AMBER 7" Lite”: Some AMBER-Tools-Based Utilities

Romain M. WOLF
Nowartis Institutes for Biomedical Research, NIBR, Basle, Switzerland

December 16, 2010

Abstract

AMBER ”"Lite” is a small set of utilities making use of the free AMBER Tools
package (currently for version 1.4 or higher). The main focus is on the preparation
of files for MM(GB)(PB)/SA-type simulations. The utilities can be used as deliv-
ered or they can serve as a starting point for further development. Examples are
included to illustrate the concepts or to test the correct functioning of the installa-
tion. The text also contains a (very) condensed introduction to some AMBER file
preparation concepts. For more precise and detailed information, users should read
the original AMBER manuals (available for free from the home page of AMBER
(http://ambermd.org/) and scan through the excellent tutorials prepared over the
years by a number of people.

Contents

1 License and Feedback

2 Introduction
2.1 Imstallation
2.2 Python Scripts
2.3 NAB Applications

3 Coordinates and Parameter-Topology Files

4 pytleap: Creating Coordinates and Parameter-
Topology Files
4.1 Running pytleap
4.2 Output from pytleap
4.3 Error Checking

5 Emnergy Checking Tool: ffgbsa

6 Energy Minimizer: minab

7 Molecular Dynamics ”Lite”: mdnab

Ot Ot i W

13

14

15

8 MM(GB)(PB)/SA Analysis Tool: pymdpbsa 16

8.1 Brief Overview on MM(GB)(PB)/SA Concepts 16
8.2 Pitfalls and Error Sourceso 17
8.3 Some Technical Remarks on pymdpbsa 17
8.4 Running pymdpbsa 18
8.5 Details on Internal Workings and Output of pymdpbsa 20
8.5.1 Distance-Dependent Dielectrics or Generalized Born 20
8.5.2 Poisson-Boltzmanno 21
8.6 Using pymdpbsa for Single-Point Interaction Energy 23
A Appendix A: Preparing PDB Files 24
A.1 Cleaning up Protein PDB Files for AMBER 24
A.2 Special Residues, Name Conventions, Chain Terminations 25
A.2.1 Histidine: HID, HIE, HIP 25
A.2.2 Cysteine: CYS, CYX 25
A.2.3 Protonation: ASH, GLH, LYN 25
A.2.4 Terminals: ACE, NHE, NME 26
A.3 Chains, Residue Numbering, Missing Residues 26
B Appendix B: Atom and Residue Selections 28
B.1 Amber Masks 28
B.1.1 Residue Number List Examples 28
B.1.2 Residue Name List Examples 28
B.1.3 Atom Number List Examples 28
B.1.4 Atom Name List Examples 29
B.1.5 Atom Type List Examples 29
B.1.6 Logical Combinations 29
B.2 7Atom Expressions” in NAB Applications 30
C Appendix C: Examples and Test Cases 31
C.1 Example 1: Generating AMBER Files for Crambin with Disulfide Bonds 31
C.2 Example 2: Energy Minimization of the Crambin Structure 32
C.2.1 Starting Energyo 32
C.2.2 Energy Minimization with minab 32
C.3 Example 3: Preparation of a Complex between P38 MAP Kinase and Ligand 34
C.3.1 Cleaning Up PDB Entry 10UK.pdb for Usage with AMBER . .. 34
C.3.2 Generating AMBER Files for a P38/Ligand Complex 34

C.4 Example 4: Interaction Energy between P38 and Ligand in the Unrefined
(Original) Complex o 36

C.5 Example 5: Minimization of P38 Complex with minab and Resulting In-
teraction Energyo 37

C.6 Example 6: Generate MD Trajectory for the P38-Ligand Complex with
mdnab 38

C.7 Example 7: Running pymdpbsa on the P38/Ligand Complex Trajectory . 40

1 License and Feedback

The AMBER Lite package ((©) Novartis Institutes for Biomedical Research, Basel, Switzer-
land) is free software under the GNU General Public License (GPL), as are the parts on
which the package builds, namely the Amber tools ptraj, leap, antechamber, sqm, pbsa
and the NAB package, all available under GPL license from the official AMBER site
http://ambermd.org/.

Users are free to modify the tools according to their needs. Strange or obviously
wrong behavior should be communicated to the author (at romain.wolf@novartis.com or
romain.wolf@gmail.com). Feedback (positive or negative) is welcome although I cannot
guarantee continuous support. I will do my best to answer questions, correct bugs, or
add features if they seem useful and if my time allows it.

2 Introduction

For many standard simulation tasks, only a limited number of tools within the AMBER
package are required. Furthermore, the full set of routines can be confusing for new or
casual users. The constantly enhanced and updated AMBER tutorials certainly offer
an excellent entry point. The set of tools described hereafter should present another
initiation, based entirely on the freely available portions of AMBER code. The emphasis
in the AMBER Lite tools is on the MM(GB)(PB)/SA approach to compute (relative)
free energies of interaction between ligands and receptors, a major task in structure-based
drug discovery. The tools are simple enough to be understood, modified, and enhanced.

One section (Appendix A.1) is dedicated to the preparation of PDB files prior to use
them with AMBER. In my own experience, this is a critical part in setting up simula-
tions. Scanning through the AMBER Mail Reflector, I find many reported problems and
questions which originate from ”"bad” or badly prepared PDB starting files.

Another section (Appendix B) gives a brief introduction on AMBER ”"masks” and
NAB "atom expressions”, used to select parts of molecular structures. Users should also
read in detail the corresponding information in original AMBER documentations. Wrong
partial selections are tricky because they may often go unnoticed, i.e., everything seems
to run OK but the results are totally flawed.

2.1 Installation

Python (version 2.4 or newer) and a C-compiler for generating the binary executables
of NAB-based applications must be available.

