0., ttwist );

78 transformmol( mat, m2, NULL );

79 mergestr( m1, "sense", "last", m2, "sense", "first" );

80 connectres( m1, "sense", i-1, "O3’", i, "P" );

81 mergestr( m1, "anti", "first", m2, "anti", "last" );

82 connectres( m1, "anti", 1, "O3’", 2, "P" );

83 trise = trise + rise;

84 ttwist = ttwist + twist;

85 freemolecule( m2 );

86 }

87

88

89 i = slen; // add in final residue pair:

90

91 if( i > 1 ){

92 srname = substr( seq, i, 1 );

93 srname = "D" + loup[ substr( seq, i, 1 ) ];

94 setreslibkind( sreslib, snatype );

95 if( opts =~ "s3" )

96 sres = getres( srname + "3", sreslib_use );

97 else

98 sres = getres( srname, sreslib_use );

99 arname = "D" + loup[ substr( aseq, i, 1 ) ];

100 setreslibkind( areslib, anatype );

101 if( opts =~ "a5" )

102 ares = getres( arname + "5", areslib_use );

103 else

104 ares = getres( arname, areslib_use );

105

106 m2 = wc_basepair( sres, ares );

107 freeresidue( sres ); freeresidue( ares );

108 transformmol( xomat, m2, NULL );

109 transformmol( inmat, m2, NULL );

110 mat = newtransform( 0., 0., trise, 0., 0., ttwist );

111 transformmol( mat, m2, NULL );

112 mergestr( m1, "sense", "last", m2, "sense", "first" );

113 connectres( m1, "sense", i-1, "O3’", i, "P" );

114 mergestr( m1, "anti", "first", m2, "anti", "last" );
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115 connectres( m1, "anti", 1, "O3’", 2, "P" );

116 trise = trise + rise;

117 ttwist = ttwist + twist;

118 freemolecule( m2 );

119 }

120

121 m3 = newmolecule();

122 addstrand( m3, "sense" );

123 addstrand( m3, "anti" );

124 if( has_s )

125 mergestr( m3, "sense", "last", m1, "sense", "first" );

126 if( has_a )

127 mergestr( m3, "anti", "last", m1, "anti", "first" );

128 freemolecule( m1 );

129

130 return( m3 );

131 };� �
15.13 Structure Quality and Energetics

Up to this point, all the structures in the examples have been built using only transformations.
These transformations properly place the purine and pyrimidine rings. However, since they are
rigid body transformations, they will create distorted sugar/backbone geometry if any internal
sugar/backbone rearrangements are required to accommodate the base geometry. The amount
of this distortion depends on both the input residues and transformations applied and can vary
from trivial to so severe that the created structures are useless. nab offers two methods for
fixing bad sugar/backbone geometry. They are molecular mechanics and distance geometry.
nab provides distance geometry routines and has its own molecular mechanics package. The
latter is based on the LEaP program, which is part of the AMBER suite of programs developed
at the University of California, San Francisco and at The Scripps Research Institute.

15.13.1 Creating a Parallel DNA Triplex

Parallel DNA triplexes are thought to be intermediates in homologous DNA recombination.
These triplexes, investigated by Zhurkin et al.[255] are called R-form DNA, and are believed
to exist in two distinct conformations. In the presence of recombination proteins (eg. RecA),
they adopt an extended conformation that is underwound with respect to standard helices (a
twist of 20o) and very large base stacking distances (a rise of 5.1 Å). However, in the absence
of recombination proteins, R-form DNA exists in a "collapsed" form that resembles conven-
tional triplexes but with two very important differences—the two parallel strands have the same
sequence and the triplex can be made from any Watson/Crick duplex regardless of its base com-
position. The remainder of this section discusses how this triplex could be modeled and two
nab programs that implement that strategy.

If the degrees of freedom of a triplex are specified by the helicoidal parameters required
to place the bases, then a triplex of N bases has 6(N - 1) degrees of freedom, an impossibly

430



15.13 Structure Quality and Energetics

large number for any but trivial N. Fortunately, the nature of homologous recombination allows
some simplifying assumptions. Since the recombination must work on any duplex, the overall
shape of the triplex must be sequence independent. This implies that each helical step uses the
same set of transformational parameters which reduces the size of the problem to six degrees of
freedom once the individual base triads have been created.

The individual triads are created by assuming that they are planar, that the third base is hydro-
gen bonded on the major groove side of the base pair as it appears in a standard Watson/Crick
duplex, that the original Watson Crick base pair pair is essentially undisturbed by the insertion
of the third base and finally that the third base belongs at the point that maximizes its hydrogen
bonding with respect to the original Watson/Crick base pair. After the optimized triads have
been created, they are assembled into dimers. The dimers assume that the helical axis passes
through the center of the circle defined by the positions of the three C1’ atoms. Several instances
of a two parameter family (rise, twist) of dimers are created for each of the 16 pairs of triads
and minimized.

15.13.2 Creating Base Triads

Here is an nab program that computes the vacuum energy of XY:X base triads as a function of
the position and orientation of the X (non-Watson/Crick) base. A minimum energy AU:A found
by the program along with the potential energy surface keyed to the position of the second A
is shown in Figure 3. The program creates a single Watson/Crick DNA base pair and then
computes the energy of a third DNA base at each position of a user defined rectangular grid.
Since hydrogen bonding is both distance and orientation dependent the program allows the
user to specify a range of orientations to try at each grid point. The orientation giving the
lowest energy at each grid point and its associated energy are written to a file. The position and
orientation giving the lowest overall energy is saved and is used to recreate the best triad after
the search is completed.� �

1 // Program 5 - Investigate energies of base triads

2 molecule m;

3 residue tr;

4 string sb, ab, tb;

5 matrix rmat, tmat;

6

7 file ef;

8 string mfnm, efnm;

9 point txyz[ 35 ];

10 float x, lx, hx, xi, mx;

11 float y, ly, hy, yi, my;

12 float rz, lrz, hrz, rzi, urz, mrz, brz;

13

14 int prm;

15 point xyz[ 100 ], force[ 100 ];

16 float me, be, energy;

17

18 scanf( "%s %s %s", sb, ab, tb );

19 scanf( "%lf %lf %lf", lx, hx, xi );
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20 scanf( "%lf %lf %lf", ly, hy, yi );

21 scanf( "%lf %lf %lf", lrz, hrz, rzi );

22

23 mfnm = sprintf( "%s%s%s.triad.min.pdb", sb, ab, tb );

24 efnm = sprintf( "%s%s%s.energy.dat", sb, ab, tb );

25

26 m = wc_helix(sb, "", "dna", ab,

27 "", "dna", 2.25, 0.0, 0.0, 0.0 );

28

29 addstrand( m, "third" );

30 tr = getres( tb, "all_nucleic94.lib" );

31 addresidue( m, "third", tr );

32 setxyz_from_mol( m, "third::", txyz );

33

34 putpdb( m, "temp.pdb" ); m = getpdb_prm( "temp.pdb", "learpc.ff99SB", "", 0 );

35 mme_init( m, NULL, "::ZZZ", xyz, NULL );

36

37 ef = fopen( efnm, "w" );

38

39 mrz = urz = lrz - 1;

40 for( x = lx; x <= hx; x = x + xi ){

41 for( y = ly; y <= hy; y = y + yi ){

42 brz = urz;

43 for( rz = lrz; rz <= hrz; rz = rz + rzi ){

44 setmol_from_xyz( m, "third::", txyz );

45 rmat=newtransform( 0., 0., 0., 0., 0., rz );

46 transformmol( rmat, m, "third::" );

47 tmat=newtransform( x, y, 0., 0., 0., 0. );

48 transformmol( tmat, m, "third::" );

49

50 setxyz_from_mol( m, NULL, xyz );

51 energy = mme( xyz, force, 1 );

52

53 if( brz == urz ){

54 brz = rz; be = energy;

55 }else if( energy < be ){

56 brz = rz; be = energy;

57 }

58 if( mrz == urz ){

59 me = energy;

60 mx = x; my = y; mrz = rz;

61 }else if( energy < me ){

62 me = energy;

63 mx = x; my = y; mrz = rz;

64 }

65 }

66 fprintf( ef, "%10.3f %10.3f %10.3f %10.3fn",

67 x, y, brz, be );

68 }
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69 }

70 fclose( ef );

71

72 setmol_from_xyz( m, "third::", txyz );

73 rmat = newtransform( 0.0, 0.0, 0.0, 0.0, 0.0, mrz );

74 transformmol( rmat, m, "third::" );

75 tmat = newtransform( mx, my, 0.0, 0.0, 0.0, 0.0 );

76 transformmol( tmat, m, "third::" );

77 putpdb( mfnm, m );� �
Program 5 begins by reading in a description of the desired triad and data defining the location

and granularity of the search area. It does this with the calls to the nab builtin scanf() on lines
18-21. scanf() uses its first argument as a format string which directs the conversion of text
versions of int, float and string values into their internal formats. The first call to scanf() reads
the three letters that specify the bases, the next two calls read the X and Y location, extent and
granularity of the the search rectangle and the last call reads in the first, last and increment
values that will be used specify the orientation of the third base at each point on the search grid.

Lines 23 and 24 respectively, create the names of the files that will hold the best structure
found and the values of the potential energy surface. The file names are created using the
builtin sprintf(). Like scanf() this function also uses its first argument as a format string, used
here to construct a string from the data values that follow it in the parameter list. The action of
these calls is to replace the each format descriptor (%s) with the values of the corresponding
string variable in the parameter list. The file names created for the AU:A shown in Figure 3 were
AUA.triad.min.pdb and AUA.energy.dat. Format expressions and formatted I/O including the I/O
like sprintf() are discussed in the sections Format Expressions and Ordinary I/O Functions
of the nab Language Reference.

The triad is created in two major steps in lines 26-32. First a Watson/Crick base pair is created
with wc_helix(). The base pair has an X-offset of 2.25 Å and an inclination of 0.0 meaning it
lies in the XY plane. Twist and rise although they are not used in creating a single base pair
are also set to 0.0. The X-offset which is that of standard B-DNA was chosen to facilitate
extension of triplexes made from the triads created here with standard duplex DNA. Absent this
consideration any X-offset including 0.0 would have been satisfactory. A third strand ("third")
is added to m, the string tb is converted into a DNA residue and this residue is added to the new
strand. Finally in the coordinates of the third strand are saved in the point array txyz. Referring
to Figure 3, the third base is located directly on top of the Watson/Crick pair. A purine would
have its C4 atom at the origin and its C4-N1 vector along the Y axis; a pyrimidine its C6 at the
origin and its C6-N3 vector along the Y axis. Obviously this is not a real structure; however,
as will be seen in the next section, this initial placement greatly simplifies the transformations
required to explore the search area.

15.13.3 Finding the lowest energy triad

The energy calculation begins in line 34 and extends to line 69. Elements of the general
molecular mechanics code skeleton discussed in the Language Reference chapter are seen at
lines 34-35 and lines 50-51. Initialization takes place in lines 34 and 35 with the call to get-
pdb_prm() to prepare the information needed to compute molecular mechanics energies. The
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Figure 15.3: Minimum energy AUA triad and the potential energy surface.

force field routine is initialized in line 35, asking that all atoms be allowed to move. The actual
energy calculation is done in lines 50 and 51. setxyz_from_mol() copies the current conforma-
tion of mol into the point array xyz and then mme() evaluates the energy of this conformation.
Note that the energy evaluation is in a loop, in this case nested inside the three loops that control
the conformational search.

The search area shown in Figure 15.3 is on the left side of the Watson/Crick base pair. This
corresponds to inserting the third base into the major groove of the duplex. Now as the third base
is initially positioned at the origin with its hydrogen bonding edge pointing towards the top of
the page, it must be both moved to the left or in the -X direction and rotated approximately -90o
so that its hydrogen bonding sites can interact with those on the left side of the Watson/Crick
pair.

The search is executed by the three nested for loops in lines 40, 41 and 43. They control the
third base’s X and Y position and its orientation in the XY plane. Two transformations are used
to place the base. The first step of the placement process is in line 44 where the nab builtin
setmol_from_xyz() is used to restore the original (untransformed) coordinates of the base. The
call to newtransform() in line 45 creates a transformation matrix that will point the third base so
that its hydrogen bonding sites are aimed in the positive X direction. A second transformation
matrix created on line 47 is used to move the properly oriented third base to a point on the
search area. The call to setxyz_from_mol() extracts the coordinates of this conformation into
xyz and mme() computes and returns its energy.

The remainder of the loop determines if this is either the best overall energy or the best energy
for this grid point. Lines 53-57 compute the best energy at this point and lines 58-64 compute
the best overall energy. The complexity arises from the fact that the energy returned by mme()
can be any float value. Thus it is not possible to to pick a value that is guaranteed to be higher
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than any value returned during the search. The solution is to use the value from the first iteration
of the loop as the value to test against. The two variables mrz and brz are used to indicate the
very first iteration and the first iteration of the rz loop. The gray rectangle of Figure 15.3 shows
the vacuum energy of the best AU:A triad found when the origin of the X’ Y’ axes are at that
point on the rectangle. Darker grays are lower energies. Figure 15.3 shows the best AU:A found.

15.13.4 Assembling the Triads into Dimers

Once the minimized base triads have been created, they must be assembled into triplexes.
Since these triplexes are believed to be intermediates in homologous recombination, their struc-
ture should be nearly sequence independent. This means that they can be assembled by applying
the same set of helical parameters to each optimized triad. However, several things still need to
be determined. These are the location of the helical axis and just what helical parameters are
to be applied. This code assumes that the three backbone strands are roughly on the surface of
a cylinder whose axis is the global helical axis. In particular the helical axis is the center of
the circle defined by the three C1’ atoms in each triad. While the four circles defined by the
four minimized triads are not exactly the same, their radii are within X Å of each other with the
XY:X triad having the largest offset of Y Å. The code makes two additional assumptions. The
sugar rings are all in the C2’-endo conformation and the triads are not inclined with respect to
the helical axis. The program that creates and evaluates the dimers is shown below. A detailed
explanation of the program follows the listing.� �

1 // Program 6 - Assemble triads into dimers

2 molecule gettriad( string mname )

3 {

4 molecule m;

5 point p1, p2, p3, pc;

6 matrix mat;

7

8 if( mname == "a" ){

9 m = getpdb( "ata.triad.min.pdb" );

10 setpoint( m, "A:ADE:C1’", p1 );

11 setpoint( m, "B:THY:C1’", p2 );

12 setpoint( m, "C:ADE:C1’", p3 );

13 }else if( mname == "c" ){

14 m = getpdb( "cgc.triad.min.pdb" );

15 setpoint( m, "A:CYT:C1’", p1 );

16 setpoint( m, "B:GUA:C1’", p2 );

17 setpoint( m, "C:CYT:C1’", p3 );

18 }else if( mname == "g" ){

19 m = getpdb( "gcg.triad.min.pdb" );

20 setpoint( m, "A:GUA:C1’", p1 );

21 setpoint( m, "B:CYT:C1’", p2 );

22 setpoint( m, "C:GUA:C1’", p3 );

23 }else if( mname == "t" ){

24 m = getpdb( "tat.triad.min.pdb" );

25 setpoint( m, "A:THY:C1’", p1 );
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26 setpoint( m, "B:ADE:C1’", p2 );

27 setpoint( m, "C:THY:C1’", p3 );

28 }

29 circle( p1, p2, p3, pc );

30 mat = newtransform( -pc.x, -pc.y, -pc.z, 0.0, 0.0, 0.0 );

31 transformmol( mat, m, NULL );

32 setreskind( m, NULL, "DNA" );

33 return( m );

34 };

35

36 int mk_dimer( string ti, string tj )

37 {

38 molecule mi, mj;

39 matrix mat;

40 int sid;

41 float ri, tw;

42 string ifname, sfname, mfname;

43 file idx;

44

45 int natoms;

46 float dgrad, fret;

47 float box[ 3 ];

48 float xyz[ 1000 ];

49 float fxyz[ 1000 ];

50 float energy;

51

52 sid = 0;

53 mi = gettriad( ti );

54 mj = gettriad( tj );

55 mergestr( mi, "A", "last", mj, "A", "first" );

56 mergestr( mi, "B", "first", mj, "B", "last" );

57 mergestr( mi, "C", "last", mj, "C", "first" );

58 connectres( mi, "A", 1, "O3’", 2, "P" );

59 connectres( mi, "B", 1, "O3’", 2, "P" );

60 connectres( mi, "C", 1, "O3’", 2, "P" );

61

62 putpdb( "temp.pdb", mi );

63 mi = getpdb_prm( "temp.pdb", "leaprc.ff99SB", "", 0 );

64

65 ifname = sprintf( "%s%s3.idx", ti, tj );

66 idx = fopen( ifname, "w" );

67 for( ri = 3.2; ri <= 4.4; ri = ri + .2 ){

68 for( tw = 25; tw <= 45; tw = tw + 5 ){

69 sid = sid + 1;

70 fprintf( idx, "%3d %5.1f %5.1f", sid, ri, tw );

71

72 mi = gettriad( ti );

73 mj = gettriad( tj );

74
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75 mat = newtransform( 0.0, 0.0, ri, 0.0, 0.0, tw );

76 transformmol( mat, mj, NULL );

77

78 mergestr( mi, "A", "last", mj, "A", "first" );

79 mergestr( mi, "B", "first", mj, "B", last" );

80 mergestr( mi, "C", last", mj, "C", "first" );

81 connectres( mi, "A", 1, "O3’", 2, "P" );

82 connectres( mi, "B", 1, "O3’", 2, "P" );

83 connectres( mi, "C", 1, "O3’", 2, "P" );

84

85 sfname = sprintf( "%s%s3.%03d.pdb", ti, tj, sid );

86 putpdb( sfname, mi ); // starting coords

87

88 natoms = getmolyz( mi, NULL, xyz );

89 mme_init( mi, NULL, "::ZZZ", xyz, NULL );

90

91 dgrad = 3*natoms*0.001;

92 conjgrad( xyz, 3*natoms, fret, mme, dgrad, 10., 100 );

93 energy = mme( xyz, fxyz, 1 );

94

95 setmol_from_xyz( mi, NULL, xyz );

96 mfname = sprintf( "%s%s3.%03d.min.pdb", ti, tj, sid );

97 putpdb( mfname, mi ); // minimized coords

98 }

99 }

100 fclose( idx );

101 };

102

103 int i, j;

104 string ti, tj;

105 for( i = 1; i <= 4; i = i + 1 ){

106 for( j = 1; j <= 4; j = j + 1 ){

107 ti = substr( "acgt", i, 1 );

108 tj = substr( "acgt", j, 1 );

109 mk_dimer( ti, tj );

110 }

111 }� �
Program 6 assembles, minimizes and writes the final energies of a family of dimers for each

of the 16 pairs of optimized triads. The program is long but straightforward. It is organized into
two subroutines followed by a main program. The first subroutine gettriad() is defined in lines
2-34, the second subroutine mk_dimer() in lines 36-101 and the main program in lines 103-111.
The overall organization is that the main program controls the sequence of the dimers beginning
with AA and continuing with AC, AG, ... and on up to TT. Each time it selects the sequence of
the dimer, it calls mk_dimer() to explore the family of structures defined by variation in the rise
and twist. mk_dimer() in turn calls gettriad() to fetch and orient the specified base triples.

The function gettriad() (lines 2-34) takes a string with one of the four values "a", "c", "g" or "t".
The if-tree in lines 8-28 uses this string to select the coordinates of the corresponding optimized
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triad. The if-tree sets the value of the three points p1, p2 and p3 that will be used to define the
circle whose center will intersect the global helical axis. Once these points are defined, the nab
builtin circle() (line 29) returns the center of the circle they define in pc. The builtin circle()
returns a 1 if the three points do not define a circle and a 0 if they do. In this case it is known
that the positions of the three C1’ atoms are well behaved, so the return value is ignored. The
selected triad is properly centered in lines 30-31. Each residue of the triad is set to be of type
"DNA" via the call to setreskind() in line 32 so that its atomic charges and force field potentials
can be set correctly to perform the minimization. The new molecule is returned as the function’s
value in line 33.

The dimers are created by the function mk_dimers() that is defined in lines 36-101. The
process uses two stages. The molecule is first prepared for molecular mechanics in lines 53-63
and then dimers are created and minimized in the two nested loops in lines 67-99. The results
of the minimizations are stored in a file whose name is derived from the name of the triads in
the dimer. For example, the results for an AA would be in the file "aa3.idx". There is one file
for each of the 16 dimers. The file name is created in line 65 and opened for writing in line 66.
It is closed just before the function returns in line 100. Each line of the file contains a number
that identifies the dimer’s parameters followed by its rise, twist and final (minimized) energy.

In order to perform molecular on a molecule the nab program must create a parameter struc-
ture for it. This structure contains the topology of the molecule and parameters for the various
force field terms, such as bond lengths and angles, torsions, chirality and planarity. This is done
in lines 53 – 63. The particular dimer is created. The function gettriad() is called twice to return
the two properly centered triads in the molecules mi and mj. Next the three strands of mj are
merged into the three strands of mi to create a triplex of length 2. The "A" and "B" strands form
the Watson/Crick pairs of the triplex and the "C" strand contains the strand that is parallel to
the "A" strand. The three calls to connectres() create an O3’-P bond between the newly added
residue and the existing residues in each of the three strands. After all this is done, the call to
getpdb_prm() in line 63 builds the parameter structure, returning 1 on failure and 0 on success.

This section of code seems simple enough except for one thing—the two triads in the dimer
are obviously directly on top of each other. However, this is not a problem because get-
pdb_prm() ignores the molecule’s coordinates. Instead it uses the molecule’s residue names
to get each residue’s internal coordinates and other information from a library which it uses to
up the parameter and topology structure required by the minimization routines.

The dimers are built and minimized in the two nested loops in lines 69-104. The outer loop
varies the rise from 3.2 to 4.4 Å by 0.2 Å, and the inner loop varies the twist from 25o to 45o
in steps of 5o, creating 35 different starting dimers. The variable sid is a number that identifies
each (rise,twist) pair. It is inserted into the file names of the starting coordinates (lines 85-86)
and minimized coordinates (lines 96-97) to make it easy to identify them.

Each dimer is created in lines 72-83. The two specified triads are returned by the calls to
gettriad() as the molecule’s mi and mj. Next the triad in mj is transformed to give it the current
rise and twist with respect to the triad in mi. The transformed triad in mj is merged into mi
and bonded to mi. These starting coordinates are written to a file whose name contains both
the dimer sequence and sid. For example, the first dimer for AA would be "aa3.01.pdb", the 01
indicating that this dimer used a rise of 3.2 Å and a twist of 25o.

The minimization is performed in lines 88-95. The call to setxyz_from_mol() extracts the
current atom positions of mi into the array xyz. The coordinates are passed to mme_init() which

438



15.13 Structure Quality and Energetics

initializes the molecular mechanics system. The actual minimization is done with the call to
conjgrad() which performs 100 cycles of conjugate gradient minimization, printing the results
every 10 cycles. The final energy is written to the file idx and the molecule’s original coordinates
are updated with the minimized coordinates by the call to setmol_from_xyz(). Once all dimers
have been made for this sequence the loops terminate. The last thing done by mk_dimer() before
it returns to the main program is to close the file containing the energy results for this family of
dimer.
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16.1 Introduction

nab is a computer language used to create, modify and describe models of macromolecules,
especially those of unusual nucleic acids. The following sections provide a complete description
of the nab language. The discussion begins with its lexical elements, continues with sections on
expressions, statements and user defined functions and concludes with an explanation of each
of nab’s builtin functions. Two appendices contain a more detailed and formal description of
the lexical and syntactic elements of the language including the actual lex and yacc input used
to create the compiler. Two other appendices describe nab’s internal data structures and the C
code generated to support some of nab’s higher level operations.

16.2 Language Elements

An nab program is composed of several basic lexical elements: identifiers, reserved words,
literals, operators and special characters. These are discussed in the following sections.

16.2.1 Identifiers

An identifier is a sequence of letters, digits and underscores beginning with a letter. Upper
and lower case letters are distinct. Identifiers are limited to 255 characters in length. The
underscore (_) is a letter. Identifiers beginning with underscore must be used carefully as they
may conflict with operating system names and nab created temporaries. Here are some nab
identifiers.

mol i3 twist TWIST Watson_Crick_Base_Pair

16.2.2 Reserved Words

Certain identifiers are reserved words, special symbols used by nab to denote control flow
and program structure. Here are the nab reserved words:

allocate assert atom bounds break
continue deallocate debug delete dynamic

else file for float hashed
if in int matrix molecule

point residue return string while
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16.2.3 Literals

Literals are self defining terms used to introduce constant values into expressions. nab
provides three types of literals: integers, floats and character strings. Integer literals are
sequences of one or more decimal digits. Float literals are sequences of decimal digits that
include a decimal point and/or are followed by an exponent. An exponent is the letter e or E
followed by an optional + or - followed by one to three decimal digits. The exponent is
interpreted as “times 10 to the power of exp” where exp is the number following the e or E. All
numeric literals are base 10. Here are some integer and float literals:

1 3.14159 5 .234 3.0e7 1E-7

String literals are sequences of characters enclosed in double quotes ("). A double quote is
placed into a string literal by preceding it with a backslash (\). A backslash is inserted into a
string by preceding it with a backslash. Strings of zero length are permitted.

"" "a string" "string with a \"" "string with a \\"

Non-printing characters are inserted into strings via escape sequences: one to three characters
following a backslash. Here are the nab string escapes and their meanings:

\a Bell (a for audible alarm)
\b Back space
\f Form feed (new page)
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\” Literal double quote
\\ Literal backspace

\ooo Octal character
\xhh Hex character (hh is 1 or 2 hex digits

Here are some strings with escapes:

"Molecule\tResidue\tAtom\n"
"\252Real quotes\272"

The second string has octal values, \252, the left double quote, and \272, the right double
quote.

16.2.4 Operators

nab uses several additional 1 or 2 character symbols as operators. Operators combine literals
and identifiers into expressions.
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Operator Meaning Precedence Associates
( ) expression grouping 9
[ ] array indexing 9
. select attribute 8

unary − negation 8 right to left
! not 8
^ cross product 6 left to right
@ dot product 6
* multiplication 6 left to right
/ division 6 left to right

% modulus 6 left to right
+ addition, concatenation 5 left to right

binary − subtraction 5 left to right
< less than 4

<= less than or equal to 4
== equal 4
!= not equal 4
>= greater than or equal to 4
> greater than 4

=~ match 4
!~ doesn’t match 4
in hashed array member 4

or atom in molecule
&& and 3

|| or 2
= assignment 1 right to left

16.2.5 Special Characters

nab uses braces ({}) to group statements into compound statements and statements and dec-
larations into function bodies. The semicolon (;) is used to terminate statements. The comma
(,) separates items in parameter lists and declarations. The sharp (#) used in column 1 desig-
nates a preprocessor directive, which invokes the standard C preprocessor to provide constants,
macros and file inclusion. A # in any other column, except in a comment or a literal string is an
error. Two consecutive forward slashes (//) indicate that the rest of the line is a comment which
is ignored. All other characters except white space (spaces, tabs, newlines and formfeeds) are
illegal except in literal strings and comments.

16.3 Higher-level constructs

16.3.1 Variables

A variable is a name given to a part of memory that is used to hold data. Every nab variable
has type which determines how the computer interprets the variable’s contents. nab provides
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10 data types. They are the numeric types int and float which are translated into the underlying
C compiler’s int and double respectively.*

The string type is used to hold null (zero byte) terminated (C) character strings. The file
type is used to access files (equivalent to C’s FILE *). There are three types—atom, residue
and molecule for creating and working with molecules. The point type holds three float values
which can represent the X, Y and Z coordinates of a point or the components of a 3-vector. The
matrix type holds 16 float values in a 4×4 matrix and the bounds type is used to hold distance
bounds and other information for use in distance geometry calculations.

nab string variables are mapped into C char * variables which are allocated as needed and
freed when possible. However, all of this is invisible at the nab level where strings are atomic
objects. The atom, residue, molecule and bounds types become pointers to the appropriate C
structs. point and matrix are implemented as float [3] and float [4][4] respectively. Again the nab
compiler automatically generates all the C code required to makes these types appear as atomic
objects.

Every nab variable must be declared. All declarations for functions or variables in the main
block must precede the first executable statement of that block. Also all declarations in a user
defined nab function must precede the first executable statement of that function. An nab
variable declaration begins with the reserved word that specifies the variable’s type followed
by a comma separated list of identifiers which become variables of that type. Each declaration
ends with a semicolon.

int i, j, j;
matrix mat;
point origin;

Six nab types—string, file, atom, residue, molecule and bounds use the predefined identifier
NULL to indicate a non-existent object of these types. nab builtin functions returning objects of
these types return NULL to indicate that the object could not be created. nab considers a NULL
value to be false. The empty nab string "" is not equal to NULL.

16.3.2 Attributes

Four nab types—atom, residue, molecule and point—have attributes which are elements of
their internal structure directly accessible at the nab level. Attributes are accessed via the
select operator (.) which takes a variable as its left hand operand and an attribute name (an
identifier) as its right. The general form is

var.attr

Most attributes behave exactly like ordinary variables of the same type. However, some
attributes are read only. They are not permitted to appear as the left hand side of an
assignment. When a read only attribute is passed to an nab function, it is copied into temporary
variable which in turn is passed to the function. Read only attributes are not permitted to
appear as destination variables in scanf() parameter lists. Attribute names are kept separate
from variable and function names and since attributes can only appear to the right of select
there is no conflict between variable and attribute names. For example, if x is a point, then
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x // the point variable x
x.x // x coordinate of x
.x // Error!

Here is the complete list of nab attributes.

Atom attributes Type Write? Meaning
atomname string yes Ordinarily taken from columns 13-16 of an input pdb

file, or from a residue library. Spaces are removed.
atomnum int no The number of the atom starting at 1 for each strand

in the molecule.
tatomnum int no The total number of the atom starting at 1. Unlike

atomnum, tatomnum does not restart at 1 for each
strand.

fullname string no The fully qualified atom name, having the form
strandnum:resnum:atomname.

resid string yes The resid of the residue containing this atom; see the
Residue attributes table.

resname string yes The name of the residue containing this atom.
resnum int no The number of the residue containing the atom.

resnum starts at 1 for each strand.
tresnum int no The total number of the residue containing this atom

starting at 1. Unlike resnum, tresnum does not restart
at 1 for each strand.

strandname string yes The name of the strand containing this atom.
strandnum int no The number of the strand containing this atom.

pos point yes point variable giving the atom’s position.
x,y,z float yes The Cartesian coordinates of this atom

charge float yes Atomic charge
radius float yes Dielectric radius
int1 int yes User-definable integer

float1 float yes User-definable float
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Residue attributes Type Write? Meaning
resid string yes A 6-character string, ordinarily taken from columns

22-27 of a PDB file. It can be re-set to something
else, but should always be either empty or exactly 6
characters long, since this string is used (if it is not

empty) by putpdb.
resname string yes Three-character identifier
resnum int no The number of the residue. resnum starts at 1 for

each strand.
tresnum int no The total number of the residue, starting at 1. Unlike

resnum, tresnum does not restart at 1 for each strand.
strandname string yes The name of the strand containing this residue.
strandnum int no The number of the strand containing this residue.

Molecule attributes Type Write? Meaning
natoms int no The total number of atoms in the molecule.

nresidues int no The total number of residues in the molecule.
nstrands int no The total number of strands in the molecule.

16.3.3 Arrays

nab supports two kinds of arrays—ordinary arrays where the selector is a comma separated
list of integer expressions and associative or “hashed” arrays where the selector is a character
string. The set of character strings that is associated with data in a hashed array is called its
keys. Array elements may be of any nab type. All the dimensions of an ordinary array are
indexed from 1 to Nd , where Nd is the size of the d th dimension. Non parameter array
declarations are similar to scalar declarations except the variable name is followed by either a
comma separated list of integer constants surrounded by square brackets ([]) for ordinary
arrays or the reserved word hashed in square brackets for associative arrays. Associative
arrays have no predefined size.

float energy[ 20 ], surface[ 13,13 ];
int attr[ dynamic, dynamic ];
molecule structs[ hashed ];

The syntax for multi-dimensional arrays like that for Fortran, not C. The nab2c compiler lin-
earizes all index references, and the underlying C code sees only single-dimension arrays. Ar-
rays are stored in "column-order", so that the most-rapidly varying index is the first index, as in
Fortran. Multi-dimensional int or float arrays created in nab can generally be passed to Fortran
routines expecting the analogous construct.

Dynamic arrays are not allocated space upon program startup, but are created and freed by
the allocate and deallocate statements:
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allocate attr[ i, j ];
....
deallocate attr;

Here i and j must be integer expressions that may be evaluated at run-time. It is an error (gen-
erally fatal) to refer to the contents of such an array before it has been allocated or after it has
been deallocated.

16.3.4 Expressions

Expressions use operators to combine variables, constants and function values into new val-
ues. nab uses standard algebraic notation (a+b*c, etc) for expressions. Operators with higher
precedence are evaluated first. Parentheses are used to alter the evaluation order. The complete
list of nab operators with precedence levels and associativity is listed under Operators.

nab permits mixed mode arithmetic in that int and float data may be freely combined in
expressions as long as the operation(s) are defined. The only exceptions are that the modulus
operator (%) does not accept float operands, and that subscripts to ordinary arrays must be
integer valued. In all other cases except parameter passing and assignment, when an int and
float are combined by an operator, the int is converted to float then the operation is executed. In
the case of parameter passing, nab requires (but does not check) that actual parameters passed
to functions have the same type as the corresponding formal parameters. As for assignment (=)
the right hand side is converted to the type of the left hand side (as long as both are numeric)
and then assigned. nab treats assignment like any other binary operator which permits multiple
assignments (a=b=c) as well as “embedded” assignments like:

if( mol = newmolecule() ) ...

nab relational operators are strictly binary. Any two objects can be compared provided that
both are numeric, both are string or both are the same type. Comparisons for objects other than
int, float and string are limited to tests for equality. Comparisons between file, atom, residue,
molecule and bounds objects test for “pointer” equality, meaning that if the pointers are the
same, the objects are same and thus equal, but if the pointers are different, no inference about
the actual objects can be made. The most common comparison on objects of these types is
against NULL to see if the object was correctly created. Note that as nab considers NULL to be
false the following expressions are equivalent.

if( var == NULL )... is the same as if( !var )...
if( var != NULL )... is the same as if( var )...