The AMBER Tools package (version 1.3 or better 1.4) must be installed and
the environment variable pointing to its main directory ($AMBERHOME) must be set
correctly. The $AMBERHOME/bin subdirectory must be in the executables path ($PATH).
If the AMBER Tools installation passes the tests that are delivered with that package,
the utilities described in this document should also work.

The Python scripts do not require special packages or modules other than those
included in (most?) standard Python distributions. They have only been tested on
UNIX-like systems like Linux and Mac OSX, but not under MS-Windows.

The AMBER Lite distribution has the following file structure:

amberlite/ is the root folder;

../python contains the Python scripts;
../src contains the NAB source files (extension ”.nab”);

../bin should eventually contain all binary NAB applications and also soft links
to the Python scripts in the . ./python subfolder so that only this single folder
has to be added to the global $PATH variable;

../doc is for documentation and contains this manual and the GPL license text;

../examples and its subfolders contain the files used as examples in Appendix C
of this manual.

The simplest first-time installation procedure is to expand the file amberlite.tgz, go to
the generatedamberlite directory, and execute the install.py script. The script will
check that the AMBERHOME environment variable is set and that all required AMBER
Tools executables are found in the path. It will then create a 'bin’ subdirectory, compile
the NAB sources, put the resulting binaries into the bin subdirectory and also make
symbolic links to the python scripts in the same directory.

You must finally add the resulting bin directory to your PATH environment variable.

2.2 Python Scripts

The following Python scripts are currently included:

pytleap prepares AMBER parameter-topology (PRM) files, AMBER coordinates (CRD)
files and corresponding PDB files for proteins, organic ligands (or peptides), and
receptor/ligand complexes, using as input PDB files (for proteins and peptides)
or SDF files for organic molecules. It is basically a wrapper around tleap and
antechamber.

pymdpbsa is a full analysis tool for MD(GB,PB)/SA computations, given an MD tra-
jectory (or a single PDB file) of a receptor-ligand complex and the individual PRM
files for the complex, the receptor, and the ligand.

The Python scripts take command line options many of which assume default
values. If the default values apply, these options can be omitted. Most options are of the
form --option walue where value can be a filename, an integer, a float, or a special
string (to be included in quotes). Typing just the executable name or followed by --help
lists the options and exits.

Common errors, like e.g. missing files, are captured by the scripts which also always
check that the AMBERHOME environment variable is set and that all required binary
executables are available and in the execution path.

The pymdpbsa script creates a temporary subdirectory of the current working
directory. Computations are executed in this temporary folder and all output is stored
there also. When finished, the resulting data are copied back to the starting directory.
By default, the temporary directory is not removed. The user can explicitly request its
automatic removal via the --clean option. Alternatively, it can be removed manually
later. Temporary directories have names which make them easy to identify and all have
the extension .tmpdir (see details later).

2.3 NAB Applications

The NAB applications are written in NAB language,! which is ”C” with numerous ad-
ditional functions specific to computational chemistry problems. NAB works as a pre-
compiler, generating C-code from the NAB source which is then processed through the
default C-compiler. NAB functionality has much in common with the ”"big” AMBER
modules, but there are also some notable differences:

The NAB applications cannot handle explicit solvent and periodic boundaries but
work only with implicit solvation models. The possibilities to use restraints on atoms are
also more limited and use a notation different from the AMBER 'mask’ scheme (explained
later). Otherwise, they deliver results which are fully compatible with original AMBER
simulations under identical conditions.

The NAB applications presented here use the same parameter-topology files as AM-
BER modules like, e.g., sander, but they read coordinates (initial atom positions) from
PDB files and not from AMBER-specific coordinate (CRD) files. The only output format
for MD trajectories is the ”binpos” format which can be read by various other packages
or can also be converted to other formats via the ptraj utility included in AMBER Tools.

INAB was created David Case’s group (Tom Macke, W.A. Svrcek-Seiler, Russell A. Brown, Istvan
Kolossvary, Yannick Bomble and David A. Case) at the Scripps Research Institute (La Jolla, CA, USA)
and maintenance is continued at his current location at Rutgers University, NJ, USA.

The following NAB-based tools are currently included:

ffgbsa returns the AMBER energy (MM + GB polar solvation + ”non-polar” solvent-
accessible surface term) of a system, given its PRM and PDB file.

minab is a crude conjugate-gradient minimizer using PRM and PDB files as input and
generating a PDB file with the refined coordinates.

mdnab is a molecular dynamics routine with a minimum of user-specified options which
takes PRM and PDB files as input and writes out the MD trajectory in the "binpos”
format.

These NAB applications are single-line commands taking a number of arguments
(which makes it easy to incorporate them into other scripts). In contrast to the Python
scripts, they do not use the (more) convenient —-option scheme, but require the com-
mand line arguments in the correct order. Entering just the name of the application
without arguments lists a help which shows and explains the arguments to be used.

There is no extensive exception handling in the NAB applications. User errors are
punished by simple crashes of the applications!

Users who want to modify NAB applications must edit the source, re-compile it into
a NAB binary (using the command nab source.nab -o binary name), and then copy
the binary into a directory of their executable path.

3 Coordinates and Parameter-Topology Files

Simulations with AMBER modules require defined data and control files. The error-free
generation of these files is often a discouraging hurdle for beginners or users who do not
use AMBER regularly.

At least two data file types are required: a coordinates (CRD) file for AMBER
modules (or PDB files for NAB applications) with atom positions and a parameter-
topology (PRM) file containing all force field data required for the system. The two
file types must have the same number of atoms and all atoms in the same sequential
order. Not respecting this fundamental rule leads to severe flaws. The separation of
coordinates and topology has the advantage that the same topology file can be used for
various different starting coordinates. However, any change in the coordinate file that
alters also the number of atoms or even their sequential order is not allowed. This is a
frequent source of error and re-using PRM files created some time in the past under not
well documented conditions is strongly discouraged.

The current tool delivered with AMBER to prepare coordinate (CRD or PDB) and
parameter-topology (PRM) files is called leap (tleap for the terminal variant and xleap
for the graphics variant). There is also a more recent sleap program which is supposed
to replace tleap. The current AMBER Lite scripts still use the original (antique?) tleap
routine because it is well tested and robust. The new sleap will be used in the next
AMBER Lite version.

Since leap is not particularly user-friendly,? a Python script pytleap (see section 4)
has been prepared which runs the terminal version of leap in the background and does
not require a direct interaction with leap itself, at least for simple tasks like preparing a
protein or a receptor-ligand complex for simulations with implicit solvent.

For small organic molecules, pytleap first invokes antechamber ' before passing them
through leap, allowing the usage of the gaff force field” for organics without directly
interfering with antechamber itself.

The Appendix A (page 24) gives a short outline of the most important preparation
steps required on the raw data (mostly PDB files) before using any AMBER-related tools.
Those recipes may not be the most elegant ones but they work in most cases and help
avoid common problems.

2...a common feature for routines which perform lots of different and fairly complex tasks...

7

4 pytleap: Creating Coordinates and Parameter-
Topology Files

pytleap calls the tleap and/or antechamber utilities in the background. It is invoked by
a single command line with a set of options and eventually creates the files required for
an AMBER simulation, starting from a PDB file (protein) and/or an SDF file (ligand).
The script is especially useful to set up receptor-ligand complexes for simulations using
MM(GB)(PB)/SA and related techniques, but can also be used for isolated proteins or
ligands.

Proteins (or peptides) are read as PDB files in pytleap. Other formats are not sup-
ported. Be sure to have a ”"clean” PDB file as described in Appendix A.

The SDF format for small organic ligands is chosen for reasons of compatibility. SDF
files can be written by most standard molecular modeling packages and contain the infor-
mation required by the antechamber package to generate the files for AMBER simulations.
The format is simple and includes the connectivity with bond orders. Note that the SDF
file of the ligand must have all hydrogens included. Also, the formal charge on the
ligand (if any) is not read from the SDF file but must be explicitly specified (see later).
For charge calculations, we use the sgm semi-empirical QM routine from AMBER Tools
instead of MOPAC. After some tests, we have opted for less severe gradient requests
then those used by default in antechamber to speed up the partial charges generation
for ligands: grms_tol is set to 0.05. We include the peptide bond correction by setting
peptide_corr=1.

To generate AMBER files for a protein-ligand complex, prepare the protein in
PDB and the low-molecular-weight ligand in SDF, i.e., save both components in distinct
files (and make sure that the protein PDB file does not contain the ligand anymore). In
the case of protein-peptide (or protein-protein) complexes, you must also separate the two
entities, in this case into distinct PDB files, since individual parameter-topology files have
to be generated for the complex and for each component separately if MM(GB)(PB)SA
computations are envisaged later.

Obviously, the geometry of the entire complex must be reflected in the
coordinates of the respective files. pytleap will only combine the protein and the
ligand into a single structure, assuming that the ligand fits the target in a desired way.
It will of course not ”dock”!

4.1 Running pytleap

Note: Since pytleap and the modules called by it read or write temporary files with
defined names, it is wise to run one single instance of pytleap in a directory. Not
respecting this rule will lead to confusion and errors!

Typing pytleap without any arguments (or followed by --help) results in the fol-
lowing output:

Usage: pytleap [options]

Options:

-h, —-help show this help message and exit

—--prot=FILE protein PDB file (no default)
--pep=FILE peptide PDB file (no default)
--1ig=FILE ligand MDL (SDF) file (no default)
--cplx=FILE name for complex files (no default)
--ppi=FILE name for protein-peptide complex files (no default)
--chrg=INTEGER formal charge on ligand (default: 0)
--rad=STRING radius type for GB (default: mbondi)

--disul=FILE file with S-S definitions in protein (no default)
—--sspep=FILE file with S-S definitions in peptide (no default)

—--pfrc=STRING protein (peptide) force field (default: ££f03.r1)
—-1frc=STRING 1ligand force field (default: gaff)
—--ctrl=FILE leap command file name (default: leap.cmd)

The command line options are presented here below:

--prot filename uses the PDB file filename as the protein structure. The PDB file
must be ”clean”, according to the rules outlined in the Appendix A.1. The leap module
adds hydrogens with correct names (and also missing heavy atoms, if any), attributes the
correct partial charges and AMBER atom types,® and eventually writes out the files for
the protein as mentioned in section 4.2.

--pep filenamereads a (clean) PDB file filename as the peptide structure. There is
no difference to the -—prot option except that a second (separate) peptide (or protein)
can be read in and combined later with the structure read via ——prot to a protein-peptide
(or protein-protein) complex (see ——ppi below).

--lig filename uses the SDF file filename as the ligand structure. The ligand file
must include all hydrogens. The structure is processed through antechamber that
generates various files required by tleap to build the PRM file for the ligand. Inside
antechamber, the ligand becomes a molecule (residue) with the name ”"LIG”. This name
is then taken over by leap and appears as such in the resulting PRM and PDB files.
The name "LIG” is the default name for a ligand in the pymdpbsa (section 8). See also
option --chrg when using the --1ig option. Note: We assume here that a ligand is a
single-residue low-molecular-weight organic molecule.

3Charges and atom types will correspond the chosen force field parameter set and the libraries going
with them.

--cplx filename (no extension!) will generate the AMBER files PRM, CRD
and a PDB file of the complex of the protein and the ligand read in with the --prot
and --1lig options. When generating AMBER files for the complex, the files for the
individual protein and ligand are always generated also. They are useful when running
MM(GB)(PB)/SA computations later (section 8). This option only makes sense
when both the --prot and --1ig options are also chosen.