The Boolean operators && and || evaluate only enough of an expression to determine its truth
value. nab considers the value 0 to be false and any non-zero value to be true. nab supports di-
rect assignment and concatenation of string values. The infix + is used for string concatenation.

nab provides several infix vector operations for point values. They can be assigned and point
valued functions are permitted. Two point values can be added or subtracted. A point can be
multiplied or divided by a float or an int. The unary minus can be applied to a point which has
the same effect as multiplying it by -1. Finally, the at sign (@) is used to form the dot product
of two points and the circumflex ( ˆ) is used to form their cross product.
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16.3.5 Regular expressions

The =∼ and !∼ operators (match and not match) have strings on the left-hand-sides and
regular expression strings on their right-hand-sides. These regular expressions are interpreted
according to standard conventions drawn from the UNIX libraries.

16.3.6 Atom Expressions

An atom expression is a character string that contains one or more patterns that match a set of
atom names in a molecule. Atom expressions contain three substrings separated by colons (:).
They represent the strand, residue and atom parts of the atom expression. Each subexpression
consists of a comma (,) separated list of patterns, or for the residue part, patterns and/or number
ranges. Several atom expressions may be placed in a single character string by separating them
with the vertical bar (|).

Patterns in atom expressions are similar to Unix shell expressions. Each pattern is a sequence
of 1 or more single character patterns and/or stars (*). The star matches zero or more occurrences
of any single character. Each part of an atom expression is composed of a comma separated
list of limited regular expressions, or in the case of the residue part, limited regular expressions
and/or ranges. A range is a number or a pair of numbers separated by a dash. A regular expres-
sion is a sequence of ordinary characters and “metacharacters”. Ordinary characters represent
themselves, while the metacharacters are operators used to construct more complicated patterns
from the ordinary characters. All characters except ?, *, [, ], -, ,(comma), : and | are ordinary
characters. Regular expressions and the strings they match follow these rules.

aexpr matches
x An ordinary character matches itself.
? A question mark matches any single character.
* A star matches any run of zero of more characters. The pattern *

matches anything.
[xyz] A character class. It matches a single occurrence of any character

between the [ and the ].
[^xyz] A “negated” character class. It matches a single occurrence of any

character not between the ˆ and the ]. Character ranges, f-l , are
permitted in both types of character class. This is a shorthand for all
characters beginning with f up to and including l. Useful ranges are 0-9
for all the digits and a-zA-Z for all the letters.

- The dash is used to delimit ranges in characters classes and to separate
numbers in residue ranges.

$ The dollar sign is used in a residue range to represent the “last” residue
without having to know its number.

, The comma separates regular expressions and/or ranges in an atom
expression part.

: The colon separates the parts of an atom expression.
| The vertical bar separates atom expressions in the same character string.
\ The backslash is used as an escape. Any character including

metacharacters following a backslash matches itself.
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Atom expressions match the entire name. The pattern C, matches only C, not CA, HC, etc.
To match any name that begins with C use C*; to match any name that ends with C, use *C; to
match any name containing a C, use *C*. A table of examples was given in chapter 2.

16.3.7 Format Expressions

A format expression is a special character string that is used to direct the conversion between
the computer’s internal data representations and their character equivalents. nab uses the un-
derlying C compiler’s printf()/scanf() system to provide formatted I/O. This section provides a
short introduction to this system. For the complete description, consult any standard C refer-
ence. Note that since nab supports fewer types than its underlying C compiler, formatted I/O
options pertaining to the data subtypes (h,l,L) are not applicable to nab format expressions.

An input format string is a mixture of ordinary characters, spaces and format descriptors. An
output format string is mixture of ordinary characters including spaces and format descriptors.
Each format descriptor begins with a percent sign (%) followed by several optional characters
describing the format and ends with single character that specifies the type of the data to be
converted. Here are the most common format descriptors. The ... represent optional characters
described below.

%...c convert a character
%...d convert and integer
%...lf convert a float
%...s convert a string
%% convert a literal %

Input and output format descriptors and format expressions resemble each other and in many
cases the same format expression can be used for both input and output. However, the two types
of format descriptors have different options and their actions are sufficiently distinct to consider
in some detail. Generally, C based formatted output is more useful than C based formatted
input.

When an input format expression is executed, it is scanned at most once from left to right.
If the current format expression character is an ordinary character (anything but space or %), it
must match the current character in the input stream. If they match then both the current char-
acter of the format expression and current character of the stream are advanced one character
to the right. If they don’t match, the scan ends. If the current format expression character is a
space or a run of spaces and if the current input stream is one or more “white space” characters
(space, tab, newline), then both the format and input stream are advanced to the next non-white
space character. If the input format is one or more spaces but the current character of the input
stream is non-blank, then only the format expression is advanced to the next non-blank char-
acter. If the current format character is a percent sign, the format descriptor is used to convert
the next “field” in the input stream. A field is a sequence of non-blank characters surrounded
by white space or the beginning or end of the stream. This means that a format descriptor will
skip white space including newlines to find non blank characters to convert, even if it is the first
element of the format expression. This implicit scanning is what limits the ability of C based
formatted input to read fixed format data that contains any spaces.
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Note that lf is used to input a NAB float variable, rather than the f argument that would be used
in C. This is because float in NAB is converted to double in the output C code (see defreal.h if
you want to change this behavior.) Ideally, the NAB compiler should parse the format string,
and make the appropriate substitutions, but this is not (yet) done: NAB translates the format
string directly into the C code, so that the NAB code must also generally use lf as a format
descriptor for floating point values.

nab input format descriptors have two options, a field width, and an assignment suppression
indicator. The field width is an integer which specifies how much of current field and not the
input stream is to be converted. Conversion begins with the first character of the field and stops
when the correct number of characters have been converted or white space is encountered. A
star (*) option indicates that the field is to be converted, but the result of the conversion is not
stored. This can be used to skip unwanted items in a data stream. The order of the two options
does not matter.

The execution of an output format expression is somewhat different. It is scanned once
from left to right. If the current character is not a percent sign, it placed on the output stream.
Thus spaces have no special significance in formatted output. When the scan encounters a
percent sign it replaces the entire format descriptor with the properly formatted value of the
corresponding output expression.

Each output format descriptor has four optional attributes—width, alignment, padding and
precision. The width is the minimum number of characters the data is to occupy for output.
Padding controls how the field will be filled if the number of characters required for the data is
less than the field width. Alignment specifies whether the data is to start in the first character of
the field (left aligned) or end in the last (right aligned). Finally precision, which applies only to
string and float conversions controls how much of the string is be converted or how many digits
should follow the decimal point.

Output field attributes are specified by optional characters between the initial percent sign
and the final data type character. Alignment is first, with left alignment specified by a minus
sign (-). Any other character after the percent sign indicates right alignment. Padding is spec-
ified next. Padding depends on both the alignment and the type of the data being converted.
Character conversions (%c) are always filled with spaces, regardless of their alignment. Left
aligned conversions are also always filled with spaces. However, right aligned string and nu-
meric conversions can use a 0 to indicate that left fill should be zeroes instead of spaces. In
addition numeric conversions can also specify an optional + to indicate that non-negative num-
bers should be preceded by a plus sign. The default action for numeric conversions is that
negative numbers are preceded by a minus, and other numbers have no sign. If both 0 and + are
specified, their order does not matter.

Output field width and precision are last and are specified by one or two integers or stars
(*) separated by a period (.). The first number (or star) is the field width, the second is its
precision. If the precision is not specified, a default precision is chosen based on the conversion
type. For floats (%f), it is six decimal places and for strings it is the entire string. Precision
is not applicable to character or integer conversions and is ignored if specified. Precision may
be specified without the field width by use of single integer (or star) preceded by a period.
Again, the action is conversion type dependent. For strings (%s), the action is to print the first
N characters of the string or the entire string, whichever is shorter. For floats (%f), it will print
N decimal places but will extend the field to whatever size if required to print the whole number
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part of the float. The use of the star (*) as an output width or precision indicates that the width
or precision is specified as the next argument in the conversion list which allows for runtime
widths and precisions.

Ouput format options
Alignment
- left justified
default right justified
Padding
0 %d, %f, %s only, left fill with zeros, right fill with spaces.
+ %d, %f only, precede non-negative numbers with a +.
default left and right fill with spaces.
Width & precision
W minimum field width of W . W is either an integer or a * where the star

indicates that the width is the next argument in the parameter list.
W.P minimum field width of W , with a precision of P. W,P are integers or

stars, where stars indicate that they are to be set from the appropriate
arguments in the parameter list. Precision is ignored for %c and %d.

.P %s, print the first P characters of the string or the entire string
whichever is shorter. %f, print P decimal places in a field wide enough
to hold the integer and fractional parts of the number. %c and %d, use
whatever width is required. Again P is either an integer or a star where
the star indicates that it is to be taken from the next expression in the
parameter list.

default %c, %d, %s, use whatever width is required to exactly hold the data. %f,
use a precision of 6 and whatever width is required to hold the data.

16.4 Statements

nab statements describe the action the nab program is to perform. The expression statement
evaluates expressions. The if statement provides a two way branch. The while and for statements
provide loops. The break statement is used to “short circuit” or exit these loops. The continue
statement advances a for loop to its next iteration. The return statement assigns a function’s
value and returns control to the caller. Finally a list of statements can be enclosed in braces ({})
to create a compound statement.

16.4.1 Expression Statement

An expression statement is an expression followed by a semicolon. It evaluates the
expression. Many expression statements include an assignment operator and its evaluation will
update the values of those variables on the left hand side of the assignment operator. These
kinds of expression statements are usually called “assignment statements” in other languages.
Other expression statements consist of a single function call with its result ignored. These
statements take the place of “call statements” in other languages. Note that an expression
statement can contain any expression, even ones that have no lasting effect.
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mref = getpdb( "5p21.pdb" ); // "assignment" stmt
m = getpdb( "6q21.pdb" );
superimpose( m,"::CA",mref,"::CA" ); // "call" stmt
0; // expression stmt.

16.4.2 Delete Statement

nab provides the delete statement to remove elements of hashed arrays. The syntax is

delete h_array[ str ];

where h_array is a hashed array and str is a string valued expression. If the specified element
is in h_array it is removed; if not, the statement has no effect.

16.4.3 If Statement

The if statement is used to choose between two options based on the value of the if
expression. There are two kinds of if statements—the simple if and the if-else. The simple if
contains an expression and a statement. If the expression is true (any non-zero value), the
statement is executed. If the expression is false (0), the statement is skipped.

if( expr ) true_stmt;

The if-else statement places two statements under control of the if. One is executed if the
expression is true, the other if it is false.

if( expr )
true_stmt;

else
false_stmt;

16.4.4 While Statement

The while statement is used to execute the statement under its control as long as the the while
expression is true (non-zero). A compound statement is required to place more than one
statement under the while statement’s control.

while( expr ) stmt;
while( expr ) {

stmt_1;
stmt_2;
...
stmt_N ;

}
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16.4.5 For Statement

The for statement is a loop statement that allows the user to include initialization and an
increment as well as a loop condition in the loop header. The single statement under the
control of the for statement is executed as long as the condition is true (non-zero). A
compound statement is required to place more than one statement under control of a for. The
general form of the for statement is

for( expr_1; expr_2; expr_3 ) stmt;

which behaves like

expr_1;
while( expr_2 ) {

stmt;
expr_3;

}

expr_3 is generally an expression that computes the next value of the loop index. Any or all of
expr_1, expr_2 or expr_3 can be omitted. An omitted expr_2 is considered to be true, thus
giving rise to an “infinite” loop. Here are some for loops.

for( i = 1; i <= 10; i = i + 1 )
printf( "%3d\n", i ); // print 1 to 10
for( ; ; ) // "infinite" loop
{

getcmd( cmd ); // Exit better be in
docmd( cmd ); // getcmd() or docmd().

}

nab also includes a special kind of for statement that is used to range over all the entries of a
hashed array or all the atoms of a molecule. The forms are

// hashed version
for( str in h_array ) ~stmt;
// molecule version
for( a in mol ) ~stmt;

In the first code fragment, str is string and h_array is a hashed array. This loop sets str to each
key or string associated with data in h_array. Keys are returned in increasing lexical order. In
the second code fragment a is an atom and mol is a molecule. This loop sets a to each atom in
mol. The first atom is the first atom in the first residue of the first strand. Once all the atoms in
this residue have been visited, it moves to the first atom of the next residue in the first strand.
Once all atoms in all residues in the first strand have been visited, the process is repeated on the
second and subsequent strands in mol until all atoms have been visited. The order of the strands
of molecule is the order in which they were created using addstrand(). Residues in each strand
are numbered from 1 to N. The order of the atoms in a residue is the order in which the atoms
were listed in the reslib entry or pdbfile that that residue derives from.
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16.4.6 Break Statement

Execution of a break statement exits the immediately enclosing for or while loop. By placing
the break under control of an if conditional exits can be created. break statements are only
permitted inside while or for loops.

for( expr_1; expr_2; expr_3 ) {
...

if( expr ) break; // "break" out of loop
...

}

16.4.7 Continue Statement

Execution of a continue statement causes the immediately enclosing for loop to skip to its
next value. If the next value causes the loop control expression to be false, the loop is exited.
continue statements are permitted only inside while and for loops.

for( expr_1; expr_2; expr_3 ) {
... if( expr ) continue; // "continue" with next value
...

}

16.4.8 Return Statement

The return statement has two uses. It terminates execution of the current function returning
control to the point immediately following the call and when followed by an optional
expression, returns the value of the expression as the value of the function. A function’s
execution also ends when it “runs off the bottom”. When a function executes the last statement
of its definition, it returns even if that statement is not a return. The value of the function in
such cases is undefined.

return expr; // return the value expr

return; // return, function value undefined.

16.4.9 Compound Statement

A compound statement is a list of statements enclosed in braces. Compound statements are
required when a loop or an if has to control more than one statement. They are also required
to associate an else with an if other than the nearest unpaired one. Compound statements may
include other compound statements. Unlike C, nab compound statements are not blocks and
may not include declarations.

16.5 Structures

A struct is collection of data elements, where the elements are accessed via their names.
Unlike arrays which require all elements of an array to have the same type, elements of a
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structure can have different types. Users define a struct via the reserved word ‘struct’. Here’s a
simple example, a struct that could be used to hold a complex number.

struct cmplx_t { float r, i; } c;

This declares a nab variable, ‘c’, of user defined type ‘struct cmplx_t’. The variable, c, has two
float valued elements, ‘c.r’, ‘c.i’ which can be used like any other nab float variables:

c.r = -2.0; ... 5*c.i ... printf( "c.r,i = %8.3f, %8.3f\n", c.r, c.i );

Now, let’s look more closely at that struct declaration.

struct cmplx_t { float r, i; } c;

As mentioned before, every nab struct begins with the reserved word struct. This must be
followed by an identifier called the structure tag, which in this example is ‘cmplx_t’. Unlike
C/C++, a nab struct can not be anonymous.

Following the structure tag is a list of the struct’s element declarations surrounded by a left
and right curly bracket. Element declarations are just like ordinary nab variable declarations:
they begin with the type, followed by a comma separated list of variables and end with a semi-
colon. nab structures must contain at least one declaration containing at least one variable.
Also, nab struct elements are currently restricted to scalar values of the basic nab types, so nab
structs can not contain arrays or other structs. Note that in our example, both elements are in
one declaration, but two declarations would have worked as well.

The whole assembly ‘struct ... }’ serves to define a new type which can be used like any
other nab type to declare variables of that type, in this example, a single scalar variable, ‘c’.
And finally, like all other nab variable declarations, this one also ends with a semicolon.

Although nab structs can not contain arrays, nab allows users to create arrays, including
dynamic and hashed arrays of structs. For example

struct cmplx_t { float r, i; } a[ 10 ], da[ dynamic ], ha[ hashed ];

declares an ordinary, dynamic and hashed array of struct cmplx_t.
Up til now, we’ve only looked at complete struct declaration. Our example

struct cmplx_t { float r, i; } c;

contains all the parts of a struct declaration. However there are two other forms of struct
declarations. The first one is to define a type, as opposed to declaring variables:

struct cmplx_t { float r, i; };

defines a new type ‘struct cmplx_t’ but does not declare any variables of this type. This is quite
useful in that the type can be placed in a header file allowing it to be shared among parts of a
larger program.

The othe form of a struct declaration is this short form:

struct cmplx_t cv1, cv2;
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This form can only be used once the type has been defined, either via a type declaration (ie not
variable) or a complete type + variable declaration. In fact, once a struct type has been defined,
all subsequent declarations of variables of that type, including parameters, must use the short
form.

struct cmplx_t { float r, i; }; // define type type ‘struct cmplx_t’

struct cmplx_t c, ctab[ 10 ]; // define some vars

int f( int s, struct cmplx_t ct[1] ) // func taking array of

// struct cmplx_t { ... };

16.6 Functions

A function is a named group of declarations and statements that is executed as a unit by using
the function’s name in an expression. Functions may include special variables called parameters
that enable the same function to work on different data. All nab functions return a value which
can be ignored in the calling expression. Expression statements consisting of a single function
call where the return value is ignored resemble procedure call statements in other languages.

All parameters to user defined nab functions are passed by reference. This means that each
nab parameter operates on the actual data that was passed to the function during the call.
Changes made to parameters during the execution of the function will persist after the func-
tion returns. The only exception to this is if an expression is passed in as a parameter to a user
defined nab function. It this case, nab evaluates the expression, stores its value in a compiler
created temporary variable and uses that temporary variable as the actual parameter. For exam-
ple if a user were to pass in the constant 1 to an nab function which in turned used it and then
assigned it the value 6, the 6 would be stored in the temporary location and the external 1 would
be unchanged.

16.6.1 Function Definitions

An nab function definition begins with a header that describes the function value type, the
function name and the parameters if any. If a function does not have parameters, an empty
parameter list is still required. Following the header is a list of declarations and statements
enclosed in braces. The function’s declarations must precede all of its statements. A function
can include zero or more declarations and/or zero or more statements. The empty function—no
declarations and no statements is legal.

The function header begins with the reserved word specifying the type of the function. All
nab functions must be typed. An nab function can return a single value of any nab type. nab
functions can not return nab arrays. Following the type is an identifier which is the name of
the function. Each parameter declaration begins with the parameter type followed by its name.
Parameter declarations are enclosed in parentheses and separated by commas. If a function has
no parameters, there is nothing between the parentheses. Here is the general form of a function
definition:

ftype fname( ptype1 parm1, ... )
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{
decls

stmts

};

16.6.2 Function Declarations

nab requires that every function be declared or made known to the compiler before it is
used. Unfortunately this is not possible if functions used in one source file are defined in other
source files or if two functions are mutually recursive. To solve these problem, nab permits
functions to be declared as well as defined. A function declaration resembles the header of a
function definition. However, in place of the function body, the declaration ends with a
semicolon or a semicolon preceded by either the word c or the word fortran indicating the
external function is written in C or Fortran instead of nab.

ftype fname( ptype1 parm1, ... ) flang;

16.7 Points and Vectors

The nab type point is an object that holds three float values. These values can represent the
X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of a
point variable are accessed via attributes or suffixes added to the variable name. The three point
attributes are "x", "y" and "z". Many nab builtin functions use, return or create point values. When
used in this context, the three attributes represent the point’s X, Y and Z coordinates. nab allows
users to combine point values with numbers in expressions using conventional algebraic or
infix notation. nab does not support operations between numbers and points where the number
must be converted into a vector to perform the operation. For example, if p is a point then
the expression p + 1. is an error, as nab does not know how to expand the scalar 1. into a
3-vector. The following table contains nab point and vector operations. p, q are point variables;
s a numeric expression.

Operator Example Precedence Explanation
Unary - -p 8 Vector negation, same as -1 * p.

^ pˆ q 7 Compute the cross or vector product of p, q.
@ p @ q 6 Compute the scalar or dot product of p, q.
* s * p 6 Multiply p by s, same as p * s.
/ p / s 6 Divide p by s, s / p not allowed.
+ p + q 5 Vector addition

Binary - p - q 5 Vector subtraction
== p == q 4 Test if p and q equal.
!= p != q 4 Test if p and q are different.
= p = q 1 Set the value of p to q.
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16.8 String Functions

nab provides the following awk-like string functions. Unlike awk, the nab functions do not
have optional parameters or builtin variables that control the actions or receive results from
these functions. nab strings are indexed from 1 to N where N is the number of characters in the
string.

int length( string s );
int index( string s, string t );
int match( string s, string r, int rlength );
string substr( string s, int pos, int len );
int split( string s, string fields[], string fsep );
int sub( string r, string s, string t );
int gsub( string r, string s, string t );

length() returns the length of the string s. Both "" and NULL have length 0. index() returns the
position of the left most occurrence of t in s. If t is not in s, index() returns 0. match returns
the position of the longest leftmost substring of s that matches the regular expression r. The
length of this substring is returned in rlength. If no substring of s matches r, match() returns 0
and rlength is set to 0. substr() extracts the substring of length len from s beginning at position
pos. If len is greater than the rest of the string beginning at pos, return the substring from pos
to N where N is the length of the string. If pos is < 1 or > N, return "".

split() partitions s into fields separated by fsep. These field strings are returned in the array
fields. The number of fields is returned as the function value. The array fields must be allocated
before split() is called and must be large enough to hold all the field strings. The action of split()
depends on the value of fsep. If fsep is a string containing one or more blanks, the fields of s are
considered to be separated by runs of white space. Also, leading and trailing white space in s do
not indicate an empty initial or final field. However, if fsep contains any value but blank, then
fields are considered to be delimited by single characters from fsep and initial and/or trailing
fsep characters do represent initial and/or trailing fields with values of "". NULL and the empty
string "" have 0 fields. If both s and fsep are composed of only white space then s also has 0
fields. If fsep is not white space and s consists of nothing but characters from fsep, s will have
N + 1 fields of "" where N is the number of characters of s.

sub() replaces the leftmost, longest substring of the target string t that matches the regular
expression r with the substitution string s. gsub() replaces all non-overlapping substrings of t
that match the regular expression r with the string s. Each function returns the number of
substitutions made. Unlike awk, the regular expression r is a string variable, with no
surrounding ’/’ characters. For example:

int nmatch;

string regexp, substitute, target;

target = “water, water, everywhere”;

regexp = “at”;

substitute = “ith”;

nmatch = gsub( regexp, substitute, target);

After this, target will contain “wither, wither, everywhere”, and nmatch will be 2.
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The special substitute character ’&’ stands for the precise substring matched by the regular
expression. Hence

target = “daabaaa”;

sub( “a+”, “c&c”, target);

will yield “dcaacbaaa”. Note what “leftmost, longest substring” means here: “lefmost” takes
precedence over “longest”.

16.9 Math Functions

nab provides the builtin mathematical functions shown in Table 16.1. Since nab is intended
for chemical structure calculations which always measure angles in degrees, the argument to the
trig functions—cos(), sin() and tan()— and the return value of the inverse trig functions—acos(),
asin(), atan() and atan2()—are in degrees instead of radians as they are in other languages.
Note that the pseudo-random number functions have a different calling sequence than in earlier
versions of NAB; you may have to edit and re-compile earlier programs that used those routines.

16.10 System Functions

int exit( int i );
int system( string cmd );

The function exit() terminates the calling nab program with return status i. system() invokes a
subshell to execute cmd. The subshell is always /bin/sh. The return value of system() is the
return value of the subshell and not the command it executed.

16.11 I/O Functions

nab uses the C I/O model. Instead of special I/O statements, nab I/O is done via calls to spe-
cial builtin functions. These function calls have the same syntax as ordinary function calls but
some of them have different semantics, in that they accept both a variable number of parameters
and the parameters can be various types. nab uses the underlying C compiler’s printf()/scanf()
system to perform I/O on int, float and string objects. I/O on point is via their float x, y and z
attributes. molecule I/O is covered in the next section, while bounds can be written using dump-
bounds(). Transformation matrices can be written using dumpmatrix(), but there is currently no
builtin for reading them. The value of an nab file object may be written by treating as an integer.
Input to file variables is not defined.

16.11.1 Ordinary I/O Functions

nab provides these functions for stream or FILE * I/O of int, float and string objects.
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Inverse Trig Functions.
float acos( float x ); Return cos−1(x) in degrees.
float asin( float x ); Return sin−1(x) in degrees.
float atan( float x ); Return tan−1(x) in degrees.
float atan2( float x ); Return tan -1 ( y / x ) in degrees. By keeping x and y

separate, 90o can be returned without encountering a
zero divide. Also, atan2 will return an angle in the
full range [-180o, 180o].

Trig Functions
float cos( float x ); Return cos( x ), where x is in degrees.
float sin( float x ); Return sin( x ), where x is in degrees.
float tan( float x ); Return tan( x ), where x is in degrees.
Conversion Functions.
float atof( string str ); Interpret the next run of non blank characters in str as

a float and return its value. Return 0 on error.
int atoi( string str ); Interpret the next run of non blank characters in str as

an int and return its value. Return 0 on error.
Other Functions.
float rand2(); Return a pseudo-random number in (0,1).
float gauss( float mean, float sd ); Return a pseudo-random number taken from a

Gaussian distribution with the given mean and
standard deviation. The rand2() and gauss() routines
share a common seed.

int setseed( int seed ); Reset the pseudo-random number sequence with the
new seed, which must be a negative integer.

int rseed( ); Use the system time() command to set the random
number sequence with a reasonably random seed.
Returns the seed it used; this could be used in a later
call to setseed() to regenerate the same sequence of
pseudo-random values.

float ceil( float x ); Return dxe.
float exp( float x ); Return ex.
float cosh( float x ); Return the hyperbolic cosine of x.
float fabs( float x ); Return |x|.
float floor( float x ); Return bxc.
float fmod( float x, float y ); Return r, the remainder of x with respect to y; the

signs of r and y are the same.
float log( float x ); Return the natural logarithm of x.
float log10( float x ); Return the base 10 logarithm of x.
float pow( float x, float y ); Return xy, x > 0.
float sinh( float x ); Return the hyperbolic sine of x.
float tanh( float x ); Return the hyperbolic tangent of x.
float sqrt( float x ); Return positive square root of x, x >= 0.

Table 16.1: NAB built-in mathematical functions
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int fclose( file f );
file fopen( string fname, string mode );
int unlink( string fname );
int printf( string fmt, ... );
int fprintf( file f, string fmt, ... );
string sprintf( string fmt, ... );
int scanf( string fmt, ... );
int fscanf( file f, string fmt, ... );
int sscanf( string str, string fmt, ... );
string getline( file f );

fclose() closes (disconnects) the file represented by f. It returns 0 on success and -1 on failure.
All open nab files are automatically closed when the program terminates. However, since the
number of open files is limited, it is a good idea to close open files when they are no longer
needed. The system call unlink removes (deletes) the file.

fopen() attempts to open (prepare for use) the file named fname with mode mode. It returns
a valid nab file on success, and NULL on failure. Code should thus check for a return value of
NULL, and do the appropriate thing. (An alternative, safe_fopen() sends an error message to
stderr and exits on failure; this is sometimes a convenient alternative to fopen() itself, fitting with
a general bias of nab system functions to exit on failure, rather than to return error codes that
must always be processed.) Here are the most common values for mode and their meanings.
For other values, consult any standard C reference.

fopen() mode values
“r” Open for reading. The file fname must exist and be readable by

the user.
“w” Open for writing. If the file exists and is writable by the user,

truncate it to zero length. If the file does not exist, and if the
directory in which it will exist is writable by the user, then

create it.
“a” Open for appending. The file must exist and be writable by the

user.

The three functions printf(), fprintf() and sprintf() are for formatted (ASCII) output to stdout,
the file f and a string. Strictly speaking, sprintf() does not perform output, but is discussed here
because it acts as if “writes” to a string. Each of these functions uses the format string fmt to
direct the conversion of the expressions that follow it in the parameter list. Format strings and
expressions are discussed Format Expressions. The first format descriptor of fmt is used to
convert the first expression after fmt, the second descriptor, the next expression etc. If there are
more expressions than format descriptors, the extra expressions are not converted. If there are
fewer expressions than format descriptors, the program will likely die when the function tries
to covert non-existent data.

The three functions scanf(), fscanf() and sscanf() are for formatted (ASCII) input from stdin,
the file f and the string str. Again, sscanf() does not perform input but the function behaves like
it is “reading” from str. The action of these functions is similar to their output counterparts in
that the format expression in fmt is used to direct the conversion of characters in the input and
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store the results in the variables specified by the parameters following fmt. Format descriptors
in fmt correspond to variables following fmt, with the first descriptor corresponding to the first
variable, etc. If there are fewer descriptors than variables, then extra variables are not assigned;
if there are more descriptors than variables, the program will most likely die due to a reference
to a non-existent address.

There are two very important differences between nab formatted I/O and C formatted I/O. In
C, formatted input is assigned through pointers to the variables (&var). In nab formatted I/O,
the compiler automatically supplies the addresses of the variables to be assigned The second
difference is when a string object receives data during an nab formatted I/O. nab strings are
allocated when needed. However, in the case of any kind of scanf() to a string or the implied
(and hidden) writing to a string with sprintf(), the number of characters to be written to the string
is unknown until the string has been written. nab automatically allocates strings of length 256
to hold such data with the idea that 256 is usually big enough. However, there will be cases
where it is not big enough and this will cause the program to die or behave strangely as it will
overwrite other data.

Also note that the default precision for floats in nab is double precision (see $NABHOME/sr-
c/defreal.h, since this could be changed, or may be different on your system.) Formats for floats
for the scanf functions then need to be "%lf" rather than "%f".

The getline() function returns a string that has the next line from file f. The end-of-line
character has been stripped off.

16.11.2 matrix I/O

NAB uses 4x4 matrices to represent coordinate transformations:

r r r 0

r r r 0

r r r 0

dx dy dz 1

The r’s are a 3x3 rotation matrix, and the d’s are the translations along the X,Y and Z axes.
NAB coordinates are row vectors which are transformed by appending a 1 to each point

(x,y,z) -> (x,y,z,1), post multiplying by the transformation matrix, and then discarding the final
1 in the new point.

Two builtins are provided for reading/writing transformation matrices.

matrix getmatrix(string filename);

Read the matrix from the file with name filename. Use "-" to read a matrix from stdin. A
matrix is 4 lines of 4 numbers. A line of less than 4 numbers is an error, but anything after the
4th number is ignored. Lines beginning with a ’#’ are comments. Lines after the 4th data line
are not read. Return a matrix with all zeroes on error, which can be tested:

mat = getmatrix("bad.mat");

if(!mat){ fprintf(stderr, "error reading matrix\n"); ... }

Keep in mind that nab transformations are intended for use on molecular coordinates, and that
transformations like scaling and shearing [which can not be created with nab directly but can
now be introduced via getmatrix()] may lead to incorrect on non-sensical results.
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int putmatrix(string filename, matrix mat);

Write matrix mat to to file with name filename. Use "-" to write a matrix to stdout. There is
currently no way to write matrix to stderr. A matrix is writen as 4 lines of 4 numbers. Return 0
on success and 1 on failure.

16.12 Molecule Creation Functions

The nab molecule type has a complex and dynamic internal structure organized in a three
level hierarchy. A molecule contains zero or more named strands. Strand names are strings of
any characters except white space and can not exceed 255 characters in length. Each strand in
a molecule must have a unique name. Strands in different molecules may have the same name.
A strand contains zero or more residues. Residues in each strand are numbered from 1. There
is no upper limit on the number of residues a strand may contain. Residues have names, which
need not be unique. However, the combination of strand-name:res-num is unique for every
residue in a molecule. Finally residues contain one or more atoms. Each atom name in a
residue should be distinct, although this is neither required nor checked by nab. nab uses the
following functions to create and modify molecules.

molecule newmolecule();
molecule copymolecule( molecule mol );
int freemolecule( molecule mol );
int freeresidue( residue r );
int addstrand( molecule mol, string sname );
int addresidue( molecule mol, string sname, residue res );
int connectres( molecule mol, string sname, int res1, string aname1,

int res2, string aname2 );
int mergestr( molecule mol1, string str1, string end1, molecule mol2, string str2, string end2 );

newmolecule() creates an “empty” molecule—one with no strands, residues or atoms. It returns
NULL if it can not create it. copymolecule() makes a copy of an existing molecule and returns
a NULL on failure. freemolecule() and freeresidue() are used to deallocate memory set aside
for a molecule or residue. In most programs, these functions are usually not necessary, but
should be used when a large number of molecules are being copied. Once a molecule has been
created, addstrand() is used to add one or more named strands. Strands can be added at any to
a molecule. There is no limit on the number of strands in a molecule. Strands can be added
to molecules created by getpdb() or other functions as long as the strand names are unique.
addstrand() returns 0 on success and 1 on failure. Finally addresidue() is used to add residues
to a strand. The first residue is numbered 1 and subsequent residues are numbered 2, 3, etc.
addresidue() also returns 0 on success and 1 on failure.

nab requires that users explicitly make all inter-residue bonds. connectres() makes a bond
between two atoms of different residues of the strand with name sname. It returns 0 on success
and 1 on failure. Atoms in different strands can not be bonded. The bonding between atoms in
a residue is set by the residue library entry and can not be changed at runtime at the nab level.

The last function mergestr() is used to merge two strands of the same molecule or copy a
strand of the second molecule into a strand of the first. The residues of a strand are ordered

463



16 NAB: Language Reference

from 1 to N, where N is the number of residues in that strand. nab imposes no chemical
ordering on the residues in a strand. However, since the strands are generally ordered, there are
four ways to combine the two strands. mergestr() uses the two values "first" and "last" to stand
for residues 1 and N. The four combinations and their meanings are shown in the next table. In
the table, str1 has N residues and str2 has M residues.

end1 end2 Action
first first The residues of str2 are reversed and then inserted before those

of str1: M , ..., 2, 1 : 1 , 2 , ..., N
first last The residues of str2 are inserted before those of str1: 1 , 2, ...,

M : 1 , 2 , ..., N
last first The residues of str2 are inserted after those of str1: 1 , 2 , ..., N

: 1 , 2 , ..., M
last last The residues of str2 are reversed and then inserted after those

of str1: 1 , 2 , ..., N : M , ..., 2 , 1

16.13 Creating Biopoloymers

molecule linkprot( string strandname, string seq, string reslib );
molecule link_na( string strandname, string seq, string reslib, string natype,

string opts );

Although many nab functions don’t care what kind of molecule they operate on, many oper-
ations require molecules that are compatible with the Amber force field libraries (see Chapter
6). The best and most general way to do this is to use tleap commands, described in Chapter 8).
The linkprot() and link_na() routines given here are limited commands that may sometimes be
useful, and are included for backwards compatibility with earlier versions of NAB.

linkprot() takes a strand identifier and a sequence, and returns a molecule with this sequence.
The molecule has an extended structure, so that the φ , ψand ω angles are all 180o . The reslib
input determines which residue library is used; if it is an empty string, the AMBER 94 all-atom
library is used, with charged end groups at the N and C termini. All nab residue libraries are
denoted by the suffix .rlb and LEaP residue libraries are denoted by the suffix .lib. If reslib
is set to "nneut", "cneut" or "neut", then neutral groups will be used at the N-terminus, the
C-terminus, or both, respectively.

The seq string should give the amino acids using the one-letter code with upper-case let-
ters. Some non-standard names are: "H" for histidine with the proton on the δ position; "h"
for histidine with the proton at the ε position; "3" for protonated histidine; "n" for an acetyl
blocking group; "c" for an HNMe blocking group, "a" for an NH 2 group, and "w" for a water
molecule. If the sequence contains one or more "|" characters, the molecule will consist of
separate polypeptide strands broken at these positions.

The link_na() routine works much the same way for DNA and RNA, using an input residue
library to build a single-strand with correct local geometry but arbitrary torsion angles connect-
ing one residue to the next. natype is used to specify either DNA or RNA. If the opts string
contains a "5", the 5’ residue will be "capped" (a hydrogen will be attached to the O5’ atom); if
this string contains a "3" the O3’ atom will be capped.
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The newer (and generally recommended) way to generate biomolecules uses the get-
pdb_prm() function described in Chapter 19.

16.14 Fiber Diffraction Duplexes in NAB

The primary function in NAB for creating Watson-Crick duplexes based on fibre-diffraction
data is fd_helix:

molecule fd_helix( string helix_type, string seq, string acid_type );

fd_helix() takes as its arguments three strings - the helix type of the duplex, the sequence of one
strand of the duplex, and the acid type (which is "dna" or "rna"). Available helix types are as
follows:

Helix type options for fd_helix()
arna Right Handed A-RNA (Arnott)

aprna Right Handed A’-RNA (Arnott)
lbdna Right Handed B-DNA (Langridge)
abdna Right Handed B-DNA (Arnott)
sbdna Left Handed B-DNA (Sasisekharan)
adna Right Handed A-DNA (Arnott)

The molecule returns contains a Watson-Crick double-stranded helix, with the helix axis
along z. For a further explanation of the fd_helix code, please see the code comments in the
source file fd_helix.nab.

References for the fibre-diffraction data:

1. Structures of synthetic polynucleotides in the A-RNA and A’-RNA conformations. X-ray
diffraction analyses of the molecule conformations of (polyadenylic acid) and (polyi-
nosinic acid).(polycytidylic acid). Arnott, S.; Hukins, D.W.L.; Dover, S.D.; Fuller, W.;
Hodgson, A.R. J.Mol. Biol. (1973), 81(2), 107-22.

2. Left-handed DNA helices. Arnott, S; Chandrasekaran, R; Birdsall, D.L.; Leslie, A.G.W.;
Ratliff, R.L. Nature (1980), 283(5749), 743-5.

3. Stereochemistry of nucleic acids and polynucleotides. Lakshimanarayanan, A.V.;
Sasisekharan, V. Biochim. Biophys. Acta 204, 49-53.

4. Fuller, W., Wilkins, M.H.F., Wilson, H.R., Hamilton, L.D. and Arnott, S. (1965). J. Mol.
Biol. 12, 60.

5. Arnott, S.; Campbell Smith, P.J.; Chandraseharan, R. in Handbook of Biochemistry and
Molecular Biology, 3rd Edition. Nucleic Acids–Volume II, Fasman, G.P., ed. (Cleveland:
CRC Press, 1976), pp. 411-422.
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16.15 Reduced Representation DNA Modeling Functions

nab provides several functions for creating the reduced representation models of DNA
described by R. Tan and S. Harvey.[256] This model uses only 3 pseudo-atoms to represent a
base pair. The pseudo atom named CE represents the helix axis, the atom named SI represents
the position of the sugar-phosphate backbone on the sense strand and the atom named MA
points into the major groove. The plane described by these three atoms ( and a corresponding
virtual atom that represents the anti sugar-phosphate backbone ) represents quite nicely an all
atom watson-crick base pair plane.

molecule dna3( int nbases, float roll, float tilt, float twist, float rise );
molecule dna3_to_allatom( molecule m_dna3, string seq, string aseq, string reslib, string natype );
molecule allatom_to_dna3( molecule m_allatom, string sense, string anti );

The function dna3() creates a reduced representation DNA structure. dna3() takes as parameters
the number of bases nbases, and four helical parameters roll, tilt, twist, and rise.

dna3_to_allatom() makes an all-atom dna model from a dna3 molecule as input. The
molecule m_dna3 is a dna3 molecule, and the strings seq and aseq are the sense and anti
sequences of the all-atom helix to be constructed. Obviously, the number of bases in the all-
atom model should be the same as in the dna3 model. If the string aseq is left blank ( "" ),
the sequence generated is the wc_complement() of the sense sequence. reslib names the residue
library from which the all-atom model is to be constructed. If left blank, this will default to
all_nucleic94.lib The last parameter is either "dna" or "rna" and defaults to dna if left blank.

The allatom_to_dna3() function creates a dna3 model from a double stranded all-atom helix.
The function takes as parameters the input all-atom molecule m_allatom, the name of the sense
strand in the all-atom molecule, sense and the name of the anti strand, anti.

16.16 Molecule I/O Functions

nab provides several functions for reading and writing molecule and residue objects.

residue getresidue( string rname, string rlib );
molecule getpdb( string fname [, string options ] );
molecule getcif( string fname, string blockId );
int putpdb( string fname, molecule mol [, string options ] );
int putcif( string fname, molecule mol );
int putbnd( string fname, molecule mol );
int putdist( string fname, molecule mol );

The function getresidue() returns a copy of the residue with name rname from the residue
library named rlib. If it can not do so it returns the value NULL.

The function getpdb() converts the contents of the PDB file with name fname into an nab
molecule. getpdb() creates bonds between any two atoms in the same residue if their distance
is less than: 1.20 Å if either atom is a hydrogen, 2.20 Å if either atom is a sulfur, and 1.85 Å
otherwise. Atoms in different residues are never bonded by getpdb().
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keyword meaning
-pqr Put (or get) charges and radii into the columns following the xyz

coordinates.
-nobocc Do not put occupancy and b-factor into the columns following the xyz

coordinates. This is implied if -pqr is present, but may also be used to
save space in the output file, or for compatibility with programs that do
not work well if such data is present.

-brook Convert atom and residue names to the conventions used in Brookhaven
PDB (version 2) files. This often gives greater compatibility with other
software that may expect these conventions to hold, but the conversion
may not be what is desired in many cases. Also, put the first character of
the atom name in column 78, a preliminary effort at identifying it as in
the most recent PDB format. If the -brook flag is not present, no
conversion of atom and residue names is made, and no id is in column
78.

-wwpdb Same as the -brook option, except use the “wwPDB” (aka version 3)
residue and atom naming scheme.

-nocid For getpdb, ignore the input chain id’s (column 22 of PDB-format files),
and generate strand names as consecutive integers. For putpdb, do not
put the chain-id in the output (i.e., if this flag is present, the chain-id
column will be blank). This can be useful when many water molecules
are present.

-allcid If set, create a chain ID for every strand in the molecule being written.
Use the strand’s name if it is an upper case letter, else use the next free
upper case letter. Use a blank if no more upper case letters are available.
Default is false.

-tr Do not start numbering residues over again when a new chain is
encountered, i.e., the residue numbers are consecutive across chains, as
required by some force-field programs like Amber.

Table 16.2: Options for getpdb and putpdb.

getpdb() creates a new strand each time the chain id changes or if the chain id remains the
same and a TER card is encountered. The strand name is the chain id if it is not blank and "N",
where N is the number of that strand in the molecule beginning with 1. For example, a PDB
file containing chain with no chain ID, followed by chain A, followed by another blank chain
would have three strands with names "1", "A" and "3". getpdb() returns a molecule on success
and NULL on failure.

The optional final argument to getpdb can be used for a variety of purposes, which are out-
lined in the table below.

The (experimental!) function getcif is like getpdb, but reads an mmCIF (macro-molecular
crystallographic information file) formatted file, and extracts "atom-site" information from data
block blockID. You will need to compile and install the cifparse library in order to use this.
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The next group of builtins write various parts of the molecule mol to the file fname. All return
0 on success and 1 on failure. If fname exists and is writable, it is overwritten without warning.
putpdb() writes the molecule mol into the PDB file fname. If the "resid" of a residue has been
set (either by using getpdb to create the molecule, or by an explicit operation in an nab routine)
then columns 22-27 of the output pdb file will use it; otherwise, nab will assign a chain-id and
residue number and use those. In this latter case, a molecule with a single strand will have a
blank chain-id; if there is more than one strand, each strand is written as a separate chain with
chain id "A" assigned to the first strand in mol, "B" to the second, etc. Options for putpdb are
given in Table 16.2.

putbnd() writes the bonds of mol into fname. Each bond is a pair of integers on a line. The
integers refer to atom records in the corresponding PDB-style file. putdist() writes the
interatomic distances between all atoms of mol a i , a j where i< j, in this seven column format.

rnum1 rname1 aname1 rnum2 rname2 aname2 distance

16.17 Other Molecular Functions

matrix superimpose( molecule mol, string aex1, molecule r_mol, string aex2 );
int rmsd( molecule mol, string aex1, molecule r_mol, string aex2, float r );
float angle( molecule mol, string aex1, string aex2, string aex3 );
float anglep( point pt1, point pt2, point pt3 );
float torsion( molecule mol, string aex1, string aex2, string aex3, string aex4 );
float torsionp( point pt1, point pt2, point pt3, point pt4 );
float dist( molecule mol, string aex1, string aex2 );
float distp( point pt1, point pt2 );
int countmolatoms( molecule mol, string aex );
int sugarpuckeranal( molecule mol, int strandnum, int startres, int endres );
int helixanal( molecule mol );
int plane( molecule mol, string aex, float A, float B, float C );
float molsurf( molecule mol, string aex, float probe_rad );

superimpose() transforms molecule mol so that the root mean square deviation between corre-
sponding atoms in mol and r_mol is minimized. The corresponding atoms are those selected
by the atom expressions aex1 applied to mol and aex2 applied to r_mol. The atom expressions
must select the same number of atoms in each molecule. No checking is done to insure that
the atoms selected by the two atom expressions actually correspond. superimpose() returns the
transformation matrix it found. rmsd() computes the root mean square deviation between the
pairs of corresponding atoms selected by applying aex1 to mol and aex2 to r_mol and returns
the value in r. The two atom expressions must select the same number of atoms. Again, it is
the user’s responsibility to insure the two atom expressions select corresponding atoms. rmsd()
returns 0 on success and 1 on failure.

angle() and anglep() compute the angle in degrees between three points. angle() uses atoms
expressions to determine the average coordinates of the sets. anglep() takes as an argument three
explicit points. Similarly, torsion() and torsionp() compute a torsion angle in degrees defined by
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four points. torsion() uses atom expressions to specify the points. These atom expression match
sets of atoms in mol. The points are defined by the average coordinates of the sets. torsionp()
uses four explicit points. Both functions return 0 if the torsion angle is not defined.

dist() and distp() compute the distance in angstroms between two explicit atoms. dist() uses
atom expressions to determine which atoms to include in the calculation. An atom expression
which selects more than one atom results in the distance being calculated from the average
coordinate of the selected atoms. distp() returns the distance between two explicit points. The
function countmolatoms() returns the number of atoms selected by aex in mol.

sugarpuckeranal() is a function that reports the various torsion angles in a nucleic acid struc-
ture. helixanal() is an interactive helix analysis function based on the methods described by
Babcock et al..[152]

The plane() routine takes an atom expression aex and calculates the least-squares plane and
returns the answer in the form z = Ax + By + C. It returns the number of atoms used to calculate
the plane.

The molsurf() routine is an NAB adaptation of Paul Beroza’s program of the same name. It
takes coordinates and radii of atoms matching the atom expression aex in the input molecule,
and returns the molecular surface area (the area of the solvent-excluded surface), in square
angstroms. To compute the solvent-accessible area, add the probe radius to each atom’s radius
(using a for( a in m ) loop), and call molsurf with a zero value for probe_rad.

16.18 Debugging Functions

nab provides the following builtin functions that allow the user to write the contents of
various nab objects to an ASCII file. The file must be opened for writing before any of these
functions are called.

int dumpmatrix( file, matrix mat );
int dumpbounds( file f, bounds b, int binary );
float dumpboundsviolations( file f, bounds b, int cutoff );
int dumpmolecule( file f, molecule mol, int dres, int datom, int dbond );
int dumpresidue( file f, residue res, int datom, int dbond );
int dumpatom( file f, residue res, int anum, int dbond );
int assert( condition );
int debug( expression(s) );

dumpmatrix() writes the 16 float values of mat to the file f. The matrix is written as four rows
of four numbers. dumpbounds() writes the distance bounds information contained in b to the
file f using this eight column format:

atom-number1 atom-number2 lower upper

If binary is set to a non-zero value, equivalent information is written in binary format, which
can save disk-space, and is much faster to read back in on subsequent runs.

dumpboundsviolations() writes all the bounds violations in the bounds object that are more
than cutoff, and returns the bounds violation energy. dumpmolecule() writes the contents of mol
to the file f. If dres is 1, then detailed residue information will also be written. If datom or
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dbond is 1, then detailed atom and/or bond information will be written. dumpresidue() writes
the contents of residue res to the file f. Again if datom or dbond is 1, detailed information about
that residue’s atoms and bonds will be written. Finally dumpatom() writes the contents of the
atom anum of residue res to the file f. If dbond is 1, bonding information about that atom is also
written.

The assert() statement will evaluate the condition expression, and terminate (with an error
message) if the expression is not true. Unlike the corresponding "C" language construct
(which is a macro), code is generated at compile time to indicate both the file and line number
where the assertion failed, and to parse the condition expression and print the values of
subexpressions inside it. Hence, for a code fragment like:

i=20; MAX=17;
assert( i < MAX );

the error message will provide the assertion that failed, its location in the code, and the current
values of "i" and "MAX". If the -noassert flag is set at compile time, assert statements in the
code are ignored.

The debug() statement will evaluate and print a comma-separated expression list along with
the source file(s) and line number(s). Continuing the above example, the statement

debug( i, MAX );

would print the values of "i" and "MAX" to stdout, and continue execution. If the -nodebug flag
is set at compile time, debug statements in the code are ignored.

16.19 Time and date routines

NAB incorporates a few interfaces to time and date routines:

string date();
string timeofday();
string ftime( string fmt );

The date() routine returns a string in the format "03/08/1999", and the timeofday() routine re-
turns the current time as "13:45:00". If you need access to more sophisticated time and date
functions, the ftime() routine is just a wrapper for the standard C routine strftime, where the
format string is used to determine what is output; see standard C documentation for how this
works.

16.20 Computational resource consumption functions

NAB has a small number of functions to provide information about computational resources
used during the run:

int mme_timer();

int mme_rism_max_memory();
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mme_timer() provides tables of execution times for mme functions executed. It does not provide
a complete summary nor does it include functions not in the mme family. It is, however, useful
for identifying the most expensive routines. mme_rism_max_memory() reports the maximum
amount of memory allocated during a 3D-RISM calculation.
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This chapter describes NAB functions to create and manipulate molecules through a variety
of rigid-body transformations. This capability, when combined with distance geometry (de-
scribed in the next chapter) offers a powerful approach to many problems in initial structure
generation.

17.1 Transformation Matrix Functions

nab uses 4×4 matrices to hold coordinate transformations. nab provides these functions to
create transformation matrices.

matrix newtransform( float dx, float dy, float dz, float rx, float ry, float rz );
matrix rot4( molecule mol, string aex1, string aex2, float ang );
matrix rot4p( point p1, point p2, float angle );

newtransform() creates a 4×4 matrix that will rotate an object by rz degrees about the Z axis,
ry degrees about the Y axis, rx degrees about the X axis and then translate the rotated object
by dx, dy, dz along the X, Y and Z axes. All rotations and transformations are with respect the
standard X, Y and Z axes centered at (0,0,0). rot4() and rot4p() create transformation matrices
that rotate an object about an arbitrary axis. The rotation amount is in degrees. rot4() uses two
atom expressions to define an axis that goes from aex1 to aex2. If an atom expression matches
more that one atom in mol, the average of the coordinates of the matched atoms are used. If
an atom expression matches no atoms in mol, the zero matrix is returned. rot4p() uses explicit
points instead of atom expressions to specify the axis. If p1 and p2 are the same, the zero matrix
is returned.

17.2 Frame Functions

Every nab molecule has a “frame” which is three orthonormal vectors and their origin. The
frame acts like a handle attached to the molecule allowing control over its movement. Two
frames attached to different molecules allow for precise positioning of one molecule with
respect to the other. These functions are used in frame creation and manipulation. All return 0
on success and 1 on failure.

int setframe( int use, molecule mol, string org, string xtail, string xhead,
string ytail, string yhead );

int setframep( int use, molecule mol, point org, point xtail, point xhead,
point ytail, point yhead );

int alignframe( molecule mol, molecule r_mol );
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setframe() and setframep() create coordinate frames for molecule mol from an origin and two
independent vectors. In setframe(), the origin and two vectors are specified by atom expressions.
These atom expressions match sets of atoms in mol. The average coordinates of the selected
sets are used to define the origin (org), an X-axis (xtail to xhead) and a Y-axis (ytail to yhead).
The Z-axis is created as X×Y. Since it is unlikely that the original X and Y axes are orthogonal,
the parameter use specifies which of them is to be a real axis. If use == 1, then the specified
X-axis is the real X-axis and Y is recreated from Z×X. If use == 2, then the specified Y-axis is
the real Y-axis and X is recreated from Y×Z. setframep() works exactly the same way except
the vectors and origin are specified as explicit points.

alignframe() transforms mol to superimpose its frame on the frame of r_mol. If r_mol is NULL,
alignframe() transforms mol to superimpose its frame on the standard X,Y,Z directions centered
at (0,0,0).

17.3 Functions for working with Atomic Coordinates

nab provides several functions for getting and setting user defined sets of molecular
coordinates.

int setpoint( molecule mol, string aex, point pt );
int setxyz_from_mol( molecule mol, string aex, point pts[] );
int setxyzw_from_mol( molecule mol, string aex, float xyzw[] );
int setmol_from_xyz( molecule mol, string aex, point pts[] );
int setmol_from_xyzw( molecule mol, string aex, float xyzw[] );
int transformmol( matrix mat, molecule mol, string aex );
residue transformres( matrix mat, residue res, string aex );

setpoint() sets pt to the average value of the coordinates of all atoms selected by the atom ex-
pression aex. If no atoms were selected it returns 1, otherwise it returns a 0. setxyz_from_mol()
copies the coordinates of all atoms selected by the atom expression aex to the point array pt.
It returns the number of atoms selected. setmol_from_xyz() replaces the coordinates of the se-
lected atoms from the values in pt. It returns the number of replaced coordinates. The routines
setxyzw_from_mol and setmol_from_xyzw work in the same way, except that they use four-
dimensional coordinates rather than three-dimensional sets.

transformmol() applies the transformation matrix mat to those atoms of mol that were selected
by the atom expression aex. It returns the number of atoms selected. transformres() applies the
transformation matrix mat to those atoms of res that were selected by the atom expression aex
and returns a transformed copy of the input residue. It returns NULL if the operation failed.

17.4 Symmetry Functions

Here we describe a set of NAB routines that provide an interface for rigid-body transforma-
tions based on crystallographic, point-group, or other symmetries. These are primarily higher-
level ways to creating and manipulating sets of transformation matrices corresponding to com-
mon types of symmetry operations.
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17.4.1 Matrix Creation Functions

int MAT_cube( point pts[3], matrix mats[24] )
int MAT_ico( point pts[3], matrix mats[60] )
int MAT_octa( point pts[3], matrix mats[24] )
int MAT_tetra( point pts[3], matrix mats[12] )
int MAT_dihedral( point pts[3], int nfold, matrix mats[1] )
int MAT_cyclic( point pts[2], float ang, int cnt, matrix mats[1] )
int MAT_helix( point pts[2], float ang, float dst, int cnt, matrix mats[1] )
int MAT_orient( point pts[4], float angs[3], matrix mats[1] )
int MAT_rotate( point pts[2], float ang, matrix mats[1] )
int MAT_translate( point pts[2], float dst, matrix mats[1] )

These two groups of functions produce arrays of matrices that can be applied to objects to
generate point group symmetries (first group) or useful transformations (second group). The
operations are defined with respect to a center and a set of axes specified by the points in
the array pts[]. Every function requires a center and one axis which are pts[1] and the vector
pts[1]→pts[2]. The other two points (if required) define two additional directions: pts[1]→pts[3]
and pts[1]→pts[4]. How these directions are used depends on the function.

The point groups generated by the functions MAT_cube(), MAT_ico(), MAT_octa() and
MAT_tetra() have three internal 2-fold axes. While these 2-fold are orthogonal, the 2 direc-
tions specified by the three points in pts[] need only be independent (not parallel). The 2-fold
axes are constructed in this fashion. Axis-1 is along the direction pts[1]→pts[2]. Axis-3 is
along the vector pts[1]→pts[2] × pts[1]→pts[3] and axis-2 is recreated along the vector axis-3
× axis-1. Each of these four functions creates a fixed number of matrices.

Dihedral symmetry is generated by an N-fold rotation about an axis followed by a 2-fold
rotation about a second axis orthogonal to the first axis. MAT_dihedral() produces matrices that
generate this symmetry. The N-fold axis is pts[0]→pts[1] and the second axis is created by the
same orthogonalization process described above. Unlike the previous point group functions the
number of matrices created by MAT_dihedral() is not fixed but is equal to 2×n f old.

MAT_cyclic() creates cnt matrices that produce uniform rotations about the axis pts[1]→pts[2].
The rotations are in multiples of the angle ang beginning with o, and increasing by ang until
cnt matrices have been created. cnt is required to be > 0, but ang can be 0, in which case
MAT_cyclic returns cnt copies of the identity matrix.

MAT_helix() creates cnt matrices that produce a uniform helical twist about the axis
pts[1]→pts[2]. The rotations are in multiples of ang and the translations in multiples of dst. cnt
must be > 0, but either ang or dst or both may be zero. If ang is not 0, but dst is, MAT_helix()
produces a uniform plane rotation and is equivalent to MAT_cyclic(). An ang of 0 and a non-zero
dst produces matrices that generate a uniform translation along the axis. If both ang and dst are
0, the MAT_helix() creates cnt copies of the identity matrix.

The three functions MAT_orient(), MAT_rotate() and MAT_translate() are not really symmetry
operations but are auxiliary operations that are useful for positioning the objects which are
to be operated on by the true symmetry operators. Two of these functions MAT_rotate() and
MAT_translate() produce a single matrix that either rotates or translates an object along the
axis pts[1]→pts[2]. A zero ang or dst is acceptable in which case the function creates an identity
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matrix. Except for a different user interface these two functions are equivalent to the nab builtins
rot4p() and tran4p().

MAT_orient() creates a matrix that rotates a object about the three axes pts[1]→pts[2],
pts[1]→pts[3] and pts[1]→pts[4]. The rotations are specified by the values of the array angs[],
with ang[1] the rotation about axis-1 etc. The rotations are applied in the order axis-3, axis-2,
axis-1. The axes remained fixed throughout the operation and zero angle values are acceptable.
If all three angles are zero, MAT_orient() creates an identity matrix.

17.4.2 Matrix I/O Functions

int MAT_fprint( file f, int nmats, matrix mats[1] )
int MAT_sprint( string str, int nmats, matrix mats[1] )
int MAT_fscan( file f, int smats, matrix mats[1] )
int MAT_sscan( string str, int smats, matrix mats[1] )
string MAT_getsyminfo()

This group of functions is used to read and write nab matrix variables. The two functions
MAT_fprint() and MAT_sprint() write the the matrix to the file f or the string str. The number of
matrices is specified by the parameter nmats and the matrices are passed in the array mats[].

The two functions MAT_fscan() and MAT_sscan() read matrices from the file f or the string str
into the array mats[]. The parameter smats is the size of the matrix array and if the source file
or string contains more than smats only the first smats will be returned. These two functions
return the number of matrices read unless there the number of matrices is greater than smat or
the last matrix was incomplete in which case they return -1.

In order to understand the last function in this group, MAT_getsyminfo(), it is necessary to
discuss both the internal structure the nab matrix type and one of its most important uses. The
nab matrix type is used to hold transformation matrices. Although these are atomic objects at
the nab level, they are actually 4× 4 matrices where the first three elements of the fourth row
are the X Y and Z components of the translation part of the transformation. The matrix print
functions write each matrix as four lines of four numbers separated by a single space. Similarly
the matrix read functions expect each matrix to be represented as four lines of four white space
(any number of tabs and spaces) separated numbers. The print functions use %13.6e for each
number in order to produce output with aligned columns, but the scan functions only require
that each matrix be contained in four lines of four numbers each.

Most nab programs use matrix variables as intermediates in creating structures. The structures
are then saved and the matrices disappear when the program exits. Recently nab was used to
create a set of routines called a “symmetry server”. This is a set of nab programs that work
together to create matrix streams that are used to assemble composite objects. In order to make
it most general, the symmetry server produces only matrices leaving it to the user to apply them.
Since these programs will be used to create hierarchies of symmetries or transformations we
decided that the external representation (files or strings) of matrices would consist of two kinds
of information — required lines of row values and optional lines beginning with the character #
some of which are used to contain information that describes how these matrices were created.

MAT_getsyminfo() is used to extract this symmetry information from either a matrix file
or a string that holds the contents of a matrix file. Each time the user calls MAT_fscan() or

476



17.5 Symmetry server programs

MAT_sscan(), any symmetry information present in the source file or string is saved in private
buffer. The previous contents of this buffer are overwritten and lost. MAT_getsyminfo() returns
the contents of this buffer. If the buffer is empty, indicating no symmetry information was
present in either the source file or string, MAT_getsyminfo() returns NULL.

17.5 Symmetry server programs

This section describes a set of nab programs that are used together to create composite objects
described by a hierarchical nest of transformations. There are four programs for creating and
operating on transformation matrices: matgen, matmerge, matmul and matextract, a program,
transform, for transforming PDB or point files, and two programs, tss_init and tss_next for
searching spaces defined by transformation hierarchies. In addition to these programs, all of
this functionality is available directly at the nab level via the MAT_ and tss_ builtins described
above.

17.5.1 matgen

The program matgen creates matrices that correspond to a symmetry or transformation
operation. It has one required argument, the name of a file containing a description of this
operation. The created matrices are written to stdout. A single matgen may be used by itself or
two or more matgen programs may be connected in a pipeline producing nested symmetries.

matgen -create sydef-1 | matgen symdef-2 | ... | matgen symdef-N

Because a matgen can be in the middle of a pipeline, it automatically looks for an stream of
matrices on stdin. This means the first matgen in a pipeline will wait for an EOF (generally
Ctl-D) from the terminal unless connected to an empty file or equivalent. In order to avoid the
nuisance of having to create an empty matrix stream the first matgen in a pipeline should use
the -create flag which tells matgen to ignore stdin.

If input matrices are read, each input matrix left multiplies the first generated matrix, then
the second etc. The table below shows the effect of a matgen performing a 2-fold rotation on
an input stream of three matrices.

Input: IM1, IM2, IM3
Operation: 2-fold rotation: R1, R2
Output: IM1×R1, IM2×R1, IM3×R1, IM1×R2, IM2×R2, IM3×R2

17.5.2 Symmetry Definition Files

Transformations are specified in text files containing several lines of keyword/value pairs.
These lines define the operation, its associated axes and other parameters such as angles, a
distance or count. Most keywords have a default value, although the operation, center and axes
are always required. Keyword lines may be in any order. Blank lines and most lines starting
with a sharp (#) are ignored. Lines beginning with #S{, #S+ and #S} are structure comments that
describe how the matrices were created. These lines are required to search the space defined by
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the transformation hierarchy and their meaning and use is covered in the section on “Searching
Transformation Spaces”. A complete list of keywords, their acceptable values and defaults is
shown below.

Keyword Default Value Possible Values
symmetry None cube, cyclic, dihedral, dodeca, helix, ico, octa, tetra.
transform None orient, rotate, translate.

name mPid Any string of nonblank characters.
noid false true, false.

axestype relative absolute, relative.
center None Any three numbers separated by tabs or spaces.

axis, axis1 None
axis2 None
axis3 None

angle,angle1 0 Any number.
angle2 0
angle3 0

dist 0
count 1 Any integer.

axis and axis1 are synonyms as are angle and angle1.
The symmetry and transform keywords specify the operation. One or the other but not both

must be specified.
The name keyword names a particular symmetry operation. The default name is m immedi-

ately followed by the process ID, eg m2286. name is used by the transformation space search
routines tss_init and tss_next and is described later in the section “Searching Transformation
Spaces”.

The noid keyword with value true suppresses generation of the identity matrix in symmetry
operations. For example, the keywords below

symmetry cyclic
noid false
center 0 0 0
axis 0 0 1
count 3

produce three matrices which perform rotations of 0o, 120o and 240o about the Z-axis. If noid
is true, only the two non-identity matrices are created. This option is useful in building objects
with two or three orthogonal 2-fold axes and is discussed further in the example “Icosahedron
from Rotations”. The default value of noid is false.

The axestype, center and axis* keywords defined the symmetry axes. The center and axis*
keywords each require a point value which is three numbers separated by tabs or spaces. Num-
bers may integer or real and in fixed or exponential format. Internally all numbers are converted
to nab type float which is actually double precision. No space is permitted between the minus
sign of a negative number and the digits.

The interpretation of these points depends on the value of the keyword axestype. If it is ab-
solute then the axes are defined as the vectors center→axis1, center→axis2 and center→axis3.
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If it relative, then the axes are vectors whose directions are O→axis1, O→axis2 and O→axis3
with their origins at center. If the value of center is 0,0,0, then absolute and relative are equiv-
alent. The default value axestype is relative; center and the axis* do not have defaults.

The angle keywords specify the rotation about the axes. angle1 is associated with axis1 etc.
Note that angle and angle1 are synonyms. The angle is in degrees, with positive being in the
counterclockwise direction as you sight from the axis point to the center point. Either an integer
or real value is acceptable. No space is permitted between the minus sign of a negative number
and its digits. All angle* keywords have a default value of 0.

The dist keyword specifies the translation along an axis. The positive direction is from center
to axis. Either integer or real value is acceptable. No space is permitted between the minus sign
of a negative number and its digits. The default value of dist is 0.

The count keyword is used in three related ways. For the cyclic value of the symmetry it
specifies ount matrices, each representing a rotation of 360/count. It also specifies the same
rotations about the non 2-fold axis of dihedral symmetry. For helix symmetry, it indicates that
count matrices should be created, each with a rotation of angle. In all cases the default value is
1.

This table shows which keywords are used and/or required for each type of operation.

symmetry name noid axestype center axes angles dist count
cube mPid false relative Required 1,2 - - -
cyclic mPid false relative Required 1 - - D=1

dihedral mPid false relative Required 1,2 - - D=1
dodeca mPid false relative Required 1,2 - - -

helix mPid false relative Required 1 1,D=0 D=0 D=1
ico mPid false relative Required 1,2 - - -

octa mPid false relative Required 1,2 - - -
tetra mPid false relative Required 1,2 - - -

transform name noid axestype center axes angles dist count
orient mPid - relative Required All All,D=0 - -
rotate mPid - relative Required 1 1,D=0 - -

translate mPid - relative Required 1 - D=0 -

17.5.3 matmerge

The matmerge program combines 2-4 files of matrices into a single stream of matrices
written to stdout. Input matrices are in files whose names are given on as arguments on the
matmerge command line. For example, the command line below

matmerge A.mat B.mat C.mat

copies the matrices from A.mat to stdout, followed by those of B.mat and finally those of C.mat.
Thus matmerge is similar to the Unix cat command. The difference is that while they are called
matrix files, they can contain special comments that describe how the matrices they contain
were created. When matrix files are merged, these comments must be collected and grouped so
that they are kept together in any further matrix processing.
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17.5.4 matmul

The matmul program takes two files of matrices, and creates a new stream of matrices formed
by the pair wise product of the matrices in the input streams. The new matrices are written to
stdout. If the number of matrices in the two input files differ, the last matrix of the shorter file is
replicated and applied to all remaining matrices of the longer file. For example, if the file 3.mat
has three matrices and the file 5.mat has five, then the command “matmul 3.mat 5.mat” would
result in the third matrix of 3.mat multiplying the third, forth and fifth matrices of 5.mat.

17.5.5 matextract

The matextract is used to extract matrices from the matrix stream presented on stdin and
writes them to stdout. Matrices are numbered from 1 to N, where N is the number of matrices
in the input stream. The matrices are selected by giving their numbers as the arguments to the
matextract command. Each argument is comma or space separated list of one or more ranges,
where a range is either a number or two numbers separated by a dash (-). A range beginning
with - starts with the first matrix and a range ending with - ends with the last matrix. The range
- selects all matrices. Here are some examples.