--ppi filename works the same as --cplx, except that it generates a complex be-
tween two units supposed to be clean proteins (peptides), not requiring any intervention
of antechamber. Furthermore, -—cplx and --ppi cannot be used in the same run, i.e.,
we can only deal with either a protein/organic-ligand complex or a protein/protein (or
protein/peptide) complex.

--chrg integer must be used if an organic ligand read from an SDF file is formally
charged (even if the charge is also given in the SDF file). For neutral ligands, this option
can be omitted. For charged ligands however, it is required! FEnter it as an integer
reflecting the correct total charge of the ligand. The computation of partial charges via
the AM1-BCC method ™" will fail if the formal charge on the ligand does not make sense
with the chemical structure including all hydrogens and pytleap will quit.

--rad radius_type is used to choose the atomic radii for Generalized-Born. The
default radius type is the "modified Bondi” option to be used with the GB option gb
set to 1. For gb = 2 or 5, the original AMBER documentation suggests the radius type
mbondi2.

--disul and --sspep ftlename are used to generate disulfide bonds. Disulfide
bridges must be prepared in the original PDB file by renaming the involved cysteine
residues from CYS to CYX (see A.2.2). The filename in this option must relate to a file
that contains pairwise integer numbers of cysteine residue names to be connected (one
pair per line!). These numbers must correspond to the ones in the original PDB file!* See
the example in section C.1. We consider that this explicit formation of disulfide bonds is
to be preferred over "automatic” S-S bond formation, be it by using Sy distances or by
relying on CONECT records in PDB files. NOTE: --disul applies to the file read in
via --prot while --sspep is applied to the molecule read in via —pep. If both
proteins (peptides) have disulfide bonds, you must use separate definition files for the
respective S-S links!

-—-sspep: see above.

--pfrc filename specifies the force field parameter set for the protein. Since AMBER
can use different force fields, this option allows to choose among them. The selection
actually does not call the parameter file itself but a leap command file that initializes it.
These special leap files all have a name leaprc.zxxr and are retrieved when the AMBERHOME
environment variable is set correctly. You must only specify the xxzxx part of the
name! Thus, ££99 selects the parm99 parameter set, while the default ££03.r1 selects
the latest parm03 force field with the correct charges for N- and C-terminal residues also.
Make sure to have this file (with the full name leapre.ff03.71 included in the directory
where all default 1leap command files are kept.®

--1frc filename selects the force field for the ligand. At this point, the default gaff
force field is the only reasonable choice in most cases and you can omit this (default)

4In ’weird’ PDB files where insertions and deletions get special names, trying to keep a ’standard’
numbering of residues for the main protein of a family, much can go wrong. In these cases, it is best to
renumber the residues sequentially in the PDB file before referring to residue numbers.

5The full path to this place is $AMBERHOME/dat/leap/cmd.

10

option.

--ctrl filename can be used to change the default name of the leap command file
generated by pytleap (default leap.cmd). In general, this is not necessary, except if you
would like to keep this particular file and protect it from being overwritten by the default
name the next time you use pytleap in the same directory.

NOTE: This version of pytleap does not offer the possibility to add solvent and
counter-ions. It would be straightforward to add these options to the script if you are
familiar with leap. Alternatively, you could use the leap.cmd (or alike) created by pytleap,
edit it with a standard editor to add specific leap commands, and then resource it through
tleap (e.g., with tleap -f leap.cmd).

4.2 QOutput from pytleap

Output from pytleap varies with the chosen command line options (see 4.1). Coordinate
(CRD) files, parameter-topology (PRM) files and a corresponding PDB file are always
generated. Hydrogen names in the output PDB files are "wrapped”, making these files
readable also by elder software packages which require this format. Note that the actual
atom names in the PRM file are unwrapped. This has no consequence on computations.
However, special residue names like HIE, HID, HIP, CYX, etc., are kept and may lead
to flawed representations of the PDB files in software packages which do not recognize
these residue names. The ambpdb routine included with AMBER Tools can be used to
regenerate "standard” residue names if you need them.

Files generated by pytleap have a ’.1leap.’ string in their name to identify them as
"created by leap”. You should always use the corresponding *.leap.* files (or
copies of them) for simulations! This guarantees that the CRD, PDB, and PRM
files are compatible, having the same number and sequence of atoms.

In addition, a file 1leap.cmd is left over. This is the file that was generated by pytleap
and run through leap. The file leap.out is the output from leap, with the messages that
would have been generated by running leap interactively. Finally, the leap.log file is
the standard log from leap.

A special SYBYL MOL2 file is created when running pytleap on a ligand (i.e., a
low-molecular-weight organic compound which is processed through antechamber). This
file has the format of a generic MOL2 file, apart from the fact that atom types are not
SYBYL but gaff atom types. The name of this file is filename.ac.mol2, with .ac.
marking it as a file generated by antechamber.® The partial charges are those from the
AM1-BCC method. ™

Some additional files may be left over when antechamber is invoked. One important
file is the *.leap.frcmod file containing additional parameters which are not in the
original gaff parameter file. They are generated based on equivalences, ”guessing”, or
empirical rules described the gaff paper.” The frcmod file can also be used as a quality
check for the ligand parameters. Large frcmod files with many ”guessed” parameters
(especially for torsion angles) should be considered carefully.

Finally, the input and output files of the semi-empirical tool sgm are left. The ouput
file (sgm.out) might be useful for debugging if the partial charges seem totally inadequate

5Opening this MOL2 file in a standard software that can read MOL2 files may lead to strange results
because the gaff atom types do not reflect chemical elements as standard SYBYL MOL2 files with
TRIPOS force field atom types.

11

despite the correct usage of the -—chrg option (if required).