Command Action
matextract 2 Extract matrix number 2.
matextract 2,5 Extract matrices number 2 and 5.
matextract 2 5 Extract matrices number 2 and 5.
matextract 2-5 Extract matrices number 2 up to and including 5.
matextract -5 Extract matrices 1 to 5.
matextract 2- Extract all matrices beginning with number 2.
matextract - Extract all matrices.
matextract 2-4,7 13 15,19- Extract matrices 2 to 4, 7, 13, 15 and all matrices numbered 19

or higher.

17.5.6 transform

The transform program applies matrices to an object creating a composite object. The matri-
ces are read from stdin and the new object is written to stdout. transform takes one argument,
the name of the file holding the object to be transformed. transform is limited to two types of
objects, a molecule in PDB format, or a set of points in a text file, three space/tab separated
numbers/line. The name of object file is preceded by a flag specifying its type.

Command Action
transform -pdb X.pdb Transform a PDB format file.
transform -point X.pts Transform a set of points.
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The second main element in NAB for the generation of initial structures is distance geometry.
The next subsection gives a brief overview of the basic theory, and is followed by sections giving
details about the implementation in NAB.

18.1 Metric Matrix Distance Geometry

A popular method for constructing initial structures that satisfy distance constraints is based
on a metric matrix or "distance geometry" approach.[246, 257] If we consider describing a
macromolecule in terms of the distances between atoms, it is clear that there are many con-
straints that these distances must satisfy, since for N atoms there are N(N− 1)/2distances but
only 3N coordinates. General considerations for the conditions required to "embed" a set of
interatomic distances into a realizable three-dimensional object forms the subject of distance
geometry. The basic approach starts from the metric matrix that contains the scalar products of
the vectors xi that give the positions of the atoms:

gi j ≡ xi ·x j (18.1)

These matrix elements can be expressed in terms of the distances di j:

gi j = 2(d2
i0 +d2

j0−d2
i j) (18.2)

If the origin ("0") is chosen at the centroid of the atoms, then it can be shown that distances
from this point can be computed from the interatomic distances alone. A fundamental theorem
of distance geometry states that a set of distances can correspond to a three-dimensional object
only if the metric matrix g is rank three, i.e., if it has three positive and N-3 zero eigenvalues.
This is not a trivial theorem, but it may be made plausible by thinking of the eigenanalysis
as a principal component analysis: all of the distance properties of the molecule should be
describable in terms of three "components," which would be the x, y and z coordinates. If we
denote the eigenvector matrix as w and the eigenvalues λ , the metric matrix can be written in
two ways:

gi j =
3

∑
k=1

xikx jk =
3

∑
k=1

wikw jkλk (18.3)

The first equality follows from the definition of the metric tensor, Eq. (1); the upper limit
of three in the second summation reflects the fact that a rank three matrix has only three non-
zero eigenvalues. Eq. (3) then provides an expression for the coordinates xi in terms of the
eigenvalues and eigenvectors of the metric matrix:

xik = λ
1/2
k wik (18.4)
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If the input distances are not exact, then in general the metric matrix will have more than
three non-zero eigenvalues, but an approximate scheme can be made by using Eq. (4) with the
three largest eigenvalues. Since information is lost by discarding the remaining eigenvectors,
the resulting distances will not agree with the input distances, but will approximate them in a
certain optimal fashion. A further "refinement" of these structures in three-dimensional space
can then be used to improve agreement with the input distances.

In practice, even approximate distances are not known for most atom pairs; rather, one can set
upper and lower bounds on acceptable distances, based on the covalent structure of the protein
and on the observed NOE cross peaks. Then particular instances can be generated by choosing
(often randomly) distances between the upper and lower bounds, and embedding the resulting
metric matrix.

Considerable attention has been paid recently to improving the performance of distance ge-
ometry by examining the ways in which the bounds are "smoothed" and by which distances
are selected between the bounds.[258, 259] The use of triangle bound inequalities to improve
consistency among the bounds has been used for many years, and NAB implements the "ran-
dom pairwise metrization" algorithm developed by Jay Ponder.[248] Methods like these are
important especially for underconstrained problems, where a goal is to generate a reasonably
random distribution of acceptable structures, and the difference between individual members of
the ensemble may be quite large.

An alternative procedure, which we call "random embedding", implements the procedure of
deGroot et al. for satisfying distance constraints.[260] This does not use the embedding idea
discussed above, but rather randomly corrects individual distances, ignoring all couplings be-
tween distances. Doing this a great many times turns out to actually find fairly good structures
in many cases, although the properties of the ensembles generated for underconstrained prob-
lems are not well understood. A similar idea has been developed by Agrafiotis,[261] and we
have adopted a version of his "learning parameter" strategy into our implementation.

Although results undoubtedly depend upon the nature of the problem and the constraints,
in many (most?) cases, randomized embedding will be both faster and better than the metric
matrix strategy. Given its speed, randomized embedding should generally be tried first.

18.2 Creating and manipulating bounds, embedding
structures

A variety of metric-matrix distance geometry routines are included as builtins in nab.

bounds newbounds( molecule mol, string opts );
int andbounds( bounds b, molecule mol, string aex1, string aex2,

float lb, float ub );
int orbounds( bounds b, molecule mol, string aex1, string aex2,

float lb, float ub );
int setbounds( bounds b, molecule mol, string aex1, string aex2,

float lb, float ub );
int showbounds( bounds b, molecule mol, string aex1, string aex2 );
int useboundsfrom( bounds b, molecule mol1, string aex1, molecule mol2,
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18.2 Creating and manipulating bounds, embedding structures

Option type Default Action
-rbm string None The value of the option is the name of a file containing the

bounds matrix for this molecule. This file would ordinarily be
made by the dump-bounds command.

-binary If this flag is present, bounds read in with the -rbm will expect
a binary file created by the dumpbounds command.

-nocov If this flag is present, no covalent (bonding) information will
be used in constructing the bounds matrix.

-nchi int 4 The option containing the keyword nchi allocates n extra chiral
atoms for each residue of this molecule. This allows for
additional chirality information to be provided by the user. The
default is 4 extra chiral atoms per residue.

Table 18.1: Options to newbounds.

string aex2, float deviation );
int setboundsfromdb( bounds b, molecule mol, string aex1, string aex2,

string dbase, float mul );
int setchivol( bounds b, molecule mol, string aex1, string aex2, string aex3, string aex4, float vol );
int setchiplane( bounds b, molecule mol, string aex );
float getchivol( molecule mol, string aex1, string aex2, string aex3, string aex4 );
float getchivolp( point p1, point p2, point p3, point p4 );
int tsmooth( bounds b, float delta );
int geodesics( bounds b );
int dg_options( bounds b, string opts );
int embed( bounds b, float xyz[] );

The call to newbounds() is necessary to establish a bounds matrix for further work. This
routine sets lower bounds to van der Waals limits, along with bounds derived from the input
geometry for atoms bonded to each other, and for atoms bonded to a common atoms (i.e.,
so-called 1-2 and 1-3 interactions.) Upper and lower bounds for 1-4 interactions are set to the
maximum and minimum possibilities (the max ( syn , "van der Waals limits" ) and anti
distances). newbounds() has a string as its last parameter. This string is used to pass in options
that control the details of how those routines execute. The string can be NULL, "" or contain
one or more options surrounded by white space. The formats of an option are

-name=value
-name to select the default value if it exists.

The options to newbounds() are listed in Table 18.1.
The next five routines use atom expressions aex1 and aex2 to select two sets of atoms. Each

of these four routines returns the number of bounds set or changed. For each pair of atoms (a1
in aex1 and a2 in aex2) andbounds() sets the lower bound to max ( current_lb, lb ) and the
upper bound to the min ( current_ub, ub ). If ub < current_lb or if lb > current_ub, the
bounds for that pair are unchanged. The routine orbounds() works in a similar fashion, except
that it uses the less restrictive of the two sets of bounds, rather than the more restrictive one.
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18 NAB: Distance Geometry

The setbounds() call updates the bounds, overwriting whatever was there. showbounds() prints
all the bounds between the atoms selected in the first atom expression and those selected in the
second atom expression. The useboundsfrom() routine sets the the bounds between all the
selected atoms in mol1 according to the geometry of a reference molecule, mol2. The bounds
are set between every pair of atoms selected in the first atom expression, aex1 to the distance
between the corresponding pair of atoms selected by aex2 in the reference molecule. In
addition, a slack term, deviation, is used to allow some variance from the reference geometry
by decreasing the lower bound and increasing the upper bound between every pair of atoms
selected. The amount of increase or decrease depends on the distance between the two atoms.
Thus, a deviation of 0.25 will result in the lower bound set between two atoms to be 75% of
the actual distance separating the corresponding two atoms selected in the reference molecule.
Similarly, the upper bound between two atoms will be set to 125% of the actual distance
separating the corresponding two atoms selected in the reference molecule. For instance, the
call

useboundsfrom(b, mol1, "1:2:C1’,N1", mref, "3:4:C1’,N1", 0.10 );

sets the lower bound between the C1’ and N1 atoms in strand 1, residue 2 of molecule mol1 to
90% of the distance between the corresponding pair of atoms in strand 3, residue 4 of the
reference molecule, mref. Similarly, the upper bound between the C1’ and N1 atoms selected
in mol1 is set to 110% of the distance between the corresponding pair of atoms in mref. A
deviation of 0.0 sets the upper and lower bounds between every pair of atoms selected to be
the actual distance between the corresponding reference atoms. If aex1 selects the same atoms
as aex2, the bounds between those atoms selected will be constrained to the current geometry.
Thus the call,

useboundsfrom(b, mol1, "1:1:", mol1, "1:1", 0.0 );

essentially constrains the current geometry of all the atoms in strand 1, residue 1, by setting
the upper and lower bounds to the actual distances separating each atom pair. useboundsfrom()
only checks the number of atoms selected by aex1 and compares it to the number of atoms
selected by aex2. If the number of atoms selected by both atom expressions are not equal, an
error message is output. Note, however, that there is no checking on the atom types selected
by either atom expression. Hence, it is important to understand the method in which nab atom
expressions are evaluated. For more information, refer to Section 2.6, “Atom Names and Atom
Expressions”.

The useboundsfrom() function can also be used with distance geometry "templates", as dis-
cussed in the next subsection.

The routine setchivol() uses four atom expressions to select exactly four different atoms and
sets the volume of the chiral (ordered) tetrahedron they describe to vol. Setting vol to 0 forces
the four atoms to be planar. setchivol() returns 0 on success and 1 on failure. setchivol() does
not affect any distance bounds in b and may precede or follow triangle smoothing.

Similar to setchivol(), setchiplane() enforces planarity across four or more atoms by setting
the chiral volume to 0 for every quartet of atoms selected by aex. setchiplane() returns the
number of quartets constrained. Note: If the number of chiral constraints set is larger than the
default number of chiral objects allocated in the call to newbounds(), a chiral table overflow will
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18.2 Creating and manipulating bounds, embedding structures

result. Thus, it may be necessary to allocate space for additional chiral objects by specifying a
larger number for the option nchi in the call to newbounds().

getchivol() takes as an argument four atom expressions and returns the chiral volume of
the tetrahedron described by those atoms. If more than one atom is selected for a particular
point, the atomic coordinate is calculated from the average of the atoms selected. Similarly,
getchivolp() takes as an argument four parameters of type point and returns the chiral volume of
the tetrahedron described by those points.

After bounds and chirality have been set in this way, the general approach would be to call
tsmooth() to carry out triangle inequality smoothing, followed by embed() to create a three-
dimensional object. This might then be refined against the distance bounds by a conjugate-
gradient minimization routine. The tsmooth() routine takes two arguments: a bounds object,
and a tolerance parameter delta, which is the amount by which an upper bound may exceed a
lower bound without triggering a triangle error. For most circumstances, delta would be chosen
as a small number, like 0.0005, to allow for modest round-off. In some circumstances, however,
delta could be larger, to allow some significant inconsistencies in the bounds (in the hopes that
the problems would be fixed in subsequent refinement steps.) If the tsmooth() routine detects
a violation, it will (arbitrarily) adjust the upper bound to equal the lower bound. Ideally, one
should fix the bounds inconsistencies before proceeding, but in some cases this fix will allow
the refinements to proceed even when the underlying cause of the inconsistency is not corrected.

For larger systems, the tsmooth() routine becomes quite time-consuming as it scales O(ˆ3). In
this case, a more efficient triangle smoothing routine, geodesics() is used. geodesics() smoothes
the bounds matrix via the triangle inequality using a sparse matrix version of a shortest path
algorithm.

The embed routine takes a bounds object as input, and returns a four-dimensional array of co-
ordinates; (values of the 4-th coordinate may be nearly zero, depending on the value of k4d, see
below.) Options for how the embed is done are passed in through the dg_options routine, whose
option string has name=value pairs, separated by commas or whitespace. Allowed options are
listed in the following table.

keyword default meaning
ddm none Dump distance matrix to this file.
rdm none Instead of creating a distance matrix, read it from this file.
dmm none Dump the metric matrix to this file.
rmm none Instead of creating a metric matrix, read it from this file.
gdist 0 If set to non-zero value, use a Gaussian distribution for

selecting distances; this will have a mean at the center of the
allowed range, and a standard deviation equal to 1/4 of the
range. If gdist=0, select distances from a uniform distribution
in the allowed range.

randpair 0 Use random pair-wise metrization for this percentage of the
distances, i.e., randpair=10. would metrize 10% of the distance
pairs.

eamax 10 Maximum number of embed attempts before bailing out.
seed -1 Initial seed for the random number generator.

485



18 NAB: Distance Geometry

keyword default meaning
pembed 0 If set to a non-zero value, use the "proximity embedding"

scheme of de Groot et al., [26] and Agrafiotis [27], rather than
metric matrix embedding.

shuffle 1 Set to 1 to randomize coordinates inside a box of dimension
rbox at the beginning of the pembed scheme; if 0, use whatever
coordinates are fed to the routine.

rbox 20.0 Size, in angstroms, of each side of the cubic into which the
coordinates are randomly created in the proximity-embed
procedure, if shuffle is set.

riter 1000 Maximum number of cycles for random-embed procedure.
Each cycle selects 1000 pairs for adjustment.

slearn 1.0 Starting value for the learning parameter in proximity
embedding; see [27] for details.

kchi 1.0 Force constant for enforcement of chirality constraints.
k4d 1.0 Force constant for squeezing out the fourth dimensional

coordinate. If this is non-zero, a penalty function will be added
to the bounds-violation energy, which is equal to 0.5 * k4d * w
* w, where w is the value of the fourth dimensional coordinate.

sqviol 0 If set to non-zero value, use parabolas for the violation energy
when upper or lower bounds are violated; otherwise use
functions based on those in the dgeom program. See the code
in embed.c for details.

lbpen 3.5 Weighting factor for lower-bounds violations, relative to
upper-bounds violations. The default penalizes lower bounds
3.5 times as much as the equivalent upper-bounds violations,
which is frequently appropriate distance geometry calculations
on molecules.

ntpr 10 Frequency at which the bounds matrix violations will be
printed in subsequent refinements.

pencut -1.0 If pencut >= 0.0, individual distance and chirality violations
greater than pencut will be printed out (along with the total
energy) every ntpr steps.

Typical calling sequences. The following segment shows some ways in which these routines
can be put together to do some simple embeds:� �

1 molecule m;

2 bounds b;

3 float fret, xyz[ 10000 ];

4 int ier;

5

6 m = getpdb( argv[2] );

7 b = newbounds( m, "" );
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18.3 Distance geometry templates

8 tsmooth( b, 0.0005 );

9

10 dg_options( b, "gdist=1, ntpr=50, k4d=2.0, randpair=10." );

11 embed( b, xyz );

12 ier = conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 200 );

13 printf( "conjgrad returns %d\\n", ier );

14

15 setmol_from_xyzw( m, NULL, xyz );

16 putpdb( "new.pdb", m );� �
In lines 6-8, the molecule is created by reading in a pdb file, then bounds are created and

smoothed for it. The embed options (established in line 10) include 10% random pairwise
metrization, use of Gaussian distance selection, squeezing out the 4-th dimension with a force
constant of 2.0, and printing every 50 steps. The coordinates developed in the embed step (line
11) are passed to a conjugate gradient minimizer (see the description below), which will min-
imize for 200 steps, using the bounds-violation routine db_viol as the target function. Finally,
in lines 15-16, the setmol_from_xyzw routine is used to put the coordinates from the xyz array
back into the molecule, and a new pdb file is written.

More complex and representative examples of distance geometry are given in the Examples
chapter below.

18.3 Distance geometry templates

The useboundsfrom() function can be used with structures supplied by the user, or by canon-
ical structures supplied with the nab distribution called "templates". These templates include
stacking schemes for all standard residues in a A-DNA, B-DNA, C-DNA, D-DNA, T-DNA,
Z-DNA, A-RNA, or A’-RNA stack. Also included are the 28 possible basepairing schemes as
described in Saenger.[262] The templates are in PDB format and are located in $NABHOME-
/dgdb/basepairs/ and $NABHOME/dgdb/stacking/.

A typical use of these templates would be to set the bounds between two residues to some
percentage of the idealized distance described by the template. In this case, the template would
be the reference molecule ( the second molecule passed to the function ). A typical call might
be:

useboundsfrom(b, m, "1:2,3:??,H?",
getpdb( PATH + "gc.bdna.pdb" ), "::??,H?", 0.1 );

where PATH is $AMBERHOME/dat/dgdb/stacking/. This call sets the bounds of all the base
atoms in residues 2 ( GUA ) and 3 ( CYT ) of strand 1 to be within 10% of the distances found
in the template.

The basepair templates are named so that the first field of the template name is the one-
character initials of the two individual residues and the next field is the Roman numeral cor-
responding to same bonding scheme described by Sanger, p. 120. Note: since no specific
sugar or backbone conformation is assumed in the templates, the non-base atoms should not be
referenced. The base atoms of the templates are show in figures 18.1 and 18.2.

487



18 NAB: Distance Geometry

aa.I.pdb aa.II.pdb aa.V.pdb aa.Va.pdb ac.XXV.pdb ac.XXVI.pdb

ag.IX.pdb ag.VIII.pdb ag.X.pdb ag.IX.pdb

ca.XXV.pdb

at.XX.pdb at.XXI.pdb

at.XXIII.pdb at.XXIV.pdb au.XX.pdb au.XXI.pdb au.XXIII.pdb au.XXIV.pdb

(Watson-Crick) (Reversed Watson-Crick)

(Hoogsteen) (Reversed Hoogsteen) (Watson-Crick) (Reversed Watson-Crick) (Hoogsteen) (Reversed Hoogsteen)

ca.XXVI.pdb cc.XIV.pdb cc.XV.pdb cg.XIX.pdb cg.XXII.pdb

ct.XVII.pdb ct.XVIII.pdb

(Watson-Crick) (Reversed Watson-Crick)

cu.XVII.pdb cu.XVIII.pdb ga.IX.pdb ga.VIII.pdb

ga.X.pdb ga.XI.pdb gc.XIX.pdb gc.XXII.pdb gg.III.pdb gg.IV.pdb
(Watson-Crick) (Reversed Watson-Crick)

Figure 18.1: Basepair templates for use with useboundsfrom(), (aa-gg)
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gg.VI.pdb gg.VII.pdb gg.VIIa.pdb gg.VIa.pdb gt.XXVII.pdb gt.XXVIII.pdb

gu.XXVII.pdb gu.XXVIII.pdb ta.XX.pdb ta.XXI.pdb ta.XXIII.pdb ta.XXIV.pdb

tc.XVII.pdb tc.XVIII.pdb tg.XXVII.pdb tg.XXVIII.pdb tt.XII.pdb tt.XIII.pdb

tt.XVI.pdb tt.XVIa.pdb tu.XII.pdb tu.XIII.pdb tu.XVI.pdb ua.XX.pdb

ua.XXI.pdb ua.XXIII.pdb ua.XXIV.pdb uc.XVII.pdb uc.XVIII.pdb ug.XXVII.pdb

ug.XXVIII.pdb ut.XII.pdb ut.XIII.pdb ut.XVI.pdb uu.XII.pdb uu.XIII.pdb

uu.XVI.pdb uu.XVIa.pdb

(Watson-Crick)

(Watson-Crick)

(Reversed Watson-Crick)

(Reversed Watson-Crick) (Reversed Hoogsteen)

(Reversed Hoogsteen)(Hoogsteen)

(Hoogsteen)

Figure 18.2: Basepair templates for use with useboundsfrom(), (gg-uu)
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The stacking templates are named in the same manner as the basepair templates. The first
two letters of the template name are the one-character initials of the two residues involved in the
stacking scheme ( 5’ residue, then 3’ residue ) and the second field is the actual helical pattern (
note: a-rna represents the helical parameters of a’rna ). The stacking shemes can be found in
the $AMBERHOME/dat/dgdb/stacking directory.

18.4 Bounds databases

In addition to canonical templates, it is also possible to specify bounds information from a
database of known molecular structures. This provides the option to use data obtained from
actual structures, rather than from an idealized, canonical conformation.

The function setboundsfromdb() sets the bounds of all pairs of atoms between the two
residues selected by aex1 and aex2 to a statistically averaged distance calculated from known
structures plus or minus a multiple of the standard deviation. The statistical information is kept
in database files. Currently, there are three types of database files - Those containing bounds
information between Watson-Crick basepairs, those containing bounds information between
helically stacked residues, and those containing intra-residue bounds information for residues
in any conformation. The standard deviation is multiplied by the parameter mul and subtracted
from the average distance to determine the lower bound and similarly added to the average dis-
tance to determine the upper bound of all base-base atom distances. Base-backbone bounds,
that is, bounds between pairs of atoms in which one atom is a base atom and the other atom
is a backbone atom, are set to be looser than base-base atoms. Specifically, the lower bound
between a base-backbone atom pair is set to the smallest measured distance of all the structures
considered in creating the database. Similarly, the upper bound between a base-backbone atom
pair is set to the largest measured distance of all the structures considered. Base-base, and base-
sugar bounds are set in a similar manner. This was done to avoid imposing false constraints on
the atomic bounds, since Watson-Crick basepairing and stacking does not preclude any specific
backbone and sugar conformation. setboundsfromdb() first searches the current directory for
dbase before checking the default database location, $AMBERHOME/dat/dgdb.

Each entry in the database file has six fields: The atoms whose bounds are to be set, the
number of separate structures sampled in constructing these statistics, the average distance
between the two atoms, the standard deviation, the minimum measured distance, and the
maximum measured distance. For example, the database bdna.basepair.db has the following
sample entries:

A:C2-T:C1’ 424 6.167 0.198 5.687 6.673

A:C2-T:C2 424 3.986 0.175 3.554 4.505

A:C2-T:C2’ 424 7.255 0.304 5.967 7.944

A:C2-T:C3’ 424 8.349 0.216 7.456 8.897

A:C2-T:C4 424 4.680 0.182 4.122 5.138

A:C2-T:C4’ 424 8.222 0.248 7.493 8.800

A:C2-T:C5 424 5.924 0.168 5.414 6.413

A:C2-T:C5’ 424 9.385 0.306 8.273 10.104

A:C2-T:C6 424 6.161 0.163 5.689 6.679

A:C2-T:C7 424 7.205 0.184 6.547 7.658
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The first column identifies the atoms from the adenosine C2 atom to various thymidine atoms
in a Watson-Crick basepair. The second column indicates that 424 structures were sampled
in determining the next four columns: the average distance, the standard deviation, and the
minimum and maximum distances.

The databases were constructing using the coordinates from all the known nucleic acid struc-
tures from the Nucleic Acid Database (NDB - http://www.ndbserver.ebi.ac.uk:5700/NDB/. If
one wishes to remake the databases, the coordinates of all the NDB structures should be down-
loaded and kept in the $NABHOME/coords directory. The databases are made by issuing the
command $AMBERHOME/dat/dgdb/make_databases dblist where dblist is a list of nucleic acid
types (i.e., bdna, arna, etc. ). If one wants to add new structures to the structure repository at
$NABHOME/coords, it is necessary to make sure that the first two letters of the pdb file identify
the nucleic acid type. That is, all bdna pdb files must begin with bd.

The nab functions used to create the databases are located in $AMBERHOME/dat/dgdb/func-
tions. The stacking databases were constructed as follows: If two residues stacked 5’ to 3’ in
a helix have fewer than ten inter-residue atom distances closer than 2.0 Å or larger than 9.0
Å, and if the normals between the base planes are less than 20.0o, the residues were consid-
ered stacked. The base plane is calculated as the normal to the N1-C4 and midpoint of the
C2-N3 and N1-C4 vectors. The first atom expression given to setboundsfromdb() specifies the
5’ residue and the second atom expression specifies the 3’ residue. The source for this function
is getstackdist.nab.

Similarly, the basepair databases were constructed by measuring the heavy atom distances
of corresponding residues in a helix to check for hydrogen bonding. Specifically, if an A-U
basepair has an N1-N3 distance of between 2.3 and 3.2 Å and a N6-O4 distance of between
2.3 and 3.3 Å, then the A-U basepair is considered a Waton-Crick basepair and is used in the
database. A C-G basepair is considered Watson-Crick paired if the N3-N1 distance is between
2.3 and 3.3 Å, the N4-O6 distance is between 2.3 and 3.2 Å, and the O2-N2 distance is between
2.3 and 3.2 Å.

The nucleotide databases contain all the distance information between atoms in the same
residue. No residues in the coordinates directory are excluded from this database. The intent
was to allow the residues of this database to assume all possible conformations and ensure that
a nucleotide residue would not be biased to a particular conformation.

For the basepair and stacking databases, setting the parameter mul to 1.0 results in lower
bounds being set from the average database distance minus one standard deviation, and upper
bounds as the average database distance plus one standard deviation, between base-base atoms.
Base-backbone and base-sugar upper and lower bounds are set to the maximum and minimum
measured database values, respectively. Note, however, that a stacking multiple of 0.0 may
not correspond to consistent bounds. A stacking multiple of 0.0 will probably have conflicting
bounds information as the bounds information is derived from many different structures.

The database types are named nucleic_acid_type.database_type.db, and can be found in the
$AMBERHOME/dat/dgdb directory.
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dynamics

The initial models created by rigid-body transformations or distance geometry are often in
need of further refinement, and molecular mechanics and dynamics can often be useful here.
nab has facilities to allow molecular mechanics and molecular dynamics calculations to be
carried out. At present, this uses the AMBER program LEaP to set up the parameters and
topology; the force field calculations and manipulations like minimization and dynamics are
done by routines in the nab suite. A version of LEaP is included in the NAB distribution, and
is accessed by the leap() discussed below. A later chapter gives a more detailed description.

19.1 Basic molecular mechanics routines

molecule getpdb_prm( string pdb-
file, string leaprc, string leap_cmd2, int savef );
int readparm( molecule m, string parmfile );
int mme_init( molecule mol, string aexp, string aexp2, point xyz_ref[], file f );
int mm_options( string opts );
float mme( point xyz[], point grad[], int iter );
float mme_rattle( point xyz[], point grad[], int iter );
int conjgrad( float x[], int n, float fret, float func(), float rmsgrad,

float dfpred, int maxiter );
int md( int n, int maxstep, point xyz[], point f[], float v[], float func );
int getxv( string filename, int natom, float start_time, float x[], float v[] );
int putxv( string filename, string title, int natom, float start_time,

float x[], float v[] );
void mm_set_checkpoint( string filename );

The getpdb_prm() is a lot like getpdb() itself, except that it creates a molecule (and the associ-
ated force field parameters) that can be used in subsequent molecular mechanics calculations.
It is often adequate to convert an input PDB file into a NAB molecule. (If this routine fails, you
may be able to fix things up by editing your input pdb file, and/or by modifying the leaprc or
leap_cmd2 strings; if this doesn’t work you will have to run tleap by hand, create a prmtop file,
and use readparm() to input it.)

The leaprc string is passed to LEaP, and identifies which parameter and force field libraries
to load. Sample leaprc files are in $AMBERHOME/dat/leap/cmd, and there is no default. The
leap_cmd2 string is interpreted after the molecule has been read in to a unit called "X". Typi-
cally, leap_cmd2 would modify the molecule, say by adding or removing bonds, etc. The final

493



19 NAB: Molecular mechanics and dynamics

parameter, savef will save the intermediate files if non-zero; otherwise, all intermediate files
created will be removed. getpdb_prm() returns a molecule whose force field parameters are
already populated, and hence is ready for further force-field manipulation.

readparm reads an AMBER parameter-topology file, created by tleap or with other AMBER
programs, and sets up a data structure which we call a "parmstruct". This is part of the molecule,
but is not directly accessible (yet) to nab programs. You would use this command as an alter-
native to getpdb_prm(). You need to be sure that the molecule used in the readparm() call has
been created by calling getpdb() with a PDB file that has been created by tleap itself (i.e., that
has exactly the Amber atoms in the correct order). As noted above, the readparm() routine
is primarily intended for cases where getpdb_prm() fails (i.e., when you need to run tleap by
hand).

setxyz_from_mol() copies the atomic coordinates of mol to the array xyz. setmol_from_xyz()
replaces the atomic coordinates of mol with the contents of xyz. Both return the number of
atoms copied with a 0 indicating an error occurred.

The getxv() and putxv() routines read and write non-periodic Amber-style restart files. Veloc-
ities are read if present.

The getxyz() and putxyz() routines are used in conjunction with the mm_set_checkpoint()
routine to write checkpoint or restart files. The coordinates are written at higher precision than
to an AMBER restart file, i.e., with sufficiently high precision to restart even a Newton-Raphson
minimization where the error in coordinates may be on the order of10−12 . The checkpoint
files are written at iteration intervals that are specified by the nchk or nchk2 parameters to the
mm_options() routine (see below). The checkpoint file names are determined by the filename
string that is passed to mm_set_checkpoint(). If filename contains one or more %d format
specifiers, then the file name will be a modification of filename wherein the leftmost %d of
filename is replaced by the iteration count. If filename contains no %d format specifier, then
the file name will be filename with the iteration count appended on the right.