4.3 Error Checking

If you have experience with the leap application, look at the leap.cmd file that was created
via pytleap. All the options that you have chosen should be represented as correct leap
command lines. Furthermore, the leap.output and leap.log files should not show any
errors, at best some warnings. If in doubt that the parameter-topology files have been
correctly generated, look at these warnings and decide if they are benign. Eventually, the
NAB application ffgbsa described below (section 5) can be used to run a single AMBER
energy evaluation on the system. If the results returned by ffgbsa look very strange for a
supposedly reasonable structure, you probably have a serious issue with your set of CRD,

PDB, and PRM files.

12

5 Energy Checking Tool: ffgbsa

The NAB routine ffgbsa is an energy function called by the pymdpbsa application pre-
sented later (section 8). It can also be used as a standalone routine to check the AMBER
energy of a molecular system and to test the correct working of a PDB/PRM file combi-
nation. It is invoked as:

ffgbsa pdb prm gbflag saflag

The order in the command line input is compulsory! pdb is the PDB file
of the system and prm the related PRM file. gbflag is a flag to switch on one of the
Generalized-Born (GB) options in AMBER and can be 1, 2, or 5.7 Other values switch
off GB and a simple distance-dielectric function € = r;; is used.

When saflag = 1, the solvent-accessible surface area (SASA) is also computed (via
the molsurf routine included with NAB) and returned in A2, together with a SASA
energy term which is simply SASA % 0.0072 in this case. The default cutoff for non-
bonded interactions is 100 A | i.e., virtually no cutoff for most systems. An example for
the usage of ffgbsa is given in section C.2.

Remarks regarding the usage of molsurf:

The correct way to evaluate the SASA is to augment the radii of all atoms by the
probe radius (usually 1.4 A) and then run molsurf with a probe of radius of zero. This is
also the implementation in ffgbsa here. The atom radii values are given in the following
table:

TABLE 1: Atom Radii Used in molsurf

atom radius (A) | atom | radius (A)
C 1.70 H 1.20
N 1.55 O 1.50
S 1.80 P 1.80
F 1.47 Cl 1.75
Br 1.85 I 1.98
any other 1.50

Note: In some rare cases molsurf fails to give back a valid surface area. Scripts
calling ffgbsa must be prepared to capture this. The pymdpbsa procedure described
later catches such instances and excludes value sets in which the error occurs from the
statistical analysis (cf. end of section 8.5.1).

”

"These values correspond to the ”igh=" options in AMBER commands and stand for different imple-

mentations of the GB scheme.

13

6 Energy Minimizer: minab

The main purpose of this (very) simple minimizer is to refine a system prior to MD runs,
mainly to remove potential hotspots which might destabilize the MD initiation. Using it
for other purposes is at the discretion of the user.

The NAB routine minab uses the conjugate gradient minimizer of NAB to refine the
energy of a system. To circumvent cutoff problems,® the cutoff for non-bonded inter-
actions (vdW and Coulomb) is set to 100 A and that for GB is fixed to 15 A. The
non-bonded list is not updated at all. The default for the gradient rms is set to 0.1.

For large systems, this is far from efficient. However, as stated above, the main
purpose of this routine is to get rid of hotspots prior to running MD and in general, a
few hundred iterations are sufficient to guarantee a decent structure for MD, especially
when the MD starts with a heat-up phase as used in the mdnab application described in
section 7.

The minab routine is invoked by:

minab pdb prm pdbout gbflag niter [’restraints’ resforce]

Just typing minab without arguments gives a help screen. The explanation for the
arguments follows:
pdb and prm are the PDB and corresponding PRM file of the system;
pdbout becomes the PDB file of the refined system;
gbflag is the GB flag which can be 1, 2, or 5 while any other value switches to distance-
dependent dielectrics (as in section 5);
niter is the maximum number of iterations;

and for the optional arguments:

restraints specifies residues or atoms to be tethered in their motion (NAB atom ex-
pression between quotes);
resforce is a float specifying the restraint potential in kcal-mol~!-A~2.

The restraints entry must be an atom expression according to the NAB rules out-
lined in B.2. If for example all Ca atoms should be restrained, this entry would be "::CA’.
If the restraint mask is given, the restraint potential resforce must also be
specified.

Since minab is a simple command-line tool, it can be called by other routines or scripts
where a rough energy refinement is desired. The output (by default to the screen) can
be captured for later analysis into a file via a simple redirect (”>").

8The current cutoff scheme for non-bonded interactions in AMBER modules and NAB does not
use a switching function to smooth the cutoff. This can lead to problems every time the non-bonded
list is updated. Thus a fairly short cutoff distance with frequent list updates usually ends in line search
problems before the required number of iterations or the requested rms of the components of the gradient
is reached.

14

7 Molecular Dynamics ”Lite”: mdnab

The NAB application mdnab has been written for simple molecular dynamics with a
minimum number of settings required by the user. Its main purpose is to run moderately
short trajectories to be used e.g. for MM(GB)(PB)/SA applications.

Most settings are hardcoded and can only be changed by editing and re-compiling the
source mdnab.nab.

The following (non-mutable) defaults are used:

The cutoff for non-bonded interactions and GB is always 12 A. An update of the non-
bonded list occurs every 25 steps. The integration step is 2 femtoseconds (using "rattle”
to allow this fairly large step). The temperature is controlled via Langevin dynamics
with a friction factor ("gamma_In") of 2 for the production phase. The production tem-
perature is fixed at 300 K. And mdnab always saves one frame per picosecond,
independent of the length of the trajectory.