The mme_init() function must be called after mm_options() and before calls to mme(). It sets
up parameters for future force field evaluations, and takes as input an nab molecule. The string
aexp is an atom expression that indicates which atoms are to be allowed to move in minimization
or dynamics: atoms that do not match aexp will have their positions in the gradient vector set to
zero. A NULL atom expression will allow all atoms to move. The second string, aexp2 identifies
atoms whose positions are to be restrained to the positions in the array xyz_ref. The strength of
this restraint will be given by the wcons variable set in mm_options(). A NULL value for aexp2
will cause all atoms to be constrained. The last parameter to mme_init() is a file pointer for the
output trajectory file. This should be NULL if no output file is desired. NAB writes trajectories
in the binpos format, which can be read by ptraj, and either analyzed, or converted to another
format.

mm_options() is used to set parameters, and must be called before mme_init(); if you change
options through a call to mm_options() without a subsequent call to mme_init() you may get
incorrect calculations with no error messages. Beware. The opts string contains keyword/value
pairs of the form keyword=value separated by white space or commas. Allowed values are
shown in the following table.
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keyword default meaning
ntpr 10 Frequency of printing of the energy and its components.

e_debug 0 If non-zero printout additional components of the energy.
gb_debug 0 If non-zero printout information about Born first derivatives.
gb2_debug 0 If non-zero printout information about Born second derivatives.

nchk 10000 Frequency of writing checkpoint file during first derivative
calculation, i.e., in the mme() routine.

nchk2 10000 Frequency of writing checkpoint file during second derivative
calculation, i.e., in the mme2() routine.

nsnb 25 Frequency at which the non-bonded list is updated.
nscm 0 If > 0, remove translational and rotational center-of-mass

(COM) motion after every nscm steps. For Langevin dynamics
(gamma_ln>0) without HCP (hcp=0), the position of the COM
is reset to zero every nscm steps, but the velocities are not
affected. With HCP (hcp>0) COM translation and rotation are
also removed, with or without Langevin dynamics.
It is strongly recommended that this option be used whenever
HCP is used.

cut 8.0 Non-bonded cutoff, in angstroms. This parameter is ignored if
hcp > 0.

wcons 0.0 Restraint weight for keeping atoms close to their positions in
xyz_ref (see mme_init).

dim 3 Number of spatial dimensions; supported values are 3 and 4.
k4d 1.0 Force constant for squeezing out the fourth dimensional

coordinate, if dim=4. If this is non-zero, a penalty function will
be added to the bounds-violation energy, which is equal to 0.5
* k4d * w * w, where w is the value of the fourth dimensional
coordinate.

dt 0.001 Time step, ps.
t 0.0 Initial time, ps.

rattle 0 If set to 1, bond lengths will be constrained to their equilibrium
values, for dynamics; default is not to include such constraints.
Note: if you want to use rattle (effectively "shake") for
minimization, you do not need to set this parameter; rather,
pass the mme_rattle() function to conjgrad().

tautp 999999. Temperature coupling parameter, in ps. The time constant
determines the strength of the weak-coupling ("Berendsen")
temperature bath.[263] Set tautp to a very large value (e.g.
9999999.) in order to turn off coupling and revert to
Newtonian dynamics. This variable only has an effect if
gamma_ln remains at its default value of zero; if gamma_ln is
not zero, Langevin dynamics is assumed, as discussed below.
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keyword default meaning

gamma_ln 0.0 Collision frequency for Langevin dynamics, inps−1 . Values in
the range 2-5ps−1 often give acceptable temperature control,
while allowing transitions to take place.[264] Values near
50ps−1 correspond to the collision frequency for liquid water,
and may be useful if rough physical time scales for motion are
desired. The so-called BBK integrator is used here.[265]

temp0 300.0 Target temperature, K.
vlimit 20.0 Maximum absolute value of any component of the velocity

vector.
ntpr_md 10 Printing frequency for dynamics information to stdout.

ntwx 0 Frequency for dumping coordinates to traj_file.
zerov 0 If non-zero, then the initial velocities will be set to zero.
tempi 0.0 If zerov=0 and tempi>0, then the initial velocities will be

randomly chosen for this temperature. If both zerov and tempi
are zero, the velocities passed into the md() function will be
used as the initial velocities; this combination is useful to
continue an existing trajectory.

genmass 10.0 The general mass to use for MD if individual masses are not
read from a prmtop file; value in amu.

diel C Code for the dielectric model. "C" gives a dielectric constant
of 1; "R" makes the dielectric constant equal to distance in
angstroms; "RL" uses the sigmoidal function of Ramstein &
Lavery, PNAS 85, 7231 (1988); "RL94" is the same thing, but
speeded up assuming one is using the Cornell et al force field;
"R94" is a distance-dependent dielectric, again with speedups
that assume the Cornell et al. force field.

dielc 1.0 This is the dielectric constant used for non-GB simulations. It
is implemented in routine mme_init() by scaling all of the
charges by sqrt(dielc). This means that you need to set this (if
desired) in mm_options() before calling mme_init().

gb 0 If set to 0 then GB is off. Setting gb=1 turns on the Hawkins,
Cramer, Truhlar (HCT) form of pairwise generalized Born
model for solvation. See ref [95] for details of the
implementation; this is equivalent to the igb=1 option in
sander and pmemd. Set diel to "C" if you use this option.
Setting gb=2 turns on the Onufriev, Bashford, Case (OBC)
variant of GB,[96, 266] with α=0.8, β=0.0 and γ=2.909. This
is equivalent to the igb=2 option in sander and pmemd. Setting
gb=5 just changes the values of α , β and γ to 1.0, 0.8, and
4.85, respectively, corresponding to the igb=5 option in
sander. Setting gb=7 turns on the GB Neck variant of
GB,[267] corresponding to the igb=7 option in sander and
pmemd. Setting gb=8 turns on the updated GB Neck variant of
GB, corresponding to the igb=8 option in sander and pmemd.
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keyword default meaning
rgbmax 999.0 A maximum value for considering pairs of atoms to contribute

to the calculation of the effective Born radii. The default value
means that there is effectively no cutoff. Calculations will be
sped up by using smaller values, say around 15. Å or so. This
parameter is ignored if hcp > 0.

gbsa 0 If set to 1, add a surface-area dependent energy equal to
surfen*SASA, where surften is discussed below, and SASA is
an approximate surface area term. NAB uses the "LCPO"
approximation developed by Weiser, Shenkin, and Still.[159]

surften 0.005 Surface tension (see gbsa, above) in kcal/mol/Å2.
epsext 78.5 Exterior dielectric for generalized Born; interior dielectric is

always 1.
kappa 0.0 Inverse of the Debye-Hueckel length, if gb is turned on, in

Å−1. This parameter is related to the ionic strength as
κ = [8πβ I/ε]1/2, where I is the ionic strength (same as the salt
concentration for a 1-1 salt). For T =298.15 and ε=78.5,
κ = (0.10806 I)1/2, where I is in [M].

ipb 0 Switch to compute electrostatic solvation free energy. If set to
0 then PBSA is off. This is equivalent to the ipb option in pbsa.
Possible values: 0, 1, 2, and 4. See PBSA chapter for more
information.

inp 2 Option to select different methods to compute non-polar
solvation free energy. This is equivalent to the inp option in
pbsa. Possible values: 0, 1, and 2. See PBSA chapter for more
information.

epsin 1.0 Sets the dielectric constant of the solute region. The solute
region is defined to be the solvent excluded volume.

epsout 80.0 Sets the implicit solvent dielectric constant. The solvent region
is defined to be the space not occupied the solute region. Thus,
only two dielectric regions are allowed in the current release.

smoothopt 1 Instructs PB how to set up dielectric values for finite-difference
grid edges that are located across the solute/solvent dielectric
boundary.

istrng 0.0 Sets the ionic strength (in mM) for the PB equation.
radiopt 1 Option to set up atomic radii. This is equivalent to the radiopt

option in pbsa. Possible values: 0, and 1. See PBSA chapter
for more information.

dprob 1.4 Solvent probe radius for molecular surface used to define the
dielectric boundary between solute and solvent. If set 0.0, it
would be later assigned to the value of sprob.

iprob 2.0 Mobile ion probe radius for ion accessible surface used to
define the Stern layer.
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keyword default meaning
npbopt 0 Option to select the linear or the full nonlinear PB equation.

= 0 Linear PB equation is solved.
= 1 Nonlinear PB equation is solved.

solvopt 1 Option to select iterative solvers. This is equivalent to the
solvopt option in pbsa. Possible values: 1, 2, 3, 4, 5, and 6. See
PBSA chapter for more information.

accept 0.001 Sets the iteration convergence criterion (relative to the initial
residue).

maxitn 100 Sets the maximum number of iterations for the finite difference
solvers, default to 100.

fillratio 2.0 The ratio between the longest dimension of the rectangular
finite-difference grid and that of the solute.

space 0.5 Sets the grid spacing for the finite difference solver.
nfocus 2 Set how many successive FD calculations will be used to

perform an electrostatic focussing calculation on a molecule.
Possible values: 1 and 2.

fscale 8 Set the ratio between the coarse and fine grid spacings in an
electrostatic focussing calculation.

bcopt 5 Boundary condition options. This is equivalent to the bcopt
option in pbsa. Possible values: 1, 5, 6, and 10. See PBSA
chapter for more information.

eneopt 2 Option to compute total electrostatic energy and forces. This is
equivalent to the eneopt option in pbsa. Possible values: 1, and
2. See PBSA chapter for more information.

dbfopt n/a This keyword is phased out in this release.
frcopt 0 Option to compute and output electrostatic forces to a file

named force.dat in the working directory. This is equivalent to
the frcopt option in pbsa. Possible values: 0, 1, 2, and 3. See
PBSA chapter for more information.

cutnb 0.0 Atom-based cutoff distance for van der Waals interactions, and
pairwise Coulombic interactions when ENEOPT = 2. When
ENEOPT = 1, this is the cutoff distance used for van der Waals
interactions only.

sprob 0.557 Solvent probe radius for solvent accessible surface area
(SASA) used to compute the dispersion term.

npbverb 0 This turns on verbose mode in PB when set to 1.
arcres 0.25 gives the resolution (in the unit of Å) of dots used to represent

solvent accessible arcs.
maxarcdot 1500 1500 actually means automatically determine number of arc

dots required for solvent accessible surface, might grow too
large to fit machines with less available memory. Please assign
it to 4000~7000 and see if it fits into your computers.
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keyword default meaning
npbgrid 1 How many step do pbsa wait to re-calculate the geometry in a

simulation, npbgrid = 1 is required to do trajectory evaluation.
npbgrid is recommended to be 100 if “conjgrad” is used.

irism 0 Use 3D-RISM.
= 0 Off.

= 1 On.

xvvfile n/a .xvv file which describes bulk solvent properties. Required for
3D-RISM calculations. Produced by rism1d.

guvfile n/a Root name for solute-solvent 3D pair distribution function,
GUV (R). This will produce one file for each solvent atom type
for each frame requested.

huvfile n/a Rootname for solute-solvent 3D total correlation function,
HUV(R). This will produce one file for each solvent atom type
for each frame requested.

cuvfile n/a Rootname for solute-solvent 3D total correlation function,
CUV(R). This will produce one file for each solvent atom type
for each frame requested.

quvfile n/a Rootname for solvent 3D charge density distribution [e/Å].
This will produce one file with contributions from each solvent
atom type for each frame requested.

chgdist n/a Rootname for solvent 3D charge distribution [e]. This will
produce one file with contributions from each solvent atom
type for each frame requested.

uuvfile n/a Rootname for solute-solvent 3D potential energy, UUV(R).
This will produce one file for each solvent atom type for each
frame requested.

asympfile n/a Rootname for solute-solvent 3D long range real-space
asymptotics for C and H. This will produce one file for C and
H for each frame requested.

volfmt dx Output format for volumetric data.

= dx DX format.

= xyzv XYZV format.
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keyword default meaning
closure KH Comma separate list of closure approximations.

= HNC Hyper-netted chain equation (HNC).

= KH Kovalenko-Hirata (KH).

= PSEn Partial series expansion of order n where “n” is a
positive integer.

If more than one closure is provided, the 3D-RISM solver will
use the closures in order to obtain a solution for the last closure
in the list when no previous solutions are available. The
solution for the last closure in the list is used for all output.

closureorder 1 (Deprecated) Order for PSE-n closure if closure is specified as
“PSE” or “PSEN” (no integers).

solvcut buffer Cut-off distance for solvent-solute potential and force
calculations. solvcut must be explicitly set if buffer< 0. For
minimization it is recommended to not use a cut-off (e.g.
solvcut=9999).

buffer 14 Minimum distance in Å between the solute and the edge of the
solvent box.

< 0 Use fixed box size (ng3 and solvbox).

>= 0 Buffer distance.

grdspc 0.5 Linear grid spacing in x-, y- and z-dimensions [Å]. May be
specified as single number if all dimensions have the same
value. E.g., ‘grdspc=0.5’ is equivalent to ‘grdspc=0.5,0.5,0.5’.

ng n/a Sets the number of grid points for a fixed size solvation box.
May be specified as single integer if all dimensions have the
same value. E.g., ‘ng=64’ is equivalent to ‘ng=64,64,64’.

solvbox n/a Sets the size in Å of the fixed size solvation box. May be
specified as single number if all dimensions have the same
value. E.g., ‘solvbox=32.0’ is equivalent to
‘solvbox=32.0,32.0,32.0’.
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keyword default meaning
tolerance 1e-5 A list of maximum residual values for solution convergence.

When used in combination with a list of closures it is possible
to define different tolerances for each of the closures. This can
be useful for difficult to converge calculations (see §11.2.4).
For the sake of efficiency, it is best to use as high a tolerance as
possible for all but the last closure. For minimization a
tolerance of 1e-11 or lower is recommended. Three formats of
list are possible.

one tolerance All closures but the last use a tolerance of 1.
The last tolerance in the list is used by the last
closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance
in the list. The last tolerance in the list is used by
the last closure.

n tolerances Tolerances from the list are assigned to the
closure list in order.

mdiis_del 0.7 “Step size” in MDIIS.
mdiis_nvec 5 Number of vectors used by the MDIIS method. Higher values

for this parameter can greatly increase memory requirements
but may also accelerate convergence.

mdiis_method 2 Specify implementation of the MDIIS routine.

= 0 Original reference implementation.

= 1 BLAS optimized.

= 2 BLAS and memory optimized.

maxstep 10000 Maximum number of iterations allowed to converge on a
solution.

npropagate 5 Number of previous solutions propagated forward to create an
initial guess for this solute atom configuration.

= 0 Do not use any previous solutions

= 1..5 Values greater than 0 but less than 4 or 5 will use less
system memory but may introduce artifacts to the
solution (e.g., energy drift).
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keyword default meaning
centering 1 Controls how the solute is centered/re-centered in the solvent

box. (See Subsection 11.5.1.)

= -4 Center-of-geometry with grid-point rounding. Center on
first step only.

= -3 Center-of-mass with grid-point rounding. Center on first
step only.

= -2 Center-of-geometry. Center on first step only.

= -1 Center-of-mass. Center on first step only.

= 0 No centering. Dangerous.

= 1 Center-of-mass. Center on every step. Recommended for
molecular dynamics.

= 2 Center-of-geometry. Center on every step. Recommended
for minimization.

= 3 Center-of-mass with grid-point rounding.

= 4 Center-of-geometry with grid-point rounding.

zerofrc 1 Redistribute solvent forces across the solute such that the net
solvation force on the solute is zero.

= 0 Unmodified forces.

= 1 Zero net force.

apply_rism_force 1 Calculate and use solvation forces from 3D-RISM. Not
calculating these forces can save computation time and is
useful for trajectory post-processing.

= 0 Do not calculate forces.

= 1 Calculate forces.

ntwrism 0 Indicates that solvent density grid should be written to file
every ntwrism iterations.

= 0 No files written.

>= 1 Output every ntwrism time steps.
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keyword default meaning
ntprism 0 Indicates that 3D-RISM thermodynamic output should be

written to file every ntprism iterations.

= 0 No files written.

>= 1 Output every ntwrism time steps.

polardecomp 0 Decompose the solvation free energy into polar and non-polar
contributions. This is only useful if ntprism6= 0 and adds about
80% to the total calculation time.

= 0 No decomposition.

= 1 Decomposition is performed.

verbose 0 Indicates level of diagnostic detail about the calculation written
to the log file.

= 0 No output.

= 1 Print the number of iterations required to converge.

= 2 Print details for each iteration and information about what
FCE is doing every progress iterations.

progress 1 Display progress of the 3D-RISM solution every progress

iterations. 0 indicates this information will not be displayed.
Only used if verbose> 1.

static_arrays 1 If set to 1, do not allocate dynamic arrays for each call to the
mme() and mme2() functions. The default value of 1 reduces
computation time by avoiding array allocation.

blocksize 8 The granularity with which loop iterations are assigned to
OpenMP threads or MPI processes. For MPI, a blocksize as
small as 1 results in better load balancing during parallel
execution. For OpenMP, blocksize should not be smaller than
the number of floating-point numbers that fit into one cache
line in order to avoid performance degradation through ’false
sharing’. For ScaLAPACK, the optimum blocksize is not know,
although a value of 1 is probably too small.

hcp 0 Use the Hierarchical Charge Partitioning (HCP) method. 1 =
1-charge approximation; 2 = 2-charge approximation. See
Section 19.6 for detailed instructions on using the HCP.
It is strongly recommended that the NSCM option above be
used whenever HCP is used.
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keyword default meaning
hcp_h1 15 HCP level 1 threshold distance. The recommended level 1

threshold distance for amino acids is 15 A. For structures with
nucleic acids the recommended level 1 threshold distance is 21
A.

The mme() function takes a coordinate set and returns the energy in the function value and the
gradient of the energy in grad. The input parameter iter is used to control printing (see the ntpr
variable) and non-bonded updates (see nsnb). The mme_rattle() function has the same interface,
but constrains the bond lengths and returns a corrected gradient. If you want to minimize with
constrained bond lengths, pass mme_rattle and not mme to the conjgrad routine.

The conjgrad() function will carry out conjugate gradient minimization of the function func
that depends upon n parameters, whose initial values are in the x array. The function func must
be of the form func( x[], g[], iter ), where x contains the input values, and the function value is
returned through the function call, and its gradient with respect to x through the g array. The
iteration number is passed through iter, which func can use for whatever purpose it wants; a
typical use would just be to determine when to print results. The input parameter dfpred is
the expected drop in the function value on the first iteration; generally only a rough estimate
is needed. The minimization will proceed until maxiter steps have been performed, or until
the root-mean-square of the components of the gradient is less than rmsgrad. The value of the
function at the end of the minimization is returned in the variable fret. conjgrad can return a
variety of exit codes:

Return codes for conjgrad routine
>0 minimization converged; gives number of final

iteration
-1 bad line search; probably an error in the relation of

the function to its gradient (perhaps from round-off if
you push too hard on the minimization).

-2 search direction was uphill
-3 exceeded the maximum number of iterations
-4 could not further reduce function value

Finally, the md function will run maxstep steps of molecular dynamics, using func as the
force field (this would typically be set to a function like mme.) The number of dynamical
variables is given as input parameter n: this would be 3 times the number of atoms for ordinary
cases, but might be different for other force fields or functions. The arrays x[], f[] and v[] hold the
coordinates, gradient of the potential, and velocities, respectively, and are updated as the sim-
ulation progresses. The method of temperature regulation (if any) is specified by the variables
tautp and gamma_ln that are set in mm_options().

Note: In versions of NAB up to 4.5.2, there was an additional input variable to md() called
minv that reserved space for the inverse of the masses of the particles; this has now been re-
moved. This change is not backwards compatible: you must modify existing NAB scripts that
call md() to remove this variable.
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19.2 NetCDF read/write routines

NAB has several routines for reading/writing Amber NetCDF trajectory and restart files. All
of the routines except netcdfGetNextFrame() return a 1 on error, 0 on success. The netcdfGet-
NextFrame() routine returns 0 on error, 1 on success to make it easier to use in loops. For an
example of how to use NetCDF files in NAB see the NAB script in ’$AMBERHOME/Amber-
Tools/test/nab/tnetcdf.nab’.

19.2.1 struct AmberNetcdf

An AmberNetcdf struct must be used to interface with the netcdf commands in NAB (except
netcdfWriteRestart()). It contains many fields, but the following are the ones commonly needed
by users:

temp0 Temperature of current frame (if temperature is present).

restartTime Simulation time if NetCDF restart.

isNCrestart 0 if trajectory, 1 if restart.

ncframe Number of frames in the file.

currentFrame Current frame number.

ncatom Number of atoms.

ncatom3 Number of coordinates (ncatom * 3).

velocityVID If not -1, velocity information is present.

TempVID If not -1, temperature information is present.

In order to use it, you must include nab_netcdf.h and declare it as a struct, e.g.:

#include “nab_netcdf.h”

struct AmberNetcdf NC;

19.2.2 netcdfClose

int netcdfClose(struct AmberNetcdf NC)

Close NetCDF file associated with NC.

19.2.3 netcdfCreate

int netcdfCreate(struct AmberNetcdf NC, string filename, int natom, int isBox)

NC AmberNetcdf struct to set up.

filename Name of file to create.
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natom Number of atoms in file.

isBox 0 = No box coordinates, 1 = Has box coordinates.

Create NetCDF trajectory file and associate with struct NC. For writing NetCDF restarts, use
netcdfWriteRestart().

19.2.4 netcdfDebug

int netcdfDebug(struct AmberNetcdf NC)

Print debug information for NetCDF file associated with NC.

19.2.5 netcdfGetFrame

int netcdfGetFrame(struct AmberNetcdf NC, int set, float X[], float box[])

NC AmberNetcdf struct, previously set up and opened.

set Frame number to read.

X Array to store coordinates (dimension NC.ncatom3).

box Array of dimension 6 to store box coordinates if present (X

Y Z ALPHA BETA GAMMA); can be NULL.

Get coordinates at frame set (starting from 0).

19.2.6 netcdfGetNextFrame

int netcdfGetNextFrame(struct AmberNetcdf NC, float X[], float box[])

NC AmberNetcdf struct, previously set up and opened.

X Array to store coordinates (dimension NC.ncatom3).

box Array of size 6 to store box coordinates if present (X Y Z

ALPHA BETA GAMMA); can be NULL.

Get the coordinates at frame NC.currentFrame and increment NC.currentFrame by one.
Unlike the other netcdf routines, this returns 1 on success and 0 on error to make it easy to use
in loops.

19.2.7 netcdfGetVelocity

int netcdfGetVelocity(struct AmberNetcdf NC, int set, float V[])

NC AmberNetcdf struct, previously set up and opened.

set Frame number to read.

V Array to store velocities (dimension NC.ncatom3).

Get velocities at frame set (starting from 0).
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19.2.8 netcdfInfo

int netcdfInfo(struct AmberNetcdf NC)

Print information for NC, including file type, presence of velocity/box/temperature info, and
number of atoms, coordinates, and frames present.

19.2.9 netcdfLoad

int netcdfLoad(struct AmberNetcdf NC, string filename)

NC AmberNetcdf struct to set up.

filename Name of NetCDF file to load.

Load NetCDF file filename and set up the AmberNetcdf structure NC for reading. The file type
is automatically detected.

19.2.10 netcdfWriteFrame

int netcdfWriteFrame(struct AmberNetcdf NC, int set, float X[], float box[])

NC AmberNetcdf struct, previously set up and opened.

set Frame number to write.

X Array of coordinates to write (dimension NC.ncatom3).

box Array of size 6 of box coordinates to write (X Y Z ALPHA

BETA GAMMA); can be NULL.

Write to NetCDF trajectory at frame set (starting from 0). NOTE: This routine is for writing
NetCDF trajectories only; to write NetCDF restarts use netcdfWriteRestart().

19.2.11 netcdfWriteNextFrame

int netcdfWriteNextFrame(struct AmberNetcdf NC, float X[], float box[])

NC AmberNetcdf struct, previously set up and opened.

X Array of coordinates to write (dimension NC.ncatom3).

box Array of size 6 of box coordinates to write (X Y Z ALPHA

BETA GAMMA); can be NULL.

Write coordinates to frame NC.currentFrame and increment NC.currentFrame by one.
NOTE: This routine is for writing NetCDF trajectories only; to write NetCDF restarts use netcd-
fWriteRestart().
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19.2.12 netcdfWriteRestart

int netcdfWriteRestart(string filename, int natom, float X[], float V[],

float box[], float time, float temperature)

filename Name of NetCDF restart file to create.

natom Number of atoms in netcdf restart file.

X Array of coordinates to write (dimension natom*3).

V Array of velocities to write (dimension natom*3); can be NULL.

box Array of size 6 of box coordinates to write (X Y Z ALPHA

BETA GAMMA); can be NULL.

time Restart time in ps.

temperature Restart temperature; if < 0 no temperature will be

written.

19.3 Typical calling sequences

The following segment shows some ways in which these routines can be put together to do
some molecular mechanics and dynamics:� �

1 // carry out molecular mechanics minimization and some simple dynamics

2 molecule m, mi;

3 int ier;

4 float m_xyz[ dynamic ], f_xyz[ dynamic ], v[ dynamic ];

5 float dgrad, fret, dummy[2];

6

7 mi = bdna( "gcgc" );

8 putpdb( "temp.pdb", mi );

9 m = getpdb_prm( "temp.pdb", "leaprc.ff99SB", "", 0 );

10

11 allocate m_xyz[ 3*m.natoms ]; allocate f_xyz[ 3*m.natoms ];

12 allocate v[ 3*m.natoms ];

13 setxyz_from_mol( m, NULL, m_xyz );

14

15 mm_options( "cut=25.0, ntpr=10, nsnb=999, gamma_ln=5.0" );

16 mme_init( m, NULL, "::ZZZ", dummy, NULL );

17 fret = mme( m_xyz, f_xyz, 1 );

18 printf( "Initial energy is %8.3f\n", fret );

19

20 dgrad = 0.1;

21 ier = conjgrad( m_xyz, 3*m.natoms, fret, mme, dgrad, 10.0, 100 );

22 setmol_from_xyz( m, NULL, m_xyz );

23 putpdb( "gcgc.min.pdb", m );

24

25 mm_options( "tautp=0.4, temp0=100.0, ntpr_md=10, tempi=50." );
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26 md( 3*m.natoms, 1000, m_xyz, f_xyz, v, mme );

27 setmol_from_xyz( m, NULL, m_xyz );

28 putpdb( "gcgc.md.pdb", m );� �
Line 7 creates an nab molecule; any nab creation method could be used here. Then a tem-

porary pdb file is created, and this is used to generate a NAB molecule that can be used for
force-field calculations (line 9). Lines 11-13 allocate some memory, and fill the coordinate ar-
ray with the molecular position. Lines 15-17 initialize the force field routine, and call it once
to get the initial energy. The atom expression "::ZZZ" will match no atoms, so that there will
be no restraints on the atoms; hence the fourth argument to mme_init can just be a place-holder,
since there are no reference positions for this example. Minimization takes place at line 21,
which will call mme repeatedly, and which also arranges for its own printout of results. Finally,
in lines 25-28, a short (1000-step) molecular dynamics run is made. Note the the initialization
routine mme_init must be called before calling the evaluation routines mme or md.

Elaboration of the the above scheme is generally straightforward. For example, a simulated
annealing run in which the target temperature is slowly reduced to zero could be written as
successive calls to mm_options (setting the temp0 parameter) and md (to run a certain number
of steps with the new target temperature.) Note also that routines other than mme could be sent
to conjgrad and md: any routine that takes the same three arguments and returns a float function
value could be used. In particular, the routines db_viol (to get violations of distance bounds
from a bounds matrix) or mme4 (to compute molecular mechanics energies in four spatial di-
mensions) could be used here. Or, you can write your own nab routine to do this as well. For
some examples, see the gbrna, gbrna_long and rattle_md programs in the $AMBERHOME/Am-
berTools/test/nab directory.

19.4 Second derivatives and normal modes

Russ Brown has contributed new codes that compute analytically the second derivatives of
the Amber functions, including the generalized Born terms. This capability resides in the three
functions described here.

float newton( float x[], int n, float fret, float func1(), float func2(), float rms,
float nradd, int maxiter );

float nmode( float x[], int n, float func(), int eigp, int ntrun, float eta, float hrmax, int ioseen );

These routines construct and manipulate a Hessian (second derivative matrix), allowing one (for
now) to carry out Newton-Raphson minimization and normal mode calculations. The mme2()
routine takes as input a 3*natom vector of coordinates x[], and returns a gradient vector g[], a
Hessian matrix, stored columnwise in a 3*natom x 3*natom vector h[], and the masses of the
system, in a vector m[] of length natom. The iteration variable iter is just used to control printing.
At present, these routines only work for gb = 0 or 1.

Users cannot call mme2() directly, but will pass this as an argument to one of the next two
routines.

The newton() routine takes a input coordinates x[] and a size parameter n (must be set to
3*natom). It performs Newton-Raphson optimization until the root-mean-square of the gradient
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vector is less than rms, or until maxiter steps have been taken. For now, the input function
func1() must be mme() and func2() must be mme2(). The value nradd will be added to the
diagonal of the Hessian before the step equations are solved; this is generally set to zero, but
can be set something else under particular circumstances, which we do not discuss here.[268]

Generally, you only want to try Newton-Raphson minimization (which can be very expen-
sive) after you have optimized structures with conjgrad() to an rms gradient of 10 -3 or so. In
most cases, it should only take a small number of iterations then to go down to an rms gradient
of about 10 -12 or so, which is somewhere near the precision limit.

Once a good minimum has been found, you can use the nmode() function to compute nor-
mal/Langevin modes and thermochemical parameters. The first three arguments are the same
as for newton(), the next two integers give the number of eigenvectors to compute and the type
of run, respectively. The last three arguments (only used for Langevin modes) are the viscosity
in centipoise, the value for the hydrodynamic radius, and the type of hydrodynamic interac-
tions. Several techniques are available for diagonalizing the Hessian depending on the number
of modes required and the amount of memory available.

In all cases the modes are written to an Amber-compatible "vecs" file for normal modes or
"lmodevecs" file for Langevin modes. There are currently no nab routines that use this format.
The Langevin modes will also generate an output file called "lmode" that can be read by the
Amber module lmanal.

ntrun

0: The dsyev routine is used to diagonalize the Hessian

1: The dsyevd routine is used to diagonalize the Hessian

2: The ARPACK package (shift invert technique) is used to obtain a small number
of eigenvalues

3: The Langevin modes are computed with the viscosity and hydrodynamic radius
provided

hrmax Hydrodynamic radius for the atom with largest area exposed to solvent. If a file
named "expfile" is provided then the relative exposed areas are read from this file.
If "expfile" is not present all atoms are assigned a hydrodynamic radius of hrmax or
0.2 for the hydrogen atoms. The "expfile" can be generated with the ms (molecular
surface) program.

ioseen

0: Stokes Law is used for the hydrodynamic interaction

1: Oseen interaction included

2: Rotne-Prager correction included

Here is a typical calling sequence:� �
1 molecule m;

2 float x[4000], fret;

3
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4 m = getpdb_prm( "mymolecule.pdb" );

5 mm_options( "cut=999., ntpr=50, nsnb=99999, diel=C, gb=1, dielc=1.0" );

6 mme_init( m, NULL, "::Z", x, NULL);

7 setxyz_from_mol( m, NULL, x );

8

9 // conjugate gradient minimization

10 conjgrad(x, 3*m.natoms, fret, mme, 0.1, 0.001, 2000 );

11

12 // Newton-Raphson minimization\fP

13 mm_options( "ntpr=1" );

14 newton( x, 3*m.natoms, fret, mme, mme2, 0.00000001, 0.0, 6 );

15

16 // get the normal modes:

17 nmode( x, 3*m.natoms, mme2, 0, 0, 0.0, 0.0, 0);� �
19.5 Low-MODe (LMOD) optimization methods

István Kolossváry has contributed new functions, which implement the LMOD methods for
minimization, conformational searching, and flexible docking.[269–272] The centerpiece of
LMOD is a conformational search algorithm based on eigenvector following of low-frequency
vibrational modes. It has been applied to a spectrum of computational chemistry domains
including protein loop optimization and flexible active site docking. The search method is im-
plemented without explicit computation of a Hessian matrix and utilizes the Arnoldi package
(ARPACK, http://www.caam.rice.edu/software/ARPACK/ ) for computing the low-frequency
modes. LMOD optimization can be thought of as an advanced minimization method. LMOD
can not only energy minimize a molecular structure in the local sense, but can generate a series
of very low energy conformations. The LMOD capability resides in a single, top-level calling
function lmod(), which uses fast local minimization techniques, collectively termed XMIN that
can also be accessed directly through the function xmin().

19.5.1 LMOD conformational searching

The LMOD conformational search procedure is based on gentle, but very effective struc-
tural perturbations applied to molecular systems in order to explore their conformational space.
LMOD perturbations are derived from low- frequency vibrational modes representing large-
amplitude, concerted atomic movements. Unlike essential dynamics where such low modes are
derived from long molecular dynamics simulations, LMOD calculates the modes directly and
utilizes them to improve Monte Carlo sampling.

LMOD has been developed primarily for macromolecules, with its main focus on protein
loop optimization. However, it can be applied to any kind of molecular system,s including
complexes and flexible docking where it has found widespread use. The LMOD procedure starts
with an initial molecular model, which is energy minimized. The minimized structure is then
subjected to an ARPACK calculation to find a user-specified number of low-mode eigenvectors
of the Hessian matrix. The Hessian matrix is never computed; ARPACK makes only implicit
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reference to it through its product with a series of vectors. Hv, where v is an arbitrary unit
vector, is calculated via a finite-difference formula as follows,

Hv = [∇(xmin +h)−∇(xmin)]/h (19.1)

where xmin is the coordinate vector at the energy minimized conformation and h denotes ma-
chine precision. The computational cost of Eq. 1 requires a single gradient calculation at the
energy minimum point and one additional gradient calculation for each new vector. Note that
5x is never 0, because minimization is stopped at a finite gradient RMS, which is typically set
to 0.1-1.0 kcal/mol-Å in most calculations.

The low-mode eigenvectors of the Hessian matrix are stored and can be re-used throughout
the LMOD search. Note that although ARPACK is very fast in relative terms, a single ARPACK
calculation may take up to a few hours on an absolute CPU time scale with a large protein
structure. Therefore, it would be impractical to recalculate the low-mode eigenvectors for each
new structure. Visual inspection of the low-frequency vibrational modes of different, randomly
generated conformations of protein molecules showed very similar, collective motions clearly
suggesting that low-modes of one particular conformation were transferable to other confor-
mations for LMOD use. This important finding implies that the time limiting factor in LMOD
optimization, even for relatively small molecules, is energy minimization, not the eigenvector
calculation. This is the reason for employing XMIN for local minimization instead of NAB’s
standard minimization techniques.

19.5.2 LMOD Procedure

Given the energy-minimized structure of an initial protein model, protein- ligand complex,
or any other molecular system and its low-mode Hessian eigenvectors, LMOD proceeds as
follows. For each of the first n low-modes repeat steps 1-3 until convergence:

1. Perturb the energy-minimized starting structure by moving along the ith (i =1-n) Hes-
sian eigenvector in either of the two opposite directions to a certain distance. The 3N-
dimensional (N is equal to the number of atoms) travel distance along the eigenvector is
scaled to move the fastest moving atom of the selected mode in 3-dimensional space to a
randomly chosen distance between a user-specified minimum and maximum value.
Note: A single LMOD move inherently involves excessive bond stretching and bond an-
gle bending in Cartesian space. Therefore the primarily torsional trajectory drawn by the
low-modes of vibration on the PES is severely contaminated by this naive, linear approx-
imation and, therefore, the actual Cartesian LMOD trajectory often misses its target by
climbing walls rather than crossing over into neighboring valleys at not too high altitudes.
The current implementation of LMOD employs a so-called ZIG-ZAG algorithm, which
consists of a series of alternating short LMOD moves along the low-mode eigenvector
(ZIG) followed by a few steps of minimization (ZAG), which has been found to relax
excessive stretches and bends more than reversing the torsional move. Therefore, it is
expected that such a ZIG- ZAG trajectory will eventually be dominated by concerted tor-
sional movements and will carry the molecule over the energy barrier in a way that is
not too different from finding a saddle point and crossing over into the next valley like
passing through a mountain pass.
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Barrier crossing check: The LMOD algorithm checks barrier crossing by evaluating the
following criterion: IF the current endpoint of the zigzag trajectory is lower than the en-
ergy of the starting structure, OR, the endpoint is at least lower than it was in the previous
ZIG-ZAG iteration step AND the molecule has also moved farther away from the starting
structure in terms of all-atom superposition RMS than at the previous position THEN it
is assumed that the LMOD ZIG-ZAG trajectory has crossed an energy barrier.

2. Energy-minimize the perturbed structure at the endpoint of the ZIG- ZAG trajectory.

3. Save the new minimum-energy structure and return to step 1. Note that LMOD saves
only low-energy structures within a user-specified energy window above the then current
global minimum of the ongoing search.

After exploring the modes of a single structure, LMOD goes on to the next starting structure,
which is selected from the set of previously found low- energy structures. The selection is based
on either the Metropolis criterion, or simply the than lowest energy structure is used. LMOD
terminates when the user-defined number of steps has been completed or when the user-defined
number of low-energy conformations has been collected.

Note that for flexible docking calculations LMOD applies explicit translations and rotations
of the ligand(s) on top of the low-mode perturbations.

19.5.3 XMIN

float xmin( float func(), int natm, float x[], float g[],

float ene, float grms_out, struct xmod_opt xo);

At a glance: The xmin() function minimizes the energy of a molecular structure with ini-
tial coordinates given in the x[] array. On output, xmin() returns the minimized energy as the
function value and the coordinates in x[] will be updated to the minimum-energy conformation.
The arguments to xmin() are described in Table 19.2; the parameters in the xmin_opt structure
are described in Table 19.3; these should be preceded by “xo.”, since they are members of an
xmod_opt struct with that name; see the sample program below to see how this works.

There are three types of minimizers that can be used, specified by the method parameter:

method

1: PRCG Polak-Ribiere conjugate gradient method, similar to the conjgrad() func-
tion [274].

2: L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton
algorithm [275]. L-BFGS is 2-3 times faster than PRCG mainly, because
it requires significantly fewer line search steps than PRCG.

3: lbfgs-TNCG L-BFGS preconditioned truncated Newton conjugate gradient al-
gorithm [274, 276]. Sophisticated technique that can minimize molecular
structures to lower energy and gradient than PRCG and L-BFGS and requires
an order of magnitude fewer minimization steps, but L-BFGS can sometimes
be faster in terms of total CPU time.
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Parameter list for xmin()
keyword default meaning

func N/A The name of the function that computes the function value and gradient
of the objective function to be minimized. func() must have the
following argument list: float func( float x[], float g[], int

i)where x[] is the vector of the iterate, g[] is the gradient and i is
currently ignored except when func = mme where i is handled
internally.

natm N/A Number of atoms. NOTE: if func is other than mme, natm is used to
pass the total number of variables of the objective function to be
minimized. However, natm retains its original meaning in case func is a
user-defined energy function for 3-dimensional (molecular) structure
optimization. Make sure that the meaning of natm is compatible with
the setting of mol_struct_opt below.

x[] N/A Coordinate vector. User has to allocate memory in calling program and
fill x[] with initial coordinates using, e.g., the setxyz_from_mol function
(see sample program below). Array size = 3*natm.

g[] N/A Gradient vector. User has to allocate memory in calling program. Array
size = 3*natm.

ene N/A On output, ene stores the minimized energy.
grms_out N/A On output, grms_out stores the gradient RMS achieved by XMIN.

Table 19.2: Arguments for xmin().
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Parameter list for xmin_opt
keyword default meaning

mol_struct_opt 1 1= 3-dimensional molecular structure optimization. Any other value
means general function optimization.

maxiter 1000 Maximum number of iteration steps allowed for XMIN. A value of zero
means single point energy calculation, no minimization.

grms_tol 0.05 Gradient RMS threshold below which XMIN should minimize the input
structure.

method 3 Minimization algorithm. See text for description.
numdiff 1 Finite difference method used in TNCG for approximating the product

of the Hessian matrix and some vector in the conjugate gradient
iteration (the same approximation is used in LMOD, see Eq. 19.1 in
section 19.5.1). 1= Forward difference. 2=Central difference.

m_lbfgs 3 Size of the L-BFGS memory used in either L-BFGS minimization or
L-BFGS preconditioning for TNCG. The value zero turns off
preconditioning. It usually makes little sense to set the value >10.

print_level 0 Amount of debugging printout. 0= No output. 1= Minimization details.
2= Minimization (including conjugate gradient iteration in case of
TNCG) and line search details.

iter N/A Output parameter. The total number of iteration steps completed by
XMIN.

xmin_time N/A Output parameter. CPU time in seconds used by XMIN.
ls_method 2 1= modified Armijo [273](not recommended, primarily used for

testing).
2= Wolfe (after J. J. More’ and D. J. Thuente).

ls_maxiter 20 Maximum number of line search steps per single minimization step.
ls_maxatmov 0.5 Maximum (co-ordinate) movement per degree of freedom allowed in

line search, range > 0.
beta_armijo 0.5 Armijo beta parameter, range (0, 1). Only change it if you know what

you are doing.
c_armijo 0.4 Armijo c parameter, range (0, 0.5). Only change it if you know what you

are doing.
mu_armijo 1.0 Armijo mu parameter, range [0, 2). Only change it if you know what you

are doing.
ftol_wolfe 0.0001 Wolfe ftol parameter, range (0, 0.5). Only change it if you know what

you are doing.
gtol_wolfe 0.9 Wolfe gtol parameter, range (ftol_wolfe, 1). Only change it if you know

what you are doing.
ls_iter N/A Output parameter. The total number of line search steps completed by

XMIN.
error_flag N/A Output parameter. A non-zero value indicates an error. In case of an

error XMIN will always print a descriptive error message.

Table 19.3: Options for xmin_opt.
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4: Debugging option; printing analytical and numerical derivatives for compari-
son. Almost all failures with xmin can be attributed to inaccurate analytical
derivatives, e.g., when SCF hasn’t converged with a quantum based Hamilto-
nian.

NOTE: The xmin routine can be utilized for minimizing arbitrary, user-defined objective func-
tions. The function must be defined in a user NAB program or in any other user library that is
linked in. The name of the function is passed to xmin() via the func argument.

19.5.4 Sample XMIN program

The following sample program, which is based on the test program txmin.nab, reads a molec-
ular structure from a PDB file, minimizes it, and saves the minimized structure in another PDB
file.� �

1 // XMIN reverse communication external minimization package.

2 // Written by Istvan Kolossvary.

3

4 #include "xmin_opt.h"

5

6 // M A I N P R O G R A M to carry out XMIN minimization on a molecule:

7

8 struct xmin_opt xo;

9

10 molecule mol;

11 int natm;

12 float xyz[ dynamic ], grad[ dynamic ];

13 float energy, grms;

14 point dummy;

15

16 xmin_opt_init( xo ); // set up defaults (shown here)

17

18 // xo.mol_struct_opt = 1;

19 // xo.maxiter = 1000;

20 // xo.grms_tol = 0.05;

21 // xo.method = 3;

22 // xo.numdiff = 1;

23 // xo.m_lbfgs = 3;

24 // xo.ls_method = 2;

25 // xo.ls_maxiter = 20;

26 // xo.maxatmov = 0.5;

27 // xo.beta_armijo = 0.5;

28 // xo.c_armijo = 0.4;

29 // xo.mu_armijo = 1.0;

30 // xo.ftol_wolfe = 0.0001;

31 // xo.gtol_wolfe = 0.9;

32 // xo.print_level = 0;

33

34 xo.maxiter = 10; // non-defaults are here
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35 xo.grms_tol = 0.001;

36 xo.method = 3;

37 xo.ls_maxatmov = 0.15;

38 xo.print_level = 2;

39

40 mol = getpdb( "gbrna.pdb" );

41 readparm( mol, "gbrna.prmtop" );

42 natm = mol.natoms;

43 allocate xyz[ 3*natm ]; allocate grad[ 3*natm ];

44 setxyz_from_mol( mol, NULL, xyz );

45

46 mm_options( "ntpr=1, gb=1, kappa=0.10395, rgbmax=99., cut=99.0, diel=C ");

47 mme_init( mol, NULL, "::ZZZ", dummy, NULL );

48

49 energy = mme( xyz, grad, 0 );

50 energy = xmin( mme, natm, xyz, grad, energy, grms, xo );

51

52 // E N D M A I N� �
The corresponding screen output should look similar to this. Note that this is fairly technical,

debugging information; normally print_level is set to zero.� �
Reading parm file (gbrna.prmtop)

title:

PDB 5DNB, Dickerson decamer

old prmtop format => using old algorithm for GB parms

mm_options: ntpr=99

mm_options: gb=1

mm_options: kappa=0.10395

mm_options: rgbmax=99.

mm_options: cut=99.0

mm_options: diel=C

iter Total bad vdW elect. cons. genBorn frms

ff: 0 -4107.50 906.22 -192.79 -137.96 0.00 -4682.97 1.93e+01

________________________________________________________________

MIN: It= 0 E= -4107.50 ( 19.289)

CG: It= 3 ( 0.310) :-)

LS: step= 0.94735 it= 1 info= 1

MIN: It= 1 E= -4423.34 ( 5.719)

CG: It= 4 ( 0.499) :-)

LS: step= 0.91413 it= 1 info= 1

MIN: It= 2 E= -4499.43 ( 2.674)

CG: It= 9 ( 0.498) :-)

LS: step= 0.86829 it= 1 info= 1

MIN: It= 3 E= -4531.20 ( 1.543)

CG: It= 8 ( 0.499) :-)
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LS: step= 0.95556 it= 1 info= 1

MIN: It= 4 E= -4547.59 ( 1.111)

CG: It= 9 ( 0.491) :-)

LS: step= 0.77247 it= 1 info= 1

MIN: It= 5 E= -4556.35 ( 1.068)

CG: It= 8 ( 0.361) :-)

LS: step= 0.75150 it= 1 info= 1

MIN: It= 6 E= -4562.95 ( 1.042)

CG: It= 8 ( 0.273) :-)

LS: step= 0.79565 it= 1 info= 1

MIN: It= 7 E= -4568.59 ( 0.997)

CG: It= 5 ( 0.401) :-)

LS: step= 0.86051 it= 1 info= 1

MIN: It= 8 E= -4572.93 ( 0.786)

CG: It= 4 ( 0.335) :-)

LS: step= 0.88096 it= 1 info= 1

MIN: It= 9 E= -4575.25 ( 0.551)

CG: It= 64 ( 0.475) :-)

LS: step= 0.95860 it= 1 info= 1

MIN: It= 10 E= -4579.19 ( 0.515)

----------------------------------------------------------------

FIN: :-) E= -4579.19 ( 0.515)� �
The first few lines are typical NAB output from mm_init() and mme(). The output below

the horizontal line comes from XMIN. The MIN/CG/LS blocks contain the following pieces
of information. The MIN: line shows the current iteration count, energy and gradient RMS
(in parentheses). The CG: line shows the CG iteration count and the residual in parentheses.
The happy face :-) means convergence whereas :-( indicates that CG iteration encountered neg-
ative curvature and had to abort. The latter situation is not a serious problem, minimization
can continue. This is just a safeguard against uphill moves. The LS: line shows line search
information. "step" is the relative step with respect to the initial guess of the line search step.
"it" tells the number of line search steps taken and "info" is an error code. "info" = 1 means
that line searching converged with respect to sufficient decrease and curvature criteria whereas
a non- zero value indicates an error condition. Again, an error in line searching doesn’t mean
that minimization necessarily failed, it just cannot proceed any further because of some numer-
ical dead end. The FIN: line shows the final result with a happy face :-) if either the grms_tol
criterion has been met or when the number of iteration steps reached the maxiter value.

19.5.5 LMOD

float lmod( int natm, float x[], float g[], float ene, float conflib[],

float lmod_traj[], int lig_start[], int lig_end[], int lig_cent[],

float tr_min[], float tr_max[], float rot_min[], float rot_max[],

struct xmin_opt, struct xmin_opt, struct lmod_opt);
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At a glance: The lmod() function is similar to xmin() in that it optimizes the energy of a molec-
ular structure with initial coordinates given in the x[] array. However, the optimization goes
beyond local minimization, it is a sophisticated conformational search procedure. On output,
lmod() returns the global minimum energy of the LMOD conformational search as the function
value and the coordinates in x[] will be updated to the global minimum-energy conformation.
Moreover, a set of the best low-energy conformations is also returned in the array conflib[].
Coordinates, energy, and gradient are in NAB units. The parameters are given in the table be-
low; items above the line are passed as parameters; the rest of the parameters are all preceded
by “lo.”, because they are members of an lmod_opt struct with that name; see the sample
program below to see how this works.

Also note that xmin()’s xmin_opt struct is passed to lmod() as well. lmod() changes the
default values of some of the “xo.” parameters via the call to lmod_opt_int() relative to a call
to xmin_opt_init(), which means that in a more complex NAB program with multiple calls to
xmin() and lmod(); make sure to always initialize and set user parameters for each and every
XMIN and LMOD search via, respectively calling xmin_opt_init() and lmod_opt_init() just
before the calls to xmin() and lmod().

keyword default meaning
natm Number of atoms.

x[] Coordinate vector. User has to allocate memory in calling
program and fill x[] with initial coordinates using, e.g., the
setxyz_from_mol function (see sample program below). Array
size = 3*natm.

g[] Gradient vector. User has to allocate memory in calling
program. Array size = 3*natm.

ene On output, ene stores the global minimum energy.
conflib[] User allocated storage array where LMOD stores low-energy

conformations. Array size = 3*natm*nconf.
lmod_traj[] User allocated storage array where LMOD stores snapshots of

the pseudo trajectory drawn by LMOD on the potential energy
surface. Array size = 3*natom * (nconf + 1).

lig_start[] N/A The serial number(s) of the first/last atom(s) of the ligand(s).
The number(s) should correspond to the numbering in the NAB
input files. Note that the ligand(s) can be anywhere in the atom
list, however, a single ligand must have continuous numbering
between the corresponding lig_start and lig_end values. The
arrays should be allocated in the calling program. Array size =
nlig, but in case nlig=0 there is no need for allocating memory.

lig_end[] N/A See above.
lig_cent[] N/A Similar array in all respects to lig_start/end, but the serial

number(s) define the center of rotation. The value zero means
that the center of rotation will be the geometric center of
gravity of the ligand.
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keyword default meaning
tr_min[] N/A The range of random translation/rotation applied to individual

ligand(s). Rotation is carried out about the origin defined by
the corresponding lig_cent value(s). The angle is given in +/-
degrees and the distance in angstroms. The particular angles
and distances are randomly chosen from their respective
ranges. The arrays should be allocated in the calling program.
Array size = nlig, but in case nlig=0 there is no need to
allocate memory.

tr_max[] See tr_min[], above.
rot_min[] See tr_min[], above.
rot_max[] See tr_min[], above.

niter 10 The number of LMOD iterations. Note that a single LMOD
iteration involves a number of different computations (see
section 19.5.2.). A value of zero results in a single local
minimization; like a call to xmin.

nmod 5 The total number of low-frequency modes computed by
LMOD every time such computation is requested.

minim_grms 0.1 The gradient RMS convergence criterion of structure
minimization.

kmod 3 The definite number of randomly selected low-modes used to
drive LMOD moves at each LMOD iteration step.

nrotran_dof 6 The number of rotational and translational degrees of freedom.
This is related to the number of frozen or tethered atoms in the
system: 0 atoms dof=6, 1 atom dof=3, 2 atoms dof=1, >=3
atoms dof=0. Default is 6, no frozen or tethered atoms. See
section 19.5.7, note (5).

nconf 10 The maximum number of low-energy conformations stored in
conflib[]. Note that the calling program is responsible for
allocating memory for conflib[].

energy_window 50.0 The energy window for conformation storage; the energy of a
stored structure will be in the interval [global_min, global_min
+ energy_window].

eig_recalc 5 The frequency, measured in LMOD iterations, of the
recalculation of eigenvectors.

ndim_arnoldi 0 The dimension of the ARPACK Arnoldi factorization. The
default, zero, specifies the whole space, that is, three times the
number of atoms. See note below.

lmod_restart 10 The frequency, in LMOD iterations, of updating the conflib
storage, that is, discarding structures outside the energy
window, and restarting LMOD with a randomly chosen
structure from the low-energy pool defined by n_best_struct
below. A value >maxiter will prevent LMOD from doing any
restarts.
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keyword default meaning
n_best_struct 10 Number of the lowest-energy structures found so far at a

particular LMOD restart point. The structure to be used for the
restart will be chosen randomly from this pool. n_best_struct =
1 allows the user to explore the neighborhood of the then
current global minimum.

mc_option 1 The Monte Carlo method.
1= Metropolis Monte Carlo (see rtemp below).
2= "Total_Quench", which means that the LMOD trajectory
always proceeds towards the lowest lying neighbor of a
particular energy well found after exhaustive search along all
of the randomly selected kmod low-modes.
3= "Quick_Quench", which means that the LMOD trajectory
proceeds towards the first neighbor found, which is lower in
energy than the current point on the path, without exploring the
remaining modes.

rtemp 1.5 The value of RT in NAB energy units. This is utilized in the
Metropolis criterion.

lmod_step_size_min 2.0 The minimum length of a single LMOD ZIG move in Å. See
section 19.5.2.

lmod_step_size_max 5.0 The maximum length of a single LMOD ZIG move in Å. See
section 19.5.2.

nof_lmod_steps 0 The number of LMOD ZIG-ZAG moves. The default, zero,
means that the number of ZIG-ZAG moves is not pre-defined,
instead LMOD will attempt to cross the barrier in as many
ZIG-ZAG moves as it is necessary. The criterion of crossing an
energy barrier is stated above in section 19.5.2.
nof_lmod_steps > 0 means that multiple barriers may be
crossed and LMOD can carry the molecule to a large distance
on the potential energy surface without severely distorting the
geometry.

lmod_relax_grms 1.0 The gradient RMS convergence criterion of structure
relaxation, see ZAG move in section 19.5.2.

nlig 0 Number of ligands considered for flexible docking. The
default, zero, means no docking.

apply_rigdock 2 The frequency, measured in LMOD iterations, of the
application of rigid-body rotational and translational motions
to the ligand(s). At each apply_rigdock-th LMOD iteration
nof_pose_to-try rotations and translations are applied to the
ligand(s).

nof_poses_to_try 10 The number of rigid-body rotational and translational motions
applied to the ligand(s). Such applications occur at each
apply_rigdock-th LMOD iteration. In case nof_pose_to_try >
1, it is always the lowest energy pose that is kept, all other
poses are discarded.
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keyword default meaning
random_seed 314159 The seed of the random number generator. A value of zero

requests hardware seeding based on the system clock.
print_level 0 Amount of debugging printout. 0= No output. 1= Basic output.

2= Detailed output. 3= Copious debugging output including
ARPACK details.

lmod_time N/A CPU time in seconds used by LMOD itself.
aux_time N/A CPU time in seconds used by auxiliary routines.
error_flag N/A A non-zero value indicates an error. In case of an error LMOD

will always print a descriptive error message.

Notes on the ndim_arnoldi parameter: Basically, the ARPACK package used for the eigen-
vector calculations solves multiple "small" eigenvalue problems instead of a single "large"
problem, which is the diagonalization of the three times the number of atoms by three times
the number of atoms Hessian matrix. This parameter is the user specified dimension of the
"small" problem. The allowed range is nmod + 1 <= ndim_arnoldi <= 3*natm. The default
means that the "small" problem and the "large" problem are identical. This is the preferred,
i.e., fastest, calculation for small to medium size systems, because ARPACK is guaranteed to
converge in a single iteration. The ARPACK calculation scales with three times the number
of atoms times the Arnoldi dimension squared and, therefore, for larger molecules there is an
optimal ndim_arnoldi much less than three times the number of atoms that converges much
faster in multiple iterations (possibly thousands or tens of thousands of iterations). The key to
good performance is to select ndim_arnoldi such that all the ARPACK storage fits in memory.
For proteins, ndim_arnoldi =1000 is generally a good value, but often a very small ∼50-100
Arnoldi dimension provides the fastest net computational cost with very many iterations.

19.5.6 Sample LMOD program

The following sample program, which is based on the test program tlmod.nab, reads a molec-
ular structure from a PDB file, runs a short LMOD search, and saves the low-energy conforma-
tions in PDB files.� �

1 // LMOD reverse communication external minimization package.

2 // Written by Istvan Kolossvary.

3

4 #include "xmin_opt.h"

5 #include "lmod_opt.h"

6

7 // M A I N P R O G R A M to carry out LMOD simulation on a molecule/complex:

8

9 struct xmin_opt xo;

10 struct lmod_opt lo;

11

12 molecule mol;

13 int natm;

14 float energy;
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15 int lig_start[ dynamic ], lig_end[ dynamic ], lig_cent[ dynamic ];

16 float xyz[ dynamic ], grad[ dynamic ], conflib[ dynamic ], lmod_trajectory[ dynamic ];

17 float tr_min[ dynamic ], tr_max[ dynamic ], rot_min[ dynamic ], rot_max[ dynamic ];

18 float glob_min_energy;

19 point dummy;

20

21 lmod_opt_init( lo, xo ); // set up defaults

22

23 lo.niter = 3; // non-default options are here

24 lo.mc_option = 2;

25 lo.nof_lmod_steps = 5;

26 lo.random_seed = 99;

27 lo.print_level = 2;

28

29 xo.ls_maxatmov = 0.15;

30

31 mol = getpdb( "trpcage.pdb" );

32 readparm( mol, "trpcage.top" );

33 natm = mol.natoms;

34

35 allocate xyz[ 3*natm ]; allocate grad[ 3*natm ];

36 allocate conflib[ lo.nconf * 3*natm ];

37 allocate lmod_trajectory[ (lo.niter+1) * 3*natm ];

38 setxyz_from_mol( mol, NULL, xyz );

39

40 mm_options( "ntpr=5000, gb=0, cut=999.0, nsnb=9999, diel=R ");

41 mme_init( mol, NULL, "::ZZZ", dummy, NULL );

42

43 mme( xyz, grad, 1 );

44 glob_min_energy = lmod( natm, xyz, grad, energy,

45 conflib, lmod_trajectory, lig_start, lig_end, lig_cent,

46 tr_min, tr_max, rot_min, rot_max, xo, lo );

47

48 printf( "\nGlob. min. E = %12.3lf kcal/mol\n", glob_min_energy );

49

50

51 // E N D M A I N� �
The corresponding screen output should look similar to this.� �

Reading parm file (trpcage.top)

title:

mm_options: ntpr=5000

mm_options: gb=0

mm_options: cut=999.0

mm_options: nsnb=9999

mm_options: diel=R

________________________________________________________________
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Low-Mode Simulation

---------------------------------------------------------------------------

1 E = -118.117 ( 0.054) Rg = 5.440

1 / 6 E = -89.2057 ( 0.090) Rg = 2.625 rmsd= 8.240 p= 0.0000

1 / 8 E = -51.682 ( 0.097) Rg = 5.399 rmsd= 8.217 p= 0.0000

3 /12 E = -120.978 ( 0.091) Rg = 3.410 rmsd= 7.248 p= 1.0000

3 /10 E = -106.292 ( 0.099) Rg = 5.916 rmsd= 4.829 p= 0.0004

4 / 6 E = -106.788 ( 0.095) Rg = 4.802 rmsd= 3.391 p= 0.0005

4 / 3 E = -111.501 ( 0.097) Rg = 5.238 rmsd= 2.553 p= 0.0121

---------------------------------------------------------------------------

2 E = -120.978 ( 0.091) Rg = 3.410

1 / 4 E = -137.867 ( 0.097) Rg = 2.842 rmsd= 5.581 p= 1.0000

1 / 9 E = -130.025 ( 0.100) Rg = 4.282 rmsd= 5.342 p= 1.0000

4 / 3 E = -123.559 ( 0.089) Rg = 3.451 rmsd= 1.285 p= 1.0000

4 / 4 E = -107.253 ( 0.095) Rg = 3.437 rmsd= 2.680 p= 0.0001

5 / 5 E = -113.119 ( 0.096) Rg = 3.136 rmsd= 2.074 p= 0.0053

5 / 4 E = -134.1 ( 0.091) Rg = 3.141 rmsd= 2.820 p= 1.0000

---------------------------------------------------------------------------

3 E = -130.025 ( 0.100) Rg = 4.282

1 / 8 E = -150.556 ( 0.093) Rg = 3.347 rmsd= 5.287 p= 1.0000

1 / 4 E = -123.738 ( 0.079) Rg = 4.218 rmsd= 1.487 p= 0.0151

2 / 8 E = -118.254 ( 0.095) Rg = 3.093 rmsd= 5.296 p= 0.0004

2 / 7 E = -115.027 ( 0.090) Rg = 4.871 rmsd= 4.234 p= 0.0000

4 / 7 E = -128.905 ( 0.099) Rg = 4.171 rmsd= 2.113 p= 0.4739

4 /11 E = -133.85 ( 0.099) Rg = 3.290 rmsd= 4.464 p= 1.0000

__________________________________________________

Full list:

1 E = -150.556 / 1 Rg = 3.347

2 E = -137.867 / 1 Rg = 2.842

3 E = -134.1 / 1 Rg = 3.141

4 E = -133.85 / 1 Rg = 3.290

5 E = -130.025 / 1 Rg = 4.282

6 E = -128.905 / 1 Rg = 4.171

7 E = -123.738 / 1 Rg = 4.218

8 E = -123.559 / 1 Rg = 3.451

9 E = -120.978 / 1 Rg = 3.410

10 E = -118.254 / 1 Rg = 3.093

Glob. min. E = -150.556 kcal/mol

Time in libLMOD = 13.880 CPU sec

Time in NAB and libs = 63.760 CPU sec� �
The first few lines come from mm_init() and mme(). The screen output below the horizontal

line originates from LMOD. Each LMOD-iteration is represented by a multi-line block of data
numbered in the upper left corner by the iteration count. Within each block, the first line
displays the energy and, in parentheses, the gradient RMS as well as the radius of gyration
(assigning unit mass to each atom), of the current structure along the LMOD pseudo simulation-
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path. The successive lines within the block provide information about the LMOD ZIG-ZAG
moves (see section 19.5.2). The number of lines is equal to 2 times kmod (2x3 in this example).
Each selected mode is explored in both directions, shown in two separate lines. The leftmost
number is the serial number of the mode (randomly selected from the set of nmod modes)
and the number after the slash character gives the number of ZIG-ZAG moves taken. This
is followed by, respectively, the minimized energy and gradient RMS, the radius of gyration,
the RMSD distance from the base structure, and the Boltzmann probability with respect to the
energy of the base structure and rtemp, of the minimized structure at the end of the ZIG-ZAG
path. Note that exploring the same mode along both directions can result in two quite different
structures. Also note that the number of ZIG-ZAG moves required to cross the energy barrier
(see section 19.5.2) in different directions can vary quite a bit, too. Occasionally, an exclamation
mark next to the energy (!E = ...) denotes a structure that could not be fully minimized.

After finishing all the computation within a block, the corresponding LMOD step is com-
pleted by selecting one of the ZIG-ZAG endpoint structures as the base structure of the next
LMOD iteration. The selection is based on the mc_option and the Boltzmann probability. The
LMOD pseudo simulation-path is defined by the series of these mc_option-selected structures
and it is stored in lmod_traj[]. Note that the sample program saves these structures in a multi-
PDB disk file called lmod_trajectory.pdb. The final section of the screen output lists the nconf
lowest energy structures found during the LMOD search. Note that some of the lowest energy
structures are not necessarily included in the lmod_traj[] list, as it depends on the mc_option
selection. The list displays the energy, the number of times a particular conformation was found
(increasing numbers are somewhat indicative of a more complete search), and the radius of gy-
ration. The sample program writes the top ten low-energy structures in separate, numbered PDB
files. The glob. min. energy and the timing results are printed from the sample NAB program,
not from LMOD.

As a final note, it is instructive to be aware of a simple safeguard that LMOD applies . A copy
of the conflib[] array is saved periodically in a binary disk file called conflib.dat. Since LMOD
searches might run for a long time, in case of a crash low-energy structures can be recovered
from this file. The format of conflib.dat is as follows. Each conformation is represented by 3
numbers (double energy, double radius of gyration, and int number of times found), followed
by the double (x, y, z) coordinates of the atoms.

19.5.7 Tricks of the trade of running LMOD searches

1. The AMBER atom types HO, HW, and ho all have zero van der Waals parameters in all
of the AMBER (and some other) force fields. Corresponding Aij and Bij coefficients in
the PRMTOP file are set to zero. This means there is no repulsive wall to prevent two
oppositely charged atoms, one being of type HO, HW or ho, to fuse as a result of the
ever decreasing electrostatic energy as they come closer and closer to each other. This
potential problem is rarely manifest in molecular dynamics simulations, but it presents a
nuisance when running LMOD searches. The problem is local minimization, especially
"aggressive" TNCG minimization (XMIN xo.method=3) that can easily result in atom
fusion. Therefore, before running an LMOD simulation, the PRMTOP file (let’s call it
prmtop.in) must be processed by running the script "lmodprmtop prmtop.in prmtop.out".
This script will replace all the repulsive Aij coefficients set to zero in prmtop.in with
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a high value of 1e03 in prmtop.out in order to re-create the van der Waals wall. It is
understood that this procedure is parameter fudging; however, note that the primary goal
of using LMOD is the quick generation of approximate, low-energy structures that can
be further refined by high-accuracy MD.

2. LMOD requires that the potential energy surface is continuous everywhere to a great
degree. Therefore, always use a distance dependent dielectric constant in mm_options
when running searches in vacuo, or use GB solvation (note that GB calculations will be
slow), and always apply a large cut-off. It does make sense to run quick and dirty LMOD
searches in vacuo to generate low-energy starting structures for MD runs. Note that the
most likely symptom of discontinuities causing a problem is when your NAB program
utilizing LMOD is grabbing CPU time, but the LMOD search does not seem to progress.
This is the result of NaN’s that often can be seen when print_level is set to > 0.

3. LMOD is NOT INTENDED to be used with explicit water models and periodic bound-
ary conditions. Although explicit-water solvation representation is not recommended,
LMOD docking can be readily used with crystallographic water molecules as ligands.

4. Conformations in the conflib and lmod_trajectory files can have very different orienta-
tions. One trick to keep them in a common orientation is to restrain the position of, e.g.,
a single benzene ring. This will ensure that the molecule cannot be translated or rotated
as a whole. However, when applying this trick you should set nrotran_dof = 0.

5. A subset of the atoms of a molecular system can be frozen or tethered/restrained in NAB
by two different methods. Atoms can either be frozen by using the first atom expression
argument in mme_init() or restrained by using the second atom expression argument and
the reference coordinate array in mme_init() along with the wcons option in mm_options.
LMOD searches, especially docking calculations can be run much faster if parts of the
molecular system can be frozen, because the effective degrees of freedom is determined
by the size of the flexible part of the system. Application of frozen atoms means that a
much smaller number of moving atoms are moving in the fixed, external potential of the
frozen atoms. The tethered atom model is expected to give similar results to the frozen
atom model, but note that the number of degrees of freedom and, therefore, the computa-
tional cost of a tethered calculation is comparable to that of a fully unrestrained system.
However, the eigenvector calculations are likely to converge faster with the tethered sys-
tems.

19.6 Using the Hierarchical Charge Partitioning (HCP)
method

The HCP is an N log N approximation for computing long range electrostatic interactions
[277, 278]. This method uses the natural organization of biomolecular structures to partition
the structure into multiple hierarchical levels of components - atoms, groups, chains, and com-
plexes. The charge distribution for each of these components is approximated by 1 (hcp=1)
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Figure 19.1: The HCP threshold distance. For the level 1 approximation shown here, groups
within the threshold distance are treated exactly using atomic charges, while
groups beyond the threshold distance are approximated by a small number of
charges, e.g. 1 charge for hcp=1 shown here.
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or 2 (hcp=2) charges. The approximate charges are then used for computing electrostatic in-
teractions with distant components while the full set of atomic charges are used for nearby
components (Figure 17.1). The HCP can be used for gas phase (dielec=C), distant dependent
dielectric (dielec=R/RL), and generalized Born (gb=1-5) simulations with or without Langevin
dynamics (gamma_ln>0). The speedup from using the HCP for MD can be up to 3 orders of
magnitude, depending on structure size.

19.6.1 Level 1 HCP approximation

The HCP option can now be used with one level of approximation (groups) using the NAB
molecular dynamics scripts described in Section 19.3 above. No additional manipulation of the
input structure files is required for one level of approximation. For an example see AmberTool-
s/examples/hcp/2trx.nab. The level 1 approximation is recommended for single domain and
small (< 10,000 atoms) multi-domain structures. Speedups of 2x-10x can be realized using the
level 1 approximation, depending on structure size.

19.6.2 Level 2 and 3 HCP approximation

For larger multi-domain structures higher levels of approximations (chains and complexes)
can be used to achieve up to 3 orders of magnitude speedups, depending on structure size.
The following additional steps are required to include information about these higher level
components in the prmtop file. For an example see AmberTools/examples/hcp/1kx5.nab.

1. Ensure the pdb file identifies the higher level structures: Chains (level 2) separated by
TER, and Complexes (level 3) separated by REMARK END-OF-COMPLEX:
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...
ATOM ...
TER (end of chain)
ATOM ...
...
ATOM ...
TER (end of chain)
REMARK END-OF-COMPLEX
ATOM ...

2. Execute hcp_getpdb to generate prmtop entries for HCP: hcp_getpdb pdb-filename >
hcp-prmtop

3. Concatenate the HCP prmtop entries to the end of the standard prmtop file generated by
Leap: cat prmtop-file hcp-prmtop > new-prmtop

4. Use this new prmtop file in the NAB molecular dynamics scripts instead of the prmtop
file generated by Leap
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This chapter provides a variety of examples that use the basic NAB functionality described
in earlier chapters to solve interesting molecular manipulation problems. Our hope is that the
ideas and approaches illustrated here will facilitate construction of similar programs to solve
other problems.

20.1 Duplex Creation Functions

nab provides a variety of functions for creating Watson/Crick duplexes. A short description
of four of them is given in this section. All four of these functions are written in nab and the
details of their implementation is covered in the section Creating Watson/Crick Duplexes of
the User Manual. You should also look at the function fd_helix() to see how to create duplex
helices that correspond to fibre-diffraction models. As with the PERL language, "there is more
than one way to do it."

molecule bdna( string seq );
string wc_complement( string seq, string rlib, string rlt );
molecule wc_helix( string seq, string rlib, string natype, string cseq, string cr-
lib,

string cnatype, float xoffset, float incl, float twist, float rise, string options );
molecule dg_helix( string seq, string rlib, string natype,

string cseq, string crlib, string cnatype, float xoff-
set, float incl, float twist, float rise,

string options );
molecule wc_basepair( residue res, residue cres );

bdna() converts the character string seq containing one or more A, C, G or Ts (or their lower
case equivalents) into a uniform ideal Watson/Crick B-form DNA duplex. Each basepair has
an X-offset of 2.25 Å, an inclination of -4.96 Å and a helical step of 3.38 Å rise and 36.0o
twist. The first character of seq is the 5’ base of the strand "sense" of the molecule returned
by bdna(). The other strand is called "anti". The phosphates of the two 5’ bases have been
replaced by hydrogens and and hydrogens have been added to the two O3’ atoms of the three
prime bases. bdna() returns NULL if it can not create the molecule.

wc_complement() returns a string that is the Watson/Crick complement of its argument seq.
Each C, G, T (U) in seq is replaced by G, C and A. The replacements for A depends if rlt is DNA
or RNA. If it is DNA, A is replaced by T. If it is RNA A is replaced by U. wc_complement()
considers lower case and upper case letters to be the same and always returns upper case letters.
wc_complement() returns NULL on error. Note that the while the orientations of the argument
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string and the returned string are opposite, their absolute orientations are undefined until they
are used to create a molecule.

wc_helix() creates a uniform duplex from its arguments. The two strands of the returned
molecule are called "sense" and "anti". The two sequences, seq and cseq must specify Wat-
son/Crick base pairs. Note the that must be specified as lower-case strings, such as "ggact".
The nucleic acid type ( DNA or RNA ) of the sense strand is specified by natype and of the
complementary strand cseq by cnatype. Two residue libraries—rlib and crlib— permit creation
of DNA:RNA heteroduplexes. If either seq or cseq (but not both) is NULL only the speci-
fied strand of what would have been a uniform duplex is created. The options string contains
some combination of the strings "s5", "s3", "a5" and "a3"; these indicate which (if any) of the
ends of the helices should be "capped" with hydrogens attached to the O5’ atom (in place of a
phosphate) if "s5" or "a5" is specified, and a proton added to the O3’ position if "s3" or "a3"
is specified. A blank string indicates no capping, which would be appropriate if this section
of helix were to be inserted into a larger molecule. The string "s5a5s3a3" would cap the 5’
and 3’ ends of both the "sense" and "anti" strands, leading to a chemically complete molecule.
wc_helix() returns NULL on error.

dg_helix() is the functional equivalent of wc_helix() but with the backbone geometry min-
imized via a distance constraint error function. dg_helix() takes the same arguments as
wc_helix().

wc_basepair() assembles two nucleic acid residues (assumed to be in a standard orientation)
into a two stranded molecule containing one Watson/Crick base pair. The two strands of the
new molecule are "sense" and "anti". It returns NULL on error.