A heating and equilibration phase is automatically invoked prior to the actual pro-
duction trajectory recording: 100 steps from 50 to 100 K, 300 steps from 100 to 150 K,
600 steps from 150 to 200 K, 1000 steps from 200 to 250 K, 3000 steps from 250 to 300
K, and an additional 10000 steps at 300 K.?

mdnab is started by
mdnab pdb prm traj gbflag picosecs [’restraints’ resforcel

The command mdnab without arguments lists the possible arguments, the sequence
of which is compulsory. The command line arguments are similar to those in minab:
pdb and prm are the PDB and corresponding PRM file of the system;
traj is the name for the production phase trajectory which will be saved in the binary
”"binpos” format (the extension .binpos is automatically attached);'°
gbflag is the GB flag which can be 1, 2, or 5 (as in section 5), or anything else to switch
off GB and use a distance-dependent dielectric function € = r;;;
picosecs is the total number of picoseconds to run the production phase;

with the optional arguments:

restraints specifies atoms to be tethered in their motion (given as a NAB atom expres-
sion between quotes, see section B.2);

resforce is the restraint potential in kcal-mol™'-A~2? which has to be given if a
restraint expression is specified.

While the trajectory is saved to the specified file name (the traj command line
argument), the full output goes to the screen. To capture the output for later inspection,
use the UNIX "redirect” (>) to a file and end the command line with a & (making mdnab
a background job).

Note that only the production phase of the trajectory is recorded into the
traj file. The heat-up phases are only documented in the general output (to the screen
or to a text file, if redirected).

9Gince these last 10000 steps at 300 K are run under identical conditions as subsequent the production
phase, the user can simply extend the ”equilibration” by discarding all frames from the production phase
up to the point where the trajectory can be considered ”stable” (noting that ”stable” or ”steady-state”
are not well-defined terms anyway).

10This format can be read by various software packages like VMD, but can also be translated into
other formats using the AMBER utility ptraj.

15

8 MM(GB)(PB)/SA Analysis Tool: pymdpbsa

8.1 Brief Overview on MM (GB)(PB)/SA Concepts

The original MM(GB)(PB)/SA procedure was developed in the late 1990’s and the user
should refer to some original papers on this subject.”™ The goal was to develop a rel-
atively fast molecular-mechanics (-dynamics) based method to evaluate free energies of
interactions. MM stands for Molecular Mechanics, PB for Poisson-Boltzmann, and SA
for Surface Area.

The free energy for each species (ligand, receptor, or complex) is decomposed into a
gas-phase energy (”enthalpy”), a solvation free energy and an entropy term, as shown in
equation 1.

G = Egas + Gsol'u + S (1)
= Ebat + E’L}dW + Ecoul + Gsolv,polar + Gsolv,nonpolar + Srot,trans,vib (2)

where FEj, is the sum of bond, angle, and torsion terms in the force field, F 4 and
E o are the van der Waals and Coulomb energy terms, G o, polar 1 the polar contribution
to the solvation free energy and Gy nonpotar 18 the nonpolar solvation free energy.

The sum Ejyq; + Epaw + Eeow is the complete gas phase force field energy, the molecular
mechanics ("MM”) part.

The polar solvation free energy Gsouw polar can be evaluated via implicit solvation mod-
els like Poisson-Boltzmann (PB) or Generalized-Born (GB). The nonpolar contribution
G solv,nonpolar 15 usually computed by a simple linear relation for a ”cavity” term

Gsolv,nonpolar =7 SASA + const. (3)

where SASA is the solvent-accessible surface and v has the dimension of surface-
tension. Similarly, one could also use the volume enclosed by the SASA (SAV)

G solv nonpotar = D - SAV + const. (4)

with p having the dimensions of pressure.

In a more sophisticated approach, G iy nonpolar ant be split into a repulsive (7 cavity”)
and an attractive ("dispersion”) term, as decribed in detail in the 2007 paper of Ray Luo
and coworkers.

The rotational and translation entropy loss about complexation (six degrees of free-
dom) is 3-kT (i.e., ~ 1.8 kecal-mol ! at 300 K). The vibrational entropy can be evaluated,
for example, via normal mode analysis. It has become common practice in recent work
to exclude the entropy terms from MM (GB)(PB)/SA computations. This is acceptable
when only relative free energies are computed to compare similar ligands in similar re-
ceptors. Furthermore, the entropy computation is the fuzziest part of the procedure and
contributes to the largest fluctuations in the overall free energy when evaluating it over
a number of MD frames.

The free energy of interaction in the complex can then be evaluated as:

AGint = Gcomplew - Greceptor - Gligand (5)

In the early work, separate dynamics trajectories were recorded for all three species in
explicit solvent. The solvent was then discarded, the free energy was evaluated according

16

to the procedure above for a number of frames for each species. Eventually, AG was
calculated by

ACTYim‘/ = <Gcomple:p>traj - <Greceptor>traj — <Gligand>traj (6)

where (G;)q; is the average value for species i over all selected frames recorded during
the production phase of the MD trajectory.

In the meantime, the method has been implemented and used in many variants, all of
which have their advantages and disadvantages. The method presented hereafter is among
the simplest and cheapest in terms of CPU power. It is based on a single trajectory of the
complex alone. Each recorded frame is then split into receptor and ligand and equation
5 is applied to compute the interaction energy of the frame. The final interaction energy
is then the average over the AG values of the selected frames. Also, the entropy is not
evaluated at all.

8.2 Pitfalls and Error Sources

While the basic concepts are simple, there are many pitfalls. The initial idea was to
compute values for the free energy of binding close to experimentally observed ones,
without further tuning of parameters. However, since the computations of energy terms
are based on force field parameters (internal energy, van der Waals interactions, and
vibrational entropy via normal-mode analysis) and on concepts like atomic radii and
partial charges (electrostatics and polar solvation terms), discussions on the quality of
parameters are inevitable.

An issue not discussed in enough detail in many papers reporting MM (GB)(PB)/SA
(and variants) is the quality of the MD trajectory. Unstable trajectories with unreason-
ably strong fluctuations or important transitions (conformational changes, ligand pose
variations, etc.) will always yield questionable results. If such transitions happen, they
must be checked carefully before the results are used for MM(GB)(PB)/SA.

In the ”one-trajectory” approach implemented here, there is an additional pitfall.
Since both the receptor and the ligand are only considered in the bound state, strain
energy from distortions in the complex is not evaluated. This may not be an issue for
the receptor if there are no strong induced-fit effects. For the ligand however, this can
amount to a perceivable difference if the bound state adopts a conformation which is
definitely higher than for the unbound ligand in solution. Such "errors” may partially
cancel when series of similar ligands are compared in the same receptor. But it obviously
adds to the fuzziness of the results. When in doubt, a trajectory of the ligand alone
(under identical conditions as for the complex) should be recorded to assess the average
energy of the ligand in the unbound state.

8.3 Some Technical Remarks on pymdpbsa

pymdpbsa uses ffgbsa (see section 5) or the stand-alone Poisson-Boltzmann solver pbsa to
evaluate energies. The tool ptraj is called to decompose the MD trajectory into individual
frames for the complex, the ligand, and the receptor.

Because various temporary files are generated during execution, pymdpbsa
automatically creates a subdirectory in which all calculations are run. This
subdirectory (extension .tmpdir) contains all temporary files and also the final results,

17

copies of which are transfered to the starting working directory upon completion. By
default, the temporary directory is not removed automatically.
The following files are necessary to run pymdpbsa on a receptor-ligand complex:

e a molecular dynamics trajectory file of the complex (any format that can be read
by ptraj, including Z-compressed ones and binary binpos files like those created by
mdnab, see section 7);

e three AMBER parameter-topology PRM files, one for the complex, one for the
ligand alone, and one for the receptor alone (as created by pytleap, see section 4);

8.4 Running pymdpbsa
Invoking pymdpbsa without any arguments (or with —-help) will list all possible options.

Usage: pymdpbsa [options]

Options:
-h, —-help show this help message and exit
--proj=NAME global project name

--traj=FILE MD trajectory file (default: traj.binpos)
-—cprm=FILE complex prmtop file (default: com.prm)
—--lprm=FILE 1ligand only prmtop file (default: lig.prm)
-—-rprm=FILE receptor only prmtop file (default: rec.prm)
--1ig=STRING residue name of ligand (default: LIG)
--start=INT first MD frame to be used (default: 1)
--stop=INT last MD frame to be used (default: 1)
—-step=INT use every [step] MD frame (default: 1)
—--so0lv=INT 0 for no solvation term (eps=r)

1, 2, or 5 for GBSA

3 for PBSA

4 for PBSA/dispersion (default: 1)
—--clean clean up temporary files (default: no clean)

You only need to specify options that are different from the default. Thus, you can
avoid entering a lot of options by simply selecting file names like com.prm, rec.prm, and
lig.prm for the PRM files, calling the trajectory file traj.binpos, and by giving the ligand
the residue name LIG in your original structure file (the default if pytleap in section 4
was used).

--proj has to be followed by a the global name of the project and all output files
will incorporate this string. The name of the temporary directory created will also start
with the project name (followed by sequence of random characters and the extension
"tmpdir’). When this options is omitted, the project name becomes None (not really
useful for later identification).

-—-traj is followed by the filename of the trajectory. As already mentioned, the
trajectory file can be any format which can be processed by the AMBER tool ptraj. If
the trajectory file name is traj.binpos, this option can be omitted.

18

—--cprm, ——lprm, ——rprm are used to feed in the names for the PRM files of the
complex, the ligand, and the empty receptor. None of these PRM files is generated by
pymdpbsa. They must be specified by the user. If the pytleap utility (see section 4) has
been used on a complex, these three files should have been created. If you want to use
default names, rename these files to com.prm, rec.prm, and lig.prm.

--1lig is used to specify the name of the ligand. This is the (up to 4 characters long)
"residue” name the ligand would have in a PDB file. If the complex has been prepared
via pytleap, the ligand name will probably be LIG (i.e., the default). Note that the ligand
is supposed to be one single residue in that case. Alternatively, the ligand can also be
specified by its residue number. Thus if the ligand is residue 281 in the PDB file of the
complex, you may specify ——1ig 281. This also allows to have multi-residue ligands like
in protein-peptide (protein-protein) complexes. If e.g. the ligand covers residues 134 to
156 in the overall PDB file of the complex, you can specify --1ig ’134-156’.!

--start, --stop, and --step set the first and last frame of the MD trajectory to be
used for evaluating the energy, and the step size (e.g., ——step 5 means every fifth frame).
By default, these values are all 1, i.e., only the first frame is used. Thus, the free
energy of interaction for a single PDB file can be computed by specifying as ’trajectory’
(with --traj) the name of the PDB file and neglecting the start/stop/step options.

--solv followed by an integer chooses the solvation option. The default is ’--solv
1’. For values other than 1 to 5, the returned electrostatic energy term is evaluated
with a distant-dependent dielectric function € = r;; with no additional polar solvation
correction. For values 1, 2, or 5, the corresponding GB variant (igb in AMBER) is used
with a nonpolar contribution of 0.0072 * SASA (where the solvent-accessible surface
SASA is computed via molsurf); for solv = 3, GB is replaced by PB and the non-polar
solvation energy term is 0.005 * SASA + 0.86; for solv = 4, the polar solvation free
energy part is computed with PB, the nonpolar portion is evaluated by a ”cavity” term
and a "dispersion term”;’ the detailed settings for this approach are identical to those
suggested in the original pbsa documentation.

--clean removes the temporary directory, including all PDB or CRD files for the
various MD frames. By default, these files are kept. You might choose to keep the files
for debugging purposes in initial runs or for some graphics of overlays (since proteins
are automatically RMS-fitted to the Ca during the ptraj extraction). In any case, the
relevant data are saved to the working directory, even when the —-clean option is used.