20.2 nab and Distance Geometry

Distance geometry is a method which converts a molecule represented as a set of interatomic
distances and related information into a 3-D structure. nab has several builtin functions that are
used together to provide metric matrix distance geometry. nab also provides the bounds type for
holding a molecule’s distance geometry information. A bounds object contains the molecule’s
interatomic distance bounds matrix and a list of its chiral centers and their volumes. nab uses
chiral centers with a volume of 0 to enforce planarity.

Distance geometry has several advantages. It is unique in its power to create structures from
very incomplete descriptions. It easily incorporates “low resolution structural data” such as
that derived from chemical probing since these kinds of experiments generally return only dis-
tance bounds. And it also provides an elegant method by which structures may be described
functionally.

The nab distance geometry package is described more fully in the section NAB Language
Reference. Generally, the function newbounds() creates and returns a bounds object corre-
sponding to the molecule mol. This object contains two things—a distance bounds matrix
containing initial upper and lower bounds for every pair of atoms in mol and a initial list of the
molecules chiral centers and their volumes. Once a bounds object has been initialized, the mod-
eller uses functions from the middle of the distance geometry function list to tighten, loosen or
set other distance bounds and chiralities that correspond to experimental measurements or parts
of the model’s hypothesis. The four functions andbounds(), orbounds(), setbounds and use-
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boundsfrom() work in similar fashion. Each uses two atom expressions to select pairs of atoms
from mol. In andbounds(), the current distance bounds of each pair are compared against lb and
ub and are replaced by lb, ub if they represent tighter bounds. orbounds() replaces the current
bounds of each selected pair, if lb, ub represent looser bounds. setbounds() sets the bounds of
all selected pairs to lb, ub. useboundsfrom() sets the bounds between each atom selected in the
first expression to a percentage of the distance between the atoms selected in the second atom
expression. If the two atom expressions select the same atoms from the same molecule, the
bounds between all the atoms selected will be constrained to the current geometry. setchivol()
takes four atom expressions that must select exactly four atoms and sets the volume of the
tetrahedron enclosed by those atoms to vol. Setting vol to 0 forces those atoms to be planar.
getchivol() returns the chiral volume of the tetrahedron described by the four points.

After all experimental and model constraints have been entered into the bounds object, the
function tsmooth() applies a process called “triangle smoothing” to them. This tests each triple
of distance bounds to see if they can form a triangle. If they can not form a triangle then the
distance bounds do not even represent a Euclidean object let alone a 3-D one. If this occurs,
tsmooth() quits and returns a 1 indicating failure. If all triples can form triangles, tsmooth()
returns a 0. Triangle smoothing pulls in the large upper bounds. After all, the maximum distance
between two atoms can not exceed the sum of the upper bounds of the shortest path between
them. Triangle smoothing can also increase lower bounds, but this process is much less effective
as it requires one or more large lower bounds to begin with.

The function embed() takes the smoothed bounds and converts them into a 3-D object. This
process is called “embedding”. It does this by choosing a random distance for each pair of
atoms within the bounds of that pair. Sometimes the bounds simply do not represent a 3-D
object and embed() fails, returning the value 1. This is rare and usually indicates the that the
distance bounds matrix part of the bounds object contains errors. If the distance set does embed,
conjgrad() can subject newly embedded coordinates to conjugate gradient refinement against the
distance and chirality information contained in bounds. The refined coordinates can replace the
current coordinates of the molecule in mol. embed() returns a 0 on success and conjgrad()
returns an exit code explained further in the Language Reference section of this manual. The
call to embed() is usually placed in a loop with each new structure saved after each call to see
the diversity of the structures the bounds represent.

In addition to the explicit bounds manipulation functions, nab provides an implicit way of
setting bounds between interacting residues. The function setboundsfromdb() is for use in cre-
ating distance and chirality bounds for nucleic acids. setboundsfromdb() takes as an argument
two atom expressions selecting two residues, the name of a database containing bounds infor-
mation, and a number which dictates the tightness of the bounds. For instance, if the database
bdna.stack.db is specified, setboundsfromdb() sets the bounds between the two residues to what
they would be if they were stacked in strand in a typical Watson-Crick B-form duplex. Simi-
larly, if the database arna.basepair.db is specified, setboundsfromdb() sets the bounds between
the two residues to what they would be if the two residues form a typical Watson-Crick basepair
in an A-form helix.
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20.2.1 Refine DNA Backbone Geometry

As mentioned previously, wc_helix() performs rigid body transformations on residues and
does not correct for poor backbone geometry. Using distance geometry, several techniques are
available to correct the backbone geometry. In program 7, an 8-basepair dna sequence is created
using wc_helix(). A new bounds object is created on line 14, which automatically sets all the
1-2, 1-3, and 1-4 distance bounds information according the geometry of the model. Since this
molecule was created using wc_helix(), the O3’-P distance between adjacent stacked residues
is often not the optimal 1.595 ˚, and hence, the 1-2, 1-3, and 1-4, distance bounds set by new-
bounds() are incorrect. We want to preserve the position of the nucleotide bases, however, since
this is the helix whose backbone we wish to minimize. Hence the call to useboundsfrom() on
line 17 which sets the bounds from every atom in each nucleotide base to the actual distance to
every other atom in every other nucleotide base. In general, the likelihood of a distance geom-
etry refinement to satisfy a given bounds criteria is proportional to the number of ( consistent )
bounds set supporting that criteria. In other words, the more bounds that are set supporting a
given conformation, the greater the chance that conformation will resolve after the refinement.
An example of this concept is the use of useboundsfrom() in line 17, which works to preserve
our rigid helix conformation of all the nucleotide base atoms.

We can correct the backbone geometry by overwriting the erroneous bounds with more ap-
propriate bounds. In lines 19-29, all the 1-2, 1-3, and 1-4 bounds involving the O3’-P con-
nection between strand 1 residues are set to that which would be appropriate for an idealized
phosphate linkage. Similarly, in lines 31-41, all the 1-2, 1-3, and 1-4 bounds involving the O3’-
P connection among strand 2 residues are set to an idealized conformation. This technique is
effective since all the 1-2, 1-3, and 1-4 distance bounds created by newbounds() include those
of the idealized nucleotides in the nucleic acid libraries dna.amber94.rlb, rna.amber94.rlb, etc.
contained in reslib. Hence, by setting these bounds and refining against the distance energy
function, we are spreading the ’error’ across the backbone, where the ’error’ is the departure
from the idealized sugar conformation and idealized phosphate linkage.

On line 43, we smooth the bounds matrix, and on line 44 we give a substantial penalty for
deviating from a 3-D refinement by setting k4d=4.0. Notice that there is no need to embed the
molecule in this program, as the actual coordinates are sufficient for any refinement.� �

1 // Program 7 - refine backbone geometry using distance function

2 molecule m;

3 bounds b;

4 string seq, cseq;

5 int i;

6 float xyz[ dynamic ], fret;

7

8 seq = "acgtacgt";

9 cseq = wc_complement( "acgtacgt", "", "dna" );

10

11 m = wc_helix( seq, "", "dna", cseq, "",

12 "dna", 2.25, -4.96, 36.0, 3.38, "" );

13

14 b = newbounds(m, "");

15 allocate xyz[ 4*m.natoms ];
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16

17 useboundsfrom(b, m, "::??,H?[^T’]", m, "::??,H?[^T’]", 0.0 );

18 for ( i = 1; i < m.nresidues/2 ; i = i + 1 ){

19 setbounds(b,m, sprintf("1:%d:O3’",i),

20 sprintf("1:%d:P",i+1), 1.595,1.595);

21 setbounds(b,m, sprintf("1:%d:O3’",i),

22 sprintf("1:%d:O5’",i+1), 2.469,2.469);

23 setbounds(b,m, sprintf("1:%d:C3’",i),

24 sprintf("1:%d:P",i+1), 2.609,2.609);

25 setbounds(b,m, sprintf("1:%d:O3’",i),

26 sprintf("1:%d:O1P",i+1), 2.513,2.513);

27 setbounds(b,m, sprintf("1:%d:O3’",i),

28 sprintf("1:%d:O2P",i+1), 2.515,2.515);

29 setbounds(b,m, sprintf("1:%d:C4’",i),

30 sprintf("1:%d:P",i+1), 3.550,4.107);

31 setbounds(b,m, sprintf("1:%d:C2’",i),

32 sprintf("1:%d:P",i+1), 3.550,4.071);

33 setbounds(b,m, sprintf("1:%d:C3’",i),

34 sprintf("1:%d:O1P",i+1), 3.050,3.935);

35 setbounds(b,m, sprintf("1:%d:C3’",i),

36 sprintf("1:%d:O2P",i+1), 3.050,4.004);

37 setbounds(b,m, sprintf("1:%d:C3’",i),

38 sprintf("1:%d:O5’",i+1), 3.050,3.859);

39 setbounds(b,m, sprintf("1:%d:O3’",i),

40 sprintf("1:%d:C5’",i+1), 3.050,3.943);

41

42 setbounds(b,m, sprintf("2:%d:P",i+1),

43 sprintf("2:%d:O3’",i), 1.595,1.595);

44 setbounds(b,m, sprintf("2:%d:O5’",i+1),

45 sprintf("2:%d:O3’",i), 2.469,2.469);

46 setbounds(b,m, sprintf("2:%d:P",i+1),

47 sprintf("2:%d:C3’",i), 2.609,2.609);

48 setbounds(b,m, sprintf("2:%d:O1P",i+1),

49 sprintf("2:%d:O3’",i), 2.513,2.513);

50 setbounds(b,m, sprintf("2:%d:O2P",i+1),

51 sprintf("2:%d:O3’",i), 2.515,2.515);

52 setbounds(b,m, sprintf("2:%d:P",i+1),

53 sprintf("2:%d:C4’",i), 3.550,4.107);

54 setbounds(b,m, sprintf("2:%d:P",i+1),

55 sprintf("2:%d:C2’",i), 3.550,4.071);

56 setbounds(b,m, sprintf("2:%d:O1P",i+1),

57 sprintf("2:%d:C3’",i), 3.050,3.935);

58 setbounds(b,m, sprintf("2:%d:O2P",i+1),

59 sprintf("2:%d:C3’",i), 3.050,4.004);

60 setbounds(b,m, sprintf("2:%d:O5’",i+1),

61 sprintf("2:%d:C3’",i), 3.050,3.859);

62 setbounds(b,m, sprintf("2:%d:C5’",i+1),

63 sprintf("2:%d:O3’",i), 3.050,3.943);

64 }
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5’- -3’

5’- -3’

Figure 20.1: Single-stranded RNA (top) folded into a pseudoknot (bottom). The black and dark
grey base pairs can be stacked.

65 tsmooth( b, 0.0005 );

66 dg_options(b, "seed=33333, gdist=0, ntpr=100, k4d=4.0" );

67 setxyzw_from_mol( m, NULL, xyz );

68 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );

69 setmol_from_xyzw( m, NULL, xyz );

70 putpdb( "acgtacgt.pdb", m );� �
The approach of Program 7 is effective but has a disadvantage in that it does not scale lin-

early with the number of atoms in the molecule. In particular, tsmooth() and conjgrad() require
extensive CPU cycles for large numbers of residues. For this reason, the function dg_helix() was
created. dg_helix() takes uses the same method of Program 7, but employs a 3-basepair helix
template which traverses the new helix as it is being constructed. In this way, the helix is built
in a piecewise manner and the maximum number of residues considered in each refinement is
less than or equal to six. This is the preferred method of helix construction for large, idealized
canonical duplexes.

20.2.2 RNA Pseudoknots

In addition to the standard helix generating functions, nab provides extensive support for
generating initial structures from low structural information. As an example, we will describe
the construction of a model of an RNA pseudoknot based on a small number of secondary
and tertiary structure descriptions. Shen and Tinoco (J. Mol. Biol. 247, 963-978, 1995) used
the molecular mechanics program X-PLOR to determine the three dimensional structure of a
34 nucleotide RNA sequence that folds into a pseudoknot. This pseudoknot promotes frame
shifting in Mouse Mammary Tumor Virus. A pseudoknot is a single stranded nucleic acid
molecule that contains two improperly nested hairpin loops as shown in Figure 20.1. NMR
distance and angle constraints were converted into a three dimensional structure using a two
stage restrained molecular dynamics protocol. Here we show how a three-dimensional model
can be constructed using just a few key features derived from the NMR investigation.� �

1 // Program 8 - create a pseudoknot using distance geometry

2 molecule m;

3 float xyz[ dynamic ],f[ dynamic ],v[ dynamic ];

4 bounds b;

5 int i, seqlen;

6 float fret;
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7 string seq, opt;

8

9 seq = "GCGGAAACGCCGCGUAAGCG";

10

11 seqlen = length(seq);

12

13 m = link_na("1", seq, "", "RNA", "35");

14

15 allocate xyz[ 4*m.natoms ];

16 allocate f[ 4*m.natoms ];

17 allocate v[ 4*m.natoms ];

18

19 b = newbounds(m, "");

20

21 for ( i = 1; i <= seqlen; i = i + 1) {

22 useboundsfrom(b, m, sprintf("1:%d:??,H?[^’T]", i), m,

23 sprintf("1:%d:??,H?[^’T]", i), 0.0 );

24 }

25

26 setboundsfromdb(b, m, "1:1:", "1:2:", "arna.stack.db", 1.0);

27 setboundsfromdb(b, m, "1:2:", "1:3:", "arna.stack.db", 1.0);

28 setboundsfromdb(b, m, "1:3:", "1:18:", "arna.stack.db", 1.0);

29 setboundsfromdb(b, m, "1:18:", "1:19:", "arna.stack.db", 1.0);

30 setboundsfromdb(b, m, "1:19:", "1:20:", "arna.stack.db", 1.0);

31

32 setboundsfromdb(b, m, "1:8:", "1:9:", "arna.stack.db", 1.0);

33 setboundsfromdb(b, m, "1:9:", "1:10:", "arna.stack.db", 1.0);

34 setboundsfromdb(b, m, "1:10:", "1:11:", "arna.stack.db", 1.0);

35 setboundsfromdb(b, m, "1:11:", "1:12:", "arna.stack.db", 1.0);

36 setboundsfromdb(b, m, "1:12:", "1:13:", "arna.stack.db", 1.0);

37

38 setboundsfromdb(b, m, "1:1:", "1:13:", "arna.basepair.db", 1.0);

39 setboundsfromdb(b, m, "1:2:", "1:12:", "arna.basepair.db", 1.0);

40 setboundsfromdb(b, m, "1:3:", "1:11:", "arna.basepair.db", 1.0);

41

42 setboundsfromdb(b, m, "1:8:", "1:20:", "arna.basepair.db", 1.0);

43 setboundsfromdb(b, m, "1:9:", "1:19:", "arna.basepair.db", 1.0);

44 setboundsfromdb(b, m, "1:10:", "1:18:", "arna.basepair.db", 1.0);

45

46 tsmooth(b, 0.0005);

47

48 opt = "seed=571, gdist=0, ntpr=50, k4d=2.0, randpair=5., sqviol=1";

49 dg_options( b, opt );

50 embed(b, xyz );

51

52 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );

53

54 setmol_from_xyzw( m, NULL, xyz );

55 putpdb( "rna_pseudoknot.pdb", m );
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� �
Program 8 uses distance geometry followed by minimization and simulated annealing to

create a model of a pseudoknot. Distance geometry code begins in line 20 with the call to
newbounds() and ends on line 53 with the call to embed(). The structure created with distance
geometry is further refined with molecular dynamics in lines 58-74. Note that very little struc-
tural information is given - only connectivity and general base-base interactions. The stacking
and base-pair interactions here are derived from NMR evidence, but in other cases might arise
from other sorts of experiments, or as a model hypothesis to be tested.

The 20-base RNA sequence is defined on line 9. The molecule itself is created with the
link_na() function call which creates an extended conformation of the RNA sequence and caps
the 5’ and 3’ ends. Lines 15-17 define arrays that will be used in the simulated annealing of the
structure. The bounds object is created in line 19 which automatically sets the 1-2, 1-3, and 1-4
distance bounds in the molecule. The loop in lines 21-24 sets the bounds of each atom in each
residue base to the actual distance to every other atom in the same base. This has the effect of
enforcing the planarity of the base by treating the base somewhat like a rigid body. In lines 26-
44, bounds are set according to information stored in a database. The setboundsfromdb() call
sets the bounds from all the atoms in the two specified residues to a 1.0 multiple of the standard
deviation of the bounds distances in the specified database. Specifically, line 26 sets the bounds
between the base atoms of the first and second residues of strand 1 to be within one standard
deviation of a typical aRNA stacked pair. Similarly, line 38 sets the bounds between residues 1
and 13 to be that of typical Watson-Crick basepairs. For a description of the setboundsfromdb()
function, see Chapter 1.

Line 46 smooths the bounds matrix, by attempting to adjust any sets of bounds that violate
the triangle equality. Lines 48-49 initialize some distance geometry variables by setting the
random number generator seed, declaring the type of distance distribution, how often to print
the energy refinement process, declaring the penalty for using a 4th dimension in refinement,
and which atoms to use to form the initial metric matrix. The coordinates are calculated and
embedded into a 3D coordinate array, xyz by the embed() function call on line 50.

The coordinates xyz are subject to conjugate gradient refinements in line 52. Line 54 replaces
the old molecular coordinates with the new refined ones, and lastly, on line 55, the molecule is
saved as "rna_pseudoknot.pdb".

The resulting structure of Program 8 is shown in Figure 20.2. This structure had an final
total energy of 46 units. The helical region, shown as polytubes, shows stacking and wc-pairing
interactions and a well-defined right-handed helical twist. Of course, good modeling of a "real"
pseudoknot would require putting in more constraints, but this example should illustrate how to
get started on problems like this.

20.2.3 NMR refinement for a protein

Distance geometry techniques are often used to create starting structures in NMR refinement.
Here, in addition to the covalent connections, one makes use of a set of distance and torsional
restraints derived from NMR data. While NAB is not (yet?) a fully-functional NMR refinement
package, it has enough capabilities to illustrate the basic ideas, and could be the starting point
for a flexible procedure. Here we give an illustration of how the rough structure of a protein can
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Figure 20.2: Folded RNA pseudoknot.

be determined using distance geometry and NMR distance constraints; the structures obtained
here would then be candidates for further refinement in programs like X-plor or Amber.

The program below illustrates a general procedure for a primarily helical DNA binding do-
main. Lines 15-22 just construct the sequence in an extended conformation, such that bond
lengths and angles are correct, but none of the torsions are correct. The bond lengths and angles
are used by newbounds() to construct the "covalent" part of the bounds matrix.� �

1 // Program 8a. General driver routine to do distance geometry \fC

2 // on proteins, with DYANA-like distance restraints.\fC

3

4 #define MAXCOORDS 12000

5

6 molecule m;

7 atom a;

8 bounds b;

9 int ier,i, numstrand, ires,jres;

10 float fret, rms, ub;

11 float xyz[ MAXCOORDS ], f[ MAXCOORDS ], v[ MAXCOORDS ];

12 file boundsf;

13 string iresname,jresname,iat,jat,aex1,aex2,aex3,aex4,line,dgopts,seq;

14

15 // sequence of the mrf2 protein:

16 seq = "RADEQAFLVALYKYMKERKTPIERIPYLGFKQINLWTMFQAAQKLGGYETITARRQWKHIY"

17 + "DELGGNPGSTSAATCTRRHYERLILPYERFIKGEEDKPLPPIKPRK";

18

19 // build this sequence in an extended conformation, and construct a bounds
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20 // matrix just based on the covalent structure:

21 m = linkprot( "A", seq, "" );

22 b = newbounds( m, "" );

23

24 // read in constraints, updating the bounds matrix using "andbounds":

25

26 // distance constraints are basically those from Y.-C. Chen, R.H. Whitson

27 // Q. Liu, K. Itakura and Y. Chen, "A novel DNA-binding motif shares

28 // structural homology to DNA replication and repair nucleases and

29 // polymerases," Nature Sturct. Biol. 5:959-964 (1998).

30

31 boundsf = fopen( "mrf2.7col", "r" );

32 while( line = getline( boundsf ) ){

33 sscanf( line, "%d %s %s %d %s %s %lf", ires, iresname, iat,

34 jres, jresname, jat, ub );

35

36 // translations for DYANA-style pseudoatoms:

37 if( iat == "HN" ){ iat = "H"; }

38 if( jat == "HN" ){ jat = "H"; }

39

40 if( iat == "QA" ){ iat = "CA"; ub += 1.0; }

41 if( jat == "QA" ){ jat = "CA"; ub += 1.0; }

42 if( iat == "QB" ){ iat = "CB"; ub += 1.0; }

43 if( jat == "QB" ){ jat = "CB"; ub += 1.0; }

44 if( iat == "QG" ){ iat = "CG"; ub += 1.0; }

45 if( jat == "QG" ){ jat = "CG"; ub += 1.0; }

46 if( iat == "QD" ){ iat = "CD"; ub += 1.0; }

47 if( jat == "QD" ){ jat = "CD"; ub += 1.0; }

48 if( iat == "QE" ){ iat = "CE"; ub += 1.0; }

49 if( jat == "QE" ){ jat = "CE"; ub += 1.0; }

50 if( iat == "QQG" ){ iat = "CB"; ub += 1.8; }

51 if( jat == "QQG" ){ jat = "CB"; ub += 1.8; }

52 if( iat == "QQD" ){ iat = "CG"; ub += 1.8; }

53 if( jat == "QQD" ){ jat = "CG"; ub += 1.8; }

54 if( iat == "QG1" ){ iat = "CG1"; ub += 1.0; }

55 if( jat == "QG1" ){ jat = "CG1"; ub += 1.0; }

56 if( iat == "QG2" ){ iat = "CG2"; ub += 1.0; }

57 if( jat == "QG2" ){ jat = "CG2"; ub += 1.0; }

58 if( iat == "QD1" ){ iat = "CD1"; ub += 1.0; }

59 if( jat == "QD1" ){ jat = "CD1"; ub += 1.0; }

60 if( iat == "QD2" ){ iat = "ND2"; ub += 1.0; }

61 if( jat == "QD2" ){ jat = "ND2"; ub += 1.0; }

62 if( iat == "QE2" ){ iat = "NE2"; ub += 1.0; }

63 if( jat == "QE2" ){ jat = "NE2"; ub += 1.0; }

64

65 aex1 = ":" + sprintf( "%d", ires) + ":" + iat;

66 aex2 = ":" + sprintf( "%d", jres) + ":" + jat;

67 andbounds( b, m, aex1, aex2, 0.0, ub );

68 }
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69 fclose( boundsf );

70

71 // add in helical chirality constraints to force right-handed helices:

72 // (hardwire in locations 1-16, 36-43, 88-92)

73 for( i=1; i<=12; i++){

74 aex1 = ":" + sprintf( "%d", i ) + ":CA";

75 aex2 = ":" + sprintf( "%d", i+1 ) + ":CA";

76 aex3 = ":" + sprintf( "%d", i+2 ) + ":CA";

77 aex4 = ":" + sprintf( "%d", i+3 ) + ":CA";

78 setchivol( b, m, aex1, aex2, aex3, aex4, 7.0 );

79 }

80 for( i=36; i<=39; i++){

81 aex1 = ":" + sprintf( "%d", i ) + ":CA";

82 aex2 = ":" + sprintf( "%d", i+1 ) + ":CA";

83 aex3 = ":" + sprintf( "%d", i+2 ) + ":CA";

84 aex4 = ":" + sprintf( "%d", i+3 ) + ":CA";

85 setchivol( b, m, aex1, aex2, aex3, aex4, 7.0 );

86 }

87 for( i=88; i<=89; i++){

88 aex1 = ":" + sprintf( "%d", i ) + ":CA";

89 aex2 = ":" + sprintf( "%d", i+1 ) + ":CA";

90 aex3 = ":" + sprintf( "%d", i+2 ) + ":CA";

91 aex4 = ":" + sprintf( "%d", i+3 ) + ":CA";

92 setchivol( b, m, aex1, aex2, aex3, aex4, 7.0 );

93 }

94

95 // set up some options for the distance geometry calculation

96 // here use the random embed method:

97 dgopts = "ntpr=10000,rembed=1,rbox=300.,riter=250000,seed=8511135";

98 dg_options( b, dgopts );

99

100 // do triangle-smoothing on the bounds matrix, then embed:

101 geodesics( b ); embed( b, xyz );

102

103 // now do conjugate-gradient minimization on the resulting structures:

104

105 // first, weight the chirality constraints heavily:

106 dg_options( b, "ntpr=20, k4d=5.0, sqviol=0, kchi=50." );

107 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.02, 1000., 300 );

108

109 // next, squeeze out the fourth dimension, and increase penalties for

110 // distance violations:

111 dg_options( b, "k4d=10.0, sqviol=1, kchi=50." );

112 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.02, 100., 400 );

113

114 // transfer the coordinates from the "xyz" array to the molecule

115 // itself, and print out the violations:

116 setmol_from_xyzw( m, NULL, xyz );

117 dumpboundsviolations( stdout, b, 0.5 );
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118

119 // do a final short molecular-mechanics "clean-up":

120 putpdb( m, "temp.pdb" );

121 m = getpdb_prm( "temp.pdb", "leaprc.ff99SB", "", 0 );

122 setxyz_from_mol( m, NULL, xyz );

123

124 mm_options( "cut=10.0" );

125 mme_init( m, NULL, "::ZZZ", xyz, NULL );

126 conjgrad( xyz, 3*m.natoms, fret, mme, 0.02, 100., 200 );

127 setmol_from_xyz( m, NULL, xyz );

128 putpdb( argv[3] + ".mm.pdb", m );� �
Once the covalent bounds are created, the the bounds matrix is modified by constraints

constructed from an NMR analysis program. This particular example uses the format of the
DYANA program, but NAB could be easily modified to read in other formats as well. Here are
a few lines from the mrf2.7col file:

1 ARG+ QB 2 ALA QB 7.0

4 GLU- HA 93 LYS+ QB 7.0

5 GLN QB 8 LEU QQD 9.9

5 GLN HA 9 VAL QQG 6.4

85 ILE HA 92 ILE QD1 6.0

5 GLN HN 1 ARG+ O 2.0

5 GLN N 1 ARG+ O 3.0

6 ALA HN 2 ALA O 2.0

6 ALA N 2 ALA O 3.0

The format should be self-explanatory, with the final number giving the upper bound. Code
in lines 31-69 reads these in, and translates pseudo-atom codes like "QQD" into atom names.
Lines 71-93 add in chirality constraints to ensure right-handed alpha-helices: distance con-
straints alone do not distinguish chirality, so additions like this are often necessary. The "actual"
distance geometry steps take place in line 101, first by triangle-smoothing the bounds, then by
embedding them into a three-dimensional object. The structures at this point are actually gen-
erally quite bad, so "real-space" refinement is carried out in lines 103-112, and a final short
molecular mechanics minimization in lines 119-126.

It is important to realize that many of the structures for the above scheme will get "stuck", and
not lead to good structures for the complex. Helical proteins are especially difficult for this sort
of distance geometry, since helices (or even parts of helices) start out left-handed, and it is not
always possible to easily convert these to right-handed structures. For this particular example,
(using different values for the seed in line 97), we find that about 30-40% of the structures are
"acceptable", in the sense that further refinement in Amber yields good structures.

20.3 Building Larger Structures

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that
they can be bent into a wide variety of both open and closed curves. Some examples would be

540



20.3 Building Larger Structures

simple closed circles, supercoiled closed circles that have relaxed into circles with twists and
the nucleosome core fragment where the duplex itself is wound into a short helix. This section
shows how nab can be used to “wrap” DNA around a curve. Three examples are provided: the
first produces closed circles with or without supercoiling, the second creates a simple model
of the nucleosome core fragment and the third shows how to wind a duplex around a more
arbitrary open curve specified as a set of points. The examples are fairly general but do require
that the curves be relatively smooth so that the deformation from a linear duplex at each step is
small.

Before discussing the examples and the general approach they use, it will be helpful to define
some terminology. The helical axis of a base pair is the helical axis defined by an ideal B-DNA
duplex that contains that base pair. The base pair plane is the mean plane of both bases. The
origin of a base pair is at the intersection the base pair’s helical axis and its mean plane. Finally
the rise is the distance between the origins of adjacent base pairs.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points
on the curve that contain the base pair origins, place the base pairs at these points, oriented
so that their helical axes are tangent to the curve and finally rotate the base pairs so that they
have the correct helical twist. In all the examples below, the points are chosen so that the rise
is constant. This is by no means an absolute requirement, but it does simplify the calculations
needed to locate base pairs, and is generally true for the gently bending curves these examples
are designed for. In examples 1 and 2, the curve is simple, either a circle or a helix, so the points
that locate the base pairs are computed directly. In addition, the bases are rotated about their
original helical axes so that they have the correct helical orientation before being placed on the
curve.

However, this method is inadequate for the more complicated curves that can be handled by
example 3. Here each base is placed on the curve so that its helical axis is aligned correctly, but
its helical orientation with respect to the previous base is arbitrary. It is then rotated about its
helical axis so that it has the correct twist with respect to the previous base.

20.3.1 Closed Circular DNA

This section describes how to use nab to make closed circular duplex DNA with a uniform
rise of 3.38 Å. Since the distance between adjacent base pairs is fixed, the radius of the circle
that forms the axis of the duplex depends only on the number of base pairs and is given by this
rule:

rad=rise/(2sin(180/nbp))

where nbp is the number of base pairs. To see why this is so, consider the triangle below
formed by the center of the circle and the centers of two adjacent base pairs. The two long
sides are radii of the circle and the third side is the rise. Since the the base pairs are uniformly
distributed about the circle the angle between the two radii is 360/nbp. Now consider the right
triangle in the top half of the original triangle. The angle at the center is 180/nbp, the opposite
side is rise/2 and rad follows from the definition of sin.
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rise/2

180/nbp

rad

C

base i+1

base i

In addition to the radius, the helical twist which is a function of the amount of supercoiling
must also be computed. In a closed circular DNA molecule, the last base of the duplex must be
oriented in such a way that a single helical step will superimpose it on the first base. In circles
based on ideal B-DNA, with 10 bases/turn, this requires that the number of base pairs in the
duplex be a multiple of 10. Supercoiling adds or subtracts one or more whole turns. The amount
of supercoiling is specified by the ∆linkingnumber which is the number of extra turns to add or
subtract. If the original circle had nbp/10 turns, the supercoiled circle will have nbp/10+∆lk
turns. As each turn represents 360o of twist and there are nbp base pairs, the twist between base
pairs is

(nbp/10+∆lk)×360/nbp

At this point, we are ready to create models of circular DNA. Bases are added to model in
three stages. Each base pair is created using the nab builtin wc_helix(). It is originally in the
XY plane with its center at the origin. This makes it convenient to create the DNA circle in the
XZ plane. After the base pair has been created, it is rotated around its own helical axis to give
it the proper twist, translated along the global X axis to the point where its center intersects the
circle and finally rotated about the Y axis to move it to its final location. Since the first base pair
would be both twisted about Z and rotated about Y 0o, those steps are skipped for base one. A
detailed description follows the code.� �

1 // Program 9 - Create closed circular DNA.

2 #define RISE 3.38

3

4 int b, nbp, dlk;

5 float rad, twist, ttw;

6 molecule m, m1;

7 matrix matdx, mattw, matry;

8 string sbase, abase;

9 int getbase();

10

11 if( argc != 3 ){

12 fprintf( stderr, "usage: %s nbp dlk\\n", argv[ 1 ] );

13 exit( 1 );

14 }

15

16 nbp = atoi( argv[ 2 ] );
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17 if( !nbp || nbp % 10 ){

18 fprintf( stderr,

19 "%s: Num. of base pairs must be multiple of 10\\n",

20 argv[ 1 ] );

21 exit( 1 );

22 }

23

24 dlk = atoi( argv[ 3 ] );

25

26 twist = ( nbp / 10 + dlk ) * 360.0 / nbp;

27 rad = 0.5 * RISE / sin( 180.0 / nbp );

28

29 matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0 );

30

31 m = newmolecule();

32 addstrand( m, "A" );

33 addstrand( m, "B" );

34 ttw = 0.0;

35 for( b = 1; b <= nbp; b = b + 1 ){

36

37 getbase( b, sbase, abase );

38

39 m1 = wc_helix(

40 sbase, "", "dna", abase, "",

41 "dna", 2.25, -4.96, 0.0, 0.0 );

42

43 if( b > 1 ){

44 mattw = newtransform( 0.,0.,0.,0.,0.,ttw );

45 transformmol( mattw, m1, NULL );

46 }

47

48 transformmol( matdx, m1, NULL );

49

50 if( b > 1 ){

51 matry = newtransform(

52 0.,0.,0.,0.,-360.*(b-1)/nbp,0. );

53 transformmol( matry, m1, NULL );

54 }

55

56 mergestr( m, "A", "last", m1, "sense", "first" );

57 mergestr( m, "B", "first", m1, "anti", "last" );

58 if( b > 1 ){

59 connectres( m, "A", b - 1, "O3’", b, "P" );

60 connectres( m, "B", 1, "O3’", 2, "P" );

61 }

62

63 ttw = ttw + twist;

64 if( ttw >= 360.0 )

65 ttw = ttw - 360.0;

543



20 NAB: Sample programs

66 }

67

68 connectres( m, "A", nbp, "O3’", 1, "P" );

69 connectres( m, "B", nbp, "O3’", 1, "P" );

70

71 putpdb( "circ.pdb", m );

72 putbnd( "circ.bnd", m );� �
The code requires two integer arguments which specify the number of base pairs and

the∆linkingnumberor the amount of supercoiling. Lines 11-24 process the arguments mak-
ing sure that they conform to the model’s assumptions. In lines 11-14, the code checks that
there are exactly three arguments (the nab program’s name is argument one), and exits with a
error message if the number of arguments is different. Next lines 16-22 set the number of base
pairs (nbp) and test to make certain it is a nonzero multiple of 10, again exiting with an error
message if it is not. Finally the ∆linkingnumber(dlk) is set in line 24. The helical twist and
circle radius are computed in lines 26 and 27 in accordance with the formulas developed above.
Line 29 creates a transformation matrix, matdx, that is used to move each base from the global
origin along the X-axis to the point where its center intersects the circle.

The circular DNA is built in the molecule variable m, which is initialized and given two
strands, "A" and "B" in lines 30-32. The variable ttw in line 34 holds the total twist applied to
each base pair The molecule is created in the loop from lines 35-66. The base pair number (b)
is converted to the appropriate strings specifying the two nucleotides in this pair. This is done
by the function getbase(). This source of this function must be provided by the user who is
creating the circles as only he or she will know the actual DNA sequence of the circle. Once
the two bases are specified they are passed to the nab builtin wc_helix() which returns a single
base pair in the XY plane with its center at the origin. The helical axis of this base pair is on
the Z-axis with the 5’-3’ direction oriented in the positive Z-direction.

One or three transformations is required to position this base in its correct place in the circle.
It must be rotated about the Z-axis (its helical axis) so that it is one additional unit of twist
beyond the previous base. This twist is done in lines 43-46. Since the first base needs 0o twist,
this step is skipped for it. In line 48, the base pair is moved in the positive direction along the
X-axis to place the base pair’s origin on the circle. Finally, the base pair is rotated about the
Y-axis in lines 50-54 to bring it to its proper position on the circle. Again, since this rotation is
0o for base 1, this step is also skipped for the first base.

In lines 56-57, the newly positioned base pair in m1 is added to the growing molecule in m.
Note that since the two strands of DNA are antiparallel, the "sense" strand of m1 is added after
the last base of the "A" strand of m and the "anti" strand of m1 is added before the first base
of the "B" strand of m. For all but the first base, the newly added residues are bonded to the
residues they follow (or precede). This is done by the two calls to connectres() in lines 59-60.
Again, due to the antiparallel nature of DNA, the new residue in the "A" strand is residue b, but
is residue 1 in the "B" strand. In line 63-65, the total twist (ttw) is updated and adjusted to keep
in in the range [0,360). After all base pairs have been added the loop exits.

After the loop exit, since this is a closed circular molecule the first and last bases of each
strand must be bonded and this is done with the two calls to connectres() in lines 67-68. The
last step is to save the molecule’s coordinates and connectivity in lines 71-72. The nab builtin
putpdb() writes the coordinate information in PDB format to the file "circ.pdb" and the nab
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builtin putbnd() saves the bonding as pairs of integers, one pair/line in the file "circ.bnd", where
each integer in a pair refers to an ATOM record in the previously written PDB file.

20.3.2 Nucleosome Model

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that
they can be bent into a wide variety of both open and closed curves. Some examples would be
simple closed circles, supercoiled closed circles that have relaxed into circles with twists, and
the nucleosome core fragment, where the duplex itself is wound into a short helix.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points
on the curve that contain the base pair origins, place the base pairs at these points, oriented so
that their helical axes are tangent to the curve, and finally rotate the base pairs so that they have
the correct helical twist. In the example below, the simplifying assumption is made that the rise
is constant at 3.38 Å.

The nucleosome core fragment is composed of duplex DNA wound in a left handed helix
around a central protein core. A typical core fragment has about 145 base pairs of duplex DNA
forming about 1.75 superhelical turns. Measurements of the overall dimensions of the core
fragment indicate that there is very little space between adjacent wraps of the duplex. A side
view of a schematic of core particle is shown below.

θ ≈ 5°

60 A

110 A

Computing the points at which to place the base pairs on a helix requires us to spiral an
inelastic wire (representing the helical axis of the bent duplex) around a cylinder (representing
the protein core). The system is described by four numbers of which only three are independent.
They are the number of base pairs n, the number of turns its makes around the protein core t,
the “winding” angle θ (which controls how quickly the the helix advances along the axis of the
core) and the helix radius r. Both the the number of base pairs and the number of turns around
the core can be measured. The leaves two choices for the third parameter. Since the relationship
of the winding angle to the overall particle geometry seems more clear than that of the radius,
this code lets the user specify the number of turns, the number of base pairs and the winding
angle, then computes the helical radius and the displacement along the helix axis for each base
pair:

d = 3.38sin(θ); φ = 360t/(n−1) (20.1)

r =
3.38(n−1)cos(θ)

2πt
(20.2)
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where d and φare the displacement along and rotation about the protein core axis for each base
pair.

These relationships are easily derived. Let the nucleosome core particle be oriented so that
its helical axis is along the global Y-axis and the lower cap of the protein core is in the XZ
plane. Consider the circle that is the projection of the helical axis of the DNA duplex onto the
XZ plane. As the duplex spirals along the core particle it will go around the circle t times, for a
total rotation of 360to. The duplex contains (n−1) steps, resulting in 360t/(n−1)o of rotation
between successive base pairs.� �

1 // Program 10. Create simple nucleosome model.

2 #define PI 3.141593

3 #define RISE 3.38

4 #define TWIST 36.0

5 int b, nbp; int getbase();

6 float nt, theta, phi, rad, dy, ttw, len, plen, side;

7 molecule m, m1;

8 matrix matdx, matrx, maty, matry, mattw;

9 string sbase, abase;

10

11 nt = atof( argv[ 2 ] ); // number of turns

12 nbp = atoi( argv[ 3 ] ); // number of base pairs

13 theta = atof( argv[ 4 ] ); // winding angle

14

15 dy = RISE * sin( theta );

16 phi = 360.0 * nt / ( nbp-1 );

17 rad = (( nbp-1 )*RISE*cos( theta ))/( 2*PI*nt );

18

19 matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0 );

20 matrx = newtransform( 0.0, 0.0, 0.0, -theta, 0.0, 0.0 );

21

22 m = newmolecule();

23 addstrand( m, "A" ); addstrand( m, "B" );

24 ttw = 0.0;

25 for( b = 1; b <= nbp; b = b + 1 ){

26 getbase( b, sbase, abase );

27 m1 = wc_helix( sbase, "", "dna", abase, "", "dna",

28 2.25, -4.96, 0.0, 0.0 );

29 mattw = newtransform( 0., 0., 0., 0., 0., ttw );

30 transformmol( mattw, m1, NULL );

31 transformmol( matrx, m1, NULL );

32 transformmol( matdx, m1, NULL );

33 maty = newtransform( 0.,dy*(b-1),0., 0.,-phi*(b-1),0.);

34 transformmol( maty, m1, NULL );

35

36 mergestr( m, "A", "last", m1, "sense", "first" );

37 mergestr( m, "B", "first", m1, "anti", "last" );

38 if( b > 1 ){

39 connectres( m, "A", b - 1, "O3’", b, "P" );

40 connectres( m, "B", 1, "O3’", 2, "P" );
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41 }

42 ttw += TWIST; if( ttw >= 360.0 ) ttw -= 360.0;

43 }

44 putpdb( "nuc.pdb", m );� �
Finding the radius of the superhelix is a little tricky. In general a single turn of the helix will

not contain an integral number of base pairs. For example, using typical numbers of 1.75 turns
and 145 base pairs requires 82.9 base pairs to make one turn. An approximate solution can be
found by considering the ideal superhelix that the DNA duplex is wrapped around. Let L be
the arc length of this helix. Then Lcos(θ) is the arc length of its projection into the XZ plane.
Since this projection is an overwound circle, L is also equal to 2πrt, where t is the number
of turns and r is the unknown radius. Now L is not known but is approximately 3.38(n− 1).
Substituting and solving for rgives Eq. 20.2.

The resulting nab code is shown in Program 2. This code requires three arguments—the
number of turns, the number of base pairs and the winding angle. In lines 15-17, the helical rise
(dy), twist (phi) and radius (rad) are computed according to the formulas developed above.

Two constant transformation matrices, matdx and matrx are created in lines 19-20. matdx
is used to move the newly created base pair along the X-axis to the circle that is the helix’s
projection onto the XZ plane. matrx is used to rotate the new base pair about the X-axis so it
will be tangent to the local helix of spirally wound duplex. The model of the nucleosome will
be built in the molecule m which is created and given two strands "A" and "B" in line 23. The
variable ttw will hold the total local helical twist for each base pair.

The molecule is created in the loop in lines 25-43. The user specified function getbase()
takes the number of the current base pair (b) and returns two strings that specify the actual
nucleotides to use at this position. These two strings are converted into a single base pair using
the nab builtin wc_helix(). The new base pair is in the XY plane with its origin at the global
origin and its helical axis along Z oriented so that the 5’-3’ direction is positive.

Each base pair must be rotated about its Z-axis so that when it is added to the global helix
it has the correct amount of helical twist with respect to the previous base. This rotation is
performed in lines 29-30. Once the base pair has the correct helical twist it must rotated about
the X-axis so that its local origin will be tangent to the global helical axes (line 31).

The properly-oriented base is next moved into place on the global helix in two stages in lines
32-34. It is first moved along the X-axis (line 32) so it intersects the circle in the XZ plane that
is projection of the duplex’s helical axis. Then it is simultaneously rotated about and displaced
along the global Y-axis to move it to final place in the nucleosome. Since both these movements
are with respect to the same axis, they can be combined into a single transformation.

The newly positioned base pair in m1 is added to the growing molecule in m using two calls
to the nab builtin mergestr(). Note that since the two strands of a DNA duplex are antiparallel,
the base of the "sense" strand of molecule m1 is added after the last base of the "A" strand of
molecule m and the base of the "anti" strand of molecule m1 is before the first base of the "B"
strand of molecule m. For all base pairs except the first one, the new base pair must be bonded
to its predecessor. Finally, the total twist (ttw) is updated and adjusted to remain in the interval
[0,360) in line 42. After all base pairs have been created, the loop exits, and the molecule is
written out. The coordinates are saved in PDB format using the nab builtin putpdb().
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20.4 Wrapping DNA Around a Path

This last code develops two nab programs that are used together to wrap B-DNA around a
more general open curve specified as a cubic spline through a set of points. The first program
takes the initial set of points defining the curve and interpolates them to produce a new set of
points with one point at the location of each base pair. The new set of points always includes
the first point of the original set but may or may not include the last point. These new points are
read by the second program which actually bends the DNA.

The overall strategy used in this example is slightly different from the one used in both the
circular DNA and nucleosome codes. In those codes it was possible to directly compute both
the orientation and position of each base pair. This is not possible in this case. Here only the
location of the base pair’s origin can be computed directly. When the base pair is placed at that
point its helical axis will be tangent to the curve and point in the right direction, but its rotation
about this axis will be arbitrary. It will have to be rotated about its new helical axis to give the
proper amount of helical twist to stack it properly on the previous base. Now if the helical twist
of a base pair is determined with respect to the previous base pair, either the first base pair is left
in an arbitrary orientation, or some other way must be devised to define the helical of it. Since
this orientation will depend both on the curve and its ultimate use, this code leaves this task to
the user with the result that the helical orientation of the first base pair is undefined.

20.4.1 Interpolating the Curve

This section describes the code that finds the base pair origins along the curve. This program
takes an ordered set of points

p 1 ,p 2 ,...,pn

and interpolates it to produce a new set of points

np 1 ,np 2 ,...,np m

such that the distance between each npi and npi+1 is constant, in this case equal to 3.38
which is the rise of an ideal B-DNA duplex. The interpolation begins by setting np1 to p1
and continues through the pi until a new point npm has been found that is within the constant
distance to pn without having gone beyond it.

The interpolation is done via spline() [45] and splint(), two routines that perform a cubic
spline interpolation on a tabulated function

yi = f (xi)

In order for spline()/splint() to work on this problem, two things must be done. These functions
work on a table of (xi,yi) pairs, of which we have only the yi. However, since the only require-
ment imposed on the xiis that they be monotonically increasing we can simply use the sequence
1 , 2 , ... , n for the xi, producing the producing the table (i,yi). The second difficulty is that
spline()/splint() interpolate along a one dimensional curve but we need an interpolation along a
three dimensional curve. This is solved by creating three different splines, one for each of the
three dimensions.
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spline()/splint() perform the interpolation in two steps. The function spline() is called first with
the original table and computes the value of the second derivative at each point. In order to do
this, the values of the second derivative at two points must be specified. In this code these points
are the first and last points of the table, and the values chosen are 0 (signified by the unlikely
value of 1e30 in the calls to spline()). After the second derivatives have been computed, the
interpolated values are computed using one or more calls to splint().

What is unusual about this interpolation is that the points at which the interpolation is to be
performed are unknown. Instead, these points are chosen so that the distance between each
point and its successor is the constant value RISE, set here to 3.38 which is the rise of an ideal
B-DNA duplex. Thus, we have to search for the points and most of the code is devoted to doing
this search. The details follow the listing.� �

1 // Program 11 - Build DNA along a curve

2 #define RISE 3.38

3

4 #define EPS 1e-3

5 #define APPROX(a,b) (fabs((a)-(b))<=EPS)

6 #define MAXI 20

7

8 #define MAXPTS 150

9 int npts;

10 float a[ MAXPTS ];

11 float x[ MAXPTS ], y[ MAXPTS ], z[ MAXPTS ];

12 float x2[ MAXPTS ], y2[ MAXPTS ], z2[ MAXPTS ];

13 float tmp[ MAXPTS ];

14

15 string line;

16

17 int i, li, ni;

18 float dx, dy, dz;

19 float la, lx, ly, lz, na, nx, ny, nz;

20 float d, tfrac, frac;

21

22 int spline();

23 int splint();

24

25 for( npts = 0; line = getline( stdin ); ){

26 npts = npts + 1;

27 a[ npts ] = npts;

28 sscanf( line, "%lf %lf %lf",

29 x[ npts ], y[ npts ], z[ npts ] );

30 }

31

32 spline( a, x, npts, 1e30, 1e30, x2, tmp );

33 spline( a, y, npts, 1e30, 1e30, y2, tmp );

34 spline( a, z, npts, 1e30, 1e30, z2, tmp );

35

36 li = 1; la = 1.0; lx = x[1]; ly = y[1]; lz = z[1];

549



20 NAB: Sample programs

37 printf( "%8.3f %8.3f %8.3f\\n", lx, ly, lz );

38

39 while( li < npts ){

40 ni = li + 1;

41 na = a[ ni ];

42 nx = x[ ni ]; ny = y[ ni ]; nz = z[ ni ];

43 dx = nx - lx; dy = ny - ly; dz = nz - lz;

44 d = sqrt( dx*dx + dy*dy + dz*dz );

45 if( d > RISE ){

46 tfrac = frac = .5;

47 for( i = 1; i <= MAXI; i = i + 1 ){

48 na = la + tfrac * ( a[ni] - la );

49 splint( a, x, x2, npts, na, nx );

50 splint( a, y, y2, npts, na, ny );

51 splint( a, z, z2, npts, na, nz );

52 dx = nx - lx; dy = ny - ly; dz = nz - lz;

53 d = sqrt( dx*dx + dy*dy + dz*dz );

54 frac = 0.5 * frac;

55 if( APPROX( d, RISE ) )

56 break;

57 else if( d > RISE )

58 tfrac = tfrac - frac;

59 else if( d < RISE )

60 tfrac = tfrac + frac;

61 }

62 printf( "%8.3f %8.3f %8.3f\\n", nx, ny, nz );

63 }else if( d < RISE ){

64 li = ni;

65 continue;

66 }else if( d == RISE ){

67 printf( "%8.3f %8.3f %8.3f\\n", nx, ny, nz );

68 li = ni;

69 }

70 la = na;

71 lx = nx; ly = ny; lz = nz;

72 }� �
Execution begins in line 25 where the points are read from stdin one point or three number-

s/line and stored in the three arrays x, y and z. The independent variable for each spline, stored
in the array a is created at this time holding the numbers 1 to npts. The second derivatives for
the three splines, one each for interpolation along the X, Y and Z directions are computed in
lines 32-34. Each call to spline() has two arguments set to 1e30 which indicates that the sec-
ond derivative values should be 0 at the first and last points of the table. The first point of the
interpolated set is set to the first point of the original set and written to stdout in lines 36-37.

The search that finds the new points is lines 39-72. To see how it works consider the figure
below. The dots marked p1, p2, . . . , pn correspond to the original points that define the spline.
The circles marked np1,np2,np3 represent the new points at which base pairs will be placed.
The curve is a function of the parameter a, which as it ranges from 1 to npts sweeps out the
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curve from (x1,y1,z1) to (xnpts,ynpts,znpts). Since the original points will in general not be the
correct distance apart we have to find new points by interpolating between the original points.

p1

p2

p3

pn

np1

p1

p2

p3

pn

np1

np2

p1

p2

p3

pn

np1

np2

np3

The search works by first finding a point of the original table that is at least RISE distance
from the last point found. If the last point of the original table is not far enough from the last
point found, the search loop exits and the program ends. However, if the search does find a
point in the original table that is at least RISE distance from the last point found, it starts an
interpolation loop in lines 47-61 to zero on the best value of a that will produce a new point that
is the correct distance from the previous point. After this point is found, the new point becomes
the last point and the loop is repeated until the original table is exhausted.

The main search loop uses li to hold the index of the point in the original table that is closest
to, but does not pass, the last point found. The loop begins its search for the next point by
assuming it will be before the next point in the original table (lines 40-42). It computes the
distance between this point (nx,ny,nz) and the last point (lx,ly,lz) in lines 43-44 and then takes
one of three actions depending it the distance is greater than RISE (lines 46-62), less than RISE
(lines 64-65) or equal to RISE (lines 67-68).

If this distance is greater than RISE, then the desired point is between the last point found
which is the point generated by la and the point corresponding to a[ni]. Lines 46-61 perform a
bisection of the interval (la,a[ni]], a process that splits this interval in half, determines which half
contains the desired point, then splits that half and continues in this fashion until the either the
distance between the last and new points is close enough as determined by the macro APPROX()
or MAXI subdivisions have been at made, in which case the new point is taken to be the point
computed after the last subdivision. After the bisection the new point is written to stdout (line
62) and execution skips to line 70-71 where the new values na and (nx,ny,nz) become the last
values la and (lx,ly,lz) and then back to the top of the loop to continue the interpolation. The
macro APPROX() defined in line 4, tests to see if the absolute value of the difference between
the current distance and RISE is less than EPS, defined in line 3 as 10−3. This more complicated
test is used instead of simply testing for equality because floating point arithmetic is inexact,
which means that while it will get close to the target distance, it may never actually reach it.

If the distance between the last and candidate points is less than RISE, the desired point lies
beyond the point at a[ni]. In this case the action is lines 64-65 is performed which advances the
candidate point to li+2 then goes back to the top of the loop (line 38) and tests to see that this
index is still in the table and if so, repeats the entire process using the point corresponding to
a[li+2]. If the points are close together, this step may be taken more than once to look for the
next candidate at a[li+2], a[li+3], etc. Eventually, it will find a point that is RISE beyond the last
point at which case it interpolates or it runs out points, indicating that the next point lies beyond
the last point in the table. If this happens, the last point found, becomes the last point of the
new set and the process ends.

The last case is if the distance between the last point found and the point at a[ni] is exactly
equal to RISE. If it is, the point at a[ni] becomes the new point and li is updated to ni. (lines
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67-68). Then lines 70-71 are executed to update la and (lx,ly,lz) and then back to the top of the
loop to continue the process.

20.4.2 Driver Code

This section describes the main routine or driver of the second program which is the actual
DNA bender. This routine reads in the points, then calls putdna() (described in the next section)
to place base pairs at each point. The points are either read from stdin or from the file whose
name is the second command line argument. The source of the points is determined in lines
8-18, being stdin if the command line contained a single arguments or in the second argument if
it was present. If the argument count was greater than two, the program prints an error message
and exits. The points are read in the loop in lines 20-26. Any line with a # in column 1 is
a comment and is ignored. All other lines are assumed to contain three numbers which are
extracted from the string, line and stored in the point array pts by the nab builtin sscanf() (lines
23-24). The number of points is kept in npts. Once all points have been read, the loop exits and
the point file is closed if it is not stdin. Finally, the points are passed to the function putdna()
which will place a base pair at each point and save the coordinates and connectivity of the
resulting molecule in the pair of files dna.path.pdb and dna.path.bnd.� �

1 // Program 12 - DNA bender main program

2 string line;

3 file pf;

4 int npts;

5 point pts[ 5000 ];

6 int putdna();

7

8 if( argc == 1 )

9 pf = stdin;

10 else if( argc > 2 ){

11 fprintf( stderr, "usage: %s [ path-file ]\\n",

12 argv[ 1 ], argv[ 2 ] );

13 exit( 1 );

14 }else if( !( pf = fopen( argv[ 2 ], "r" ) ) ){

15 fprintf( stderr, "%s: can’t open %s\\n",

16 argv[ 1 ], argv[ 2 ] );

17 exit( 1 );

18 }

19

20 for( npts = 0; line = getline( pf ); ){

21 if( substr( line, 1, 1 ) != "#" ){

22 npts = npts + 1;

23 sscanf( line, "%lf %lf %lf",

24 pts[ npts ].x, pts[ npts ].y, pts[ npts ].z );

25 }

26 }

27

28 if( pf != stdin )

29 fclose( pf );
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30

31 putdna( "dna.path", pts, npts );� �
20.4.3 Wrap DNA

Every nab molecule contains a frame, a movable handle that can be used to position the
molecule. A frame consists of three orthogonal unit vectors and an origin that can be placed in
an arbitrary position and orientation with respect to its associated molecule. When the molecule
is created its frame is initialized to the unit vectors along the global X, Y and Z axes with the
origin at (0,0,0).

nab provides three operations on frames. They can be defined by atom expressions or abso-
lute points (setframe() and setframep()), one frame can be aligned or superimposed on another
(alignframe()) and a frame can be placed at a point on an axis (axis2frame()). A frame is defined
by specifying its origin, two points that define its X direction and two points that define its Y
direction. The Z direction is X×Y. Since it is convenient to not require the original X and Y be
orthogonal, both frame creation builtins allow the user to specify which of the original X or Y
directions is to be the true X or Y direction. If X is chosen then Y is recreated from Z×X; if Y
is chosen then X is recreated from Y×Z.

When the frame of one molecule is aligned on the frame of another, the frame of the first
molecule is transformed to superimpose it on the frame of the second. At the same time the
coordinates of the first molecule are also transformed to maintain their original position and
orientation with respect to their own frame. In this way frames provide a way to precisely
position one molecule with respect to another. The frame of a molecule can also be positioned
on an axis defined by two points. This is done by placing the frame’s origin at the first point of
the axis and aligning the frame’s Z-axis to point from the first point of the axis to the second.
After this is done, the orientation of the frame’s X and Y vectors about this axis is undefined.

Frames have two other properties that need to be discussed. Although the builtin align-
frame() is normally used to position two molecules by superimposing their frames, if the second
molecule (represented by the second argument to alignframe()) has the special value NULL, the
first molecule is positioned so that its frame is superimposed on the global X, Y and Z axes with
its origin at (0,0,0). The second property is that when nab applies a transformation to a molecule
(or just a subset of its atoms), only the atomic coordinates are transformed. The frame’s origin
and its orthogonal unit vectors remain untouched. While this may at first glance seem odd, it
makes possible the following three stage process of setting the molecule’s frame, aligning that
frame on the global frame, then transforming the molecule with respect to the global axes and
origin which provides a convenient way to position and orient a molecule’s frame at arbitrary
points in space. With all this in mind, here is the source to putdna() which bends a B-DNA
duplex about an open space curve.� �

1 // Program 13 - place base pairs on a curve.

2 point s_ax[ 4 ];

3 int getbase();

4

5 int putdna( string mname, point pts[ 1 ], int npts )

6 {
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7 int p;

8 float tw;

9 residue r;

10 molecule m, m_path, m_ax, m_bp;

11 point p1, p2, p3, p4;

12 string sbase, abase;

13 string aex;

14 matrix mat;

15

16 m_ax = newmolecule();

17 addstrand( m_ax, "A" );

18 r = getresidue( "AXS", "axes.rlb" );

19 addresidue( m_ax, "A", r );

20 setxyz_from_mol( m_ax, NULL, s_ax );

21

22 m_path = newmolecule();

23 addstrand( m_path, "A" );

24

25 m = newmolecule();

26 addstrand( m, "A" );

27 addstrand( m, "B" );

28

29 for( p = 1; p < npts; p = p + 1 ){

30 setmol_from_xyz( m_ax, NULL, s_ax );

31 setframe( 1, m_ax,

32 "::ORG", "::ORG", "::SXT", "::ORG", "::CYT" );

33 axis2frame( m_path, pts[ p ], pts[ p + 1 ] );

34 alignframe( m_ax, m_path );

35 mergestr( m_path, "A", "last", m_ax, "A", "first" );

36 if( p > 1 ){

37 setpoint( m_path, sprintf( "A:%d:CYT",p-1 ), p1 );

38 setpoint( m_path, sprintf( "A:%d:ORG",p-1 ), p2 );

39 setpoint( m_path, sprintf( "A:%d:ORG",p ), p3 );

40 setpoint( m_path, sprintf( "A:%d:CYT",p ), p4 );

41 tw = 36.0 - torsionp( p1, p2, p3, p4 );

42 mat = rot4p( p2, p3, tw );

43 aex = sprintf( ":%d:", p );

44 transformmol( mat, m_path, aex );

45 setpoint( m_path, sprintf( "A:%d:ORG",p ), p1 );

46 setpoint( m_path, sprintf( "A:%d:SXT",p ), p2 );

47 setpoint( m_path, sprintf( "A:%d:CYT",p ), p3 );

48 setframep( 1, m_path, p1, p1, p2, p1, p3 );

49 }

50

51 getbase( p, sbase, abase );

52 m_bp = wc_helix( sbase, "", "dna",

53 abase, "", "dna",

54 2.25, -5.0, 0.0, 0.0 );

55 alignframe( m_bp, m_path );
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56 mergestr( m, "A", "last", m_bp, "sense", "first" );

57 mergestr( m, "B", "first", m_bp, "anti", "last" );

58 if( p > 1 ){

59 connectres( m, "A", p - 1, "O3’", p, "P" );

60 connectres( m, "B", 1, "P", 1, "O3’" );

61 }

62 }

63

64 putpdb( mname + ".pdb", m );

65 putbnd( mname + ".bnd", m );

66 };� �
putdna() takes three arguments—name, a string that will be used to name the PDB and bond

files that hold the bent duplex, pts an array of points containing the origin of each base pair
and npts the number of points in the array. putdna() uses four molecules. m_ax holds a small
artificial molecule containing four atoms that is a proxy for the some of the frame’s used placing
the base pairs. The molecule m_path will eventually hold one copy of m_ax for each point in
the input array. The molecule m_bp holds each base pair after it is created by wc_helix() and m
will eventually hold the bent dna. Once again the function getbase() (to be defined by the user)
provides the mapping between the current point (p) and the nucleotides required in the base pair
at that point.

Execution of putdna() begins in line 16 with the creation of m_ax. This molecule is given
one strand "A", into which is added one copy of the special residue AXS from the standard nab
residue library "axes.rlb" (lines 17-19). This residue contains four atoms named ORG, SXT,
CYT and NZT. These atoms are placed so that ORG is at (0,0,0) and SXT, CYT and NZT are 1o
along the X, Y and Z axes respectively. Thus the residue AXS has the exact geometry as the
molecules initial frame—three unit vectors along the standard axes centered on the origin. The
initial coordinates of m_ax are saved in the point array s_ax. The molecules m_path and m are
created in lines 22-23 and 25-27 respectively.

The actual DNA bending occurs in the loop in lines 29-62. Each base pair is added in a two
stage process that uses m_ax to properly orient the frame of m_path, so that when the frame of
new the base pair in m_bp is aligned on the frame of m_path, the new base pair will be correctly
positioned on the curve.

Setting up the frame is done is lines 30-49. The process begins by restoring the original
coordinates of m_ax (line 30), so that the the atom ORG is at (0,0,0) and SXT, CYT and NZT are
each 1o along the global X, Y and Z axes. These atoms are then used to redefine the frame of
m_ax (line 32-33) so that it is equal to the three standard unit vectors at the global origin. Next
the frame of m_path is aligned so that its origin is at pts[p] and its Z-axis points from pts[p] to
pts[p+1] (line 34). The call to alignframe() in line 34 transforms m_ax to align its frame on the
frame of m_path, which has the effect of moving m_ax so that the atom ORG is at pts[p] and
the ORG—NZT vector points towards pts[p+1]. A copy of the newly positioned m_ax is merged
into m_path in line 35. The result of this process is that each time around the loop, m_path gets
a new residue that resembles a coordinate frame located at the point the new base pair is to be
added.

When nab sets a frame from an axis, the orientation of its X and Y vectors is arbitrary. While
this does not matter for the first base pair for which any orientation is acceptable, it does matter
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for the second and subsequent base pairs which must be rotated about their Z axis so that they
have the proper helical twist with respect to the previous base pair. This rotation is done by the
code in lines 37-48. It does this by considering the torsion angle formed by the fours atoms—
CYT and ORG of the previous AXS residue and ORG and CYT of the current AXS residue. The
coordinates of these points are determined in lines 37-40. Since this torsion angle is a marker
for the helical twist between pairs of the bent duplex, it must be 36.0o. The amount of rotation
required to give it the correct twist is computed in line 41. A transformation matrix that will
rotate the new AXS residue about the ORG—ORG axis by this amount is created in line 42,
the atom expression that names the AXS residue is created in line 43 and the residue rotated in
line 44. Once the new residue is given the correct twist the frame m_path is moved to the new
residue in lines 45-48.

The base pair is added in lines 51-60. The user defined function getbase() converts the point
number (p) into the names of the nucleotides needed for this base pair which is created by the
nab builtin wc_helix(). It is then placed on the curve in the correct orientation by aligning its
frame on the frame of m_path that we have just created (line 55). The new pair is merged into
m and bonded with the previous base pair if it exists. After the loop exits, the bend DNA duplex
coordinates are saved as a PDB file and the connectivity as a bnd file in the calls to putpdb() and
putbnd() in lines 64-65, whereupon putdna() returns to the caller.

20.5 Other examples

There are several additional pedagogical (and useful!) examples in $AMBERHOME/exam-
ples. These can be consulted to gain ideas of how some useful molecular manipulation programs
can be constructed.

• The peptides example was created by Paul Beroza to construct peptides with given back-
bone torsion angles. The idea is to call linkprot to create a peptide in an extended con-
formation, then to set frames and do rotations to construct the proper torsions. This can
be used as just a stand-alone program to perform this task, or as a source for ideas for
constructing similar functionality in other nab programs.

• The suppose example was created by Jarrod Smith to provide a driver to carry out rms-
superpositions. It has a man page that shows how to use it.
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setmol_from_xyzw, 474
setpoint, 474
setseed, 460
setxyz_from_mol, 474
setxyzw_from_mol, 474
showbounds, 482
sin, 460
sinh, 460
smear, 340
smoothopt, 305, 497
solvateBox, 127
solvateCap, 128
solvateOct, 127
solvateShell, 128
solvation, 329, 333
solvation free energy, 333
solvbox, 500
solvcut, 500
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solvopt, 307, 498
space, 308, 498
spin, 200
split, 458
sprintf, 461
sprob, 311, 498
sqrt, 460
sscanf, 461
static_arrays, 503
strip, 237
sub, 458
substr, 458
sugarpuckeranal, 468
superimpose, 468
surf, 261
surften, 312, 497
system, 459

T
t, 495
tan, 460
tanh, 460
tautp, 495
temp0, 496
temperature, 340
temperature_deriv, 338
tempi, 496
theory, 337
thermodynamics, 333
tight_p_conv, 201
timeofday, 470
tolerance, 340, 501
torsion, 468
torsionp, 468
total correlation function, 329
trajin, 223
trajout, 226
trans4, 419
trans4p, 419
transform, 118, 129, 480
transformmol, 419, 474
transformres, 412, 413, 419, 474
translate, 129
triopt, 306
tsmooth, 483

U
unlink, 461
unstrip, 237
useboundsfrom, 482
use_rmin, 311
use_sav, 312
uuvfile, 499

V
verbose, 503
verbosity, 129, 201
vlimit, 496
volfmt, 499
vprob, 311
vshift, 204

W
wc_basepair, 529
wc_basepair(), 423
wc_complement, 529
wc_complement(), 421
wc_helix, 529
wc_helix(), 426
wcons, 495

X
xmax, 313
xmin, 313, 513
xvvfile, 499

Y
ymax, 313
ymin, 313

Z
zerofrc, 502
zerov, 496
zMatrix, 130
zmax, 313
zmin, 313
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