1 Using quotes to include more complex atom masks is a safe way to circumvent problems with the
shell interpretation.

19

8.5 Details on Internal Workings and Output of pymdpbsa

The internal workings and the output of pymdpbsa vary depending on the —-solv options.
In all cases, the ptraj tool is called to split the trajectory into individual frames. Since
each interaction energy evaluation requires three files (complex, receptor, ligand), the
splitting of a trajectory with N frames results in 3-N files.!?

8.5.1 Distance-Dependent Dielectrics or Generalized Born

For --solv = 0, 1, 2, or 5, the ffgbsa routine is called to evaluate energy terms. Since
ffgbsa required PDB files as coordinate input, the trajectory is split into individual PDB
files. These files are named according to the project, the part of the structure (C for
whole complex, R for receptor alone, L for ligand alone), and the frame number.

Thus a file TEST.R.pdb .45 would be the PDB file of the empty receptor corresponding
to frame 45 of the trajectory of the project named TEST.

Each run creates four tables with energy values returned by ffgbsa: one for the
ligand, one for the receptor, one for the complex, and one for the interaction energies.
The tables inherit the name of the project, followed by L, or R, or C, or D, (ligand,
receptor, complex, and energy difference) and the extension ”.nrg”. These tables are
simple text files and can be used as input for plotting routines, e.g., to check possible

drifts or strong fluctuations. An excerpt of a *.D.nrg output is shown next:

10 -56.84 0.00 -55.30 -61.67 67.98 -7.85
20 -58.67 -0.00 -52.84 -68.51 70.51 -7.83
90 -57.21 0.00 -56.83 -52.23 59.57 -7.72
100 -59.20 0.00 -57.10 -41.51 47.27 -7.86

The first column is the frame number, followed by the total energy, the internal force
field term (stretch, bend, and torsion terms), the van der Waals term, the Coulomb
term, the Generalized-Born term, and the solvent-accessible surface term. Note that
the internal force field term must be zero (within the limits of precision) in the *.D.nrg
tables because we use a single trajectory and do not account for distortions in the receptor
or the ligand. The corresponding columns in the respective C, R, and L tables will not
be zero. In the special case ——solv 0, the GB column has also zero values only.

The final evaluation summary is stored in a file with the project name and the exten-
sion 7 .sum”. The summary shows averages and corresponding standard deviations and
mean errors for all energy terms. All values are given in kcal-mol™t. The header lines
show additional information useful for later documentation. An example is shown below:

12The splitting into ligand and receptor is performed by separate ptraj calls. Depending on the part
to be written out, the ptraj command ”strip” followed by an AMBER mask is used to remove the rest
of the structure. Thus for example, if the ligand is a residue called LIG, the ligand alone is obtained
with the strip mask 7’ :x&!:LIG’” meaning ”strip off all residues but not the residue named LIG”.

20

Summary Statistics for Project SOLVS

Frames : 10 to 100 (every 10)
Solvation : GB (--solv=b)
Trajectory File : traj.binpos

Complex parmtop File : com.prm
Receptor parmtop File : rec.prm
Ligand parmtop File : lig.prm

Etot = -169.82 (3.62, 1.14) Ebat = 64.78 (4.69, 1.48)
Evdw = 20.51 (2.25, 0.71) Ecoul = -192.35 (1.61, 0.51)
EGB = -68.33 (1.51, 0.48) Esasa = 5.56 (0.06, 0.02)
————— Receptor Energies---————\—-
Etot = -4045.29 (31.63, 10.00) Ebat = 4157.74 (37.50, 11.86)
Evdw = -756.47 (16.16, 4.79) Ecoul = -4863.38 (94.96, 30.03)
EGB = -2681.64 (91.98, 29.09) Esasa = 98.45 (0.54, 0.17)
————— Complex Energies-———-—----------------—————————————————————————————
Etot = -4276.73 (34.61, 10.94) Ebat = 4222.53 (39.39, 12.46)
Evdw = -791.58 (14.82, 4.69) Ecoul = -5110.62 (102.32, 32.36)
EGB = -2693.26 (97.49, 30.83) Esasa = 96.20 (0.56, 0.18)
————— Interaction Energy Components----——---------------———————————————
Etot = -61.62 (2.90, 0.92) Ebat = -0.00 (0.01, 0.00)
Evdw = -55.62 (1.43, 0.45) Ecoul = -54.89 (12.81, 4.05)
EGB = 56.70 (11.87, 3.75) Esasa = -7.81 (0.09, 0.03)

For --solv = 0, 1, 2, or 5, the solvent-accessible surface is computed via the NAB
subroutine molsurf in ffgbsa. The surface returned by ffgbsa is multiplied by a surface
tension of 0.0072 to yield the "nonpolar” free energy component in kcal/mol. For details
about the calls to molsurf, see section 5.

As mentioned before, the molsurf routine is generally robust, but has shown problems
in some rare cases. Since the pymdpbsa script requires the output from molsurf (called
via ffgbsa), we have built in a catch for these rare cases. If molsurf should fail, the
returned surface value is set to zero for that frame and pymdpbsa emits a warning. In
later statistical evaluations, frames with this problem are excluded from the evaluation,
i.e., average values and standard deviations relate to "healthy” frames only.

8.5.2 DPoisson-Boltzmann

For —--solv = 3 or 4, the pbsa routine is called. This is done by generating a temporary
input (control) file for pbsa called pbsasfe.in. The output of pbsa goes to pbsasfe.out.
Both files are left over after the run and can be used to verify that everything went
correctly.

Since pbsa requires CRD files, the trajectory is split into AMBER restart files rather
then PDB files. The name giving is the same as for the PDB files (see 8.5.1) except that
the ”"pdb” part in filenames is changed to ”crd”.

The script eventually calls pbsa by:

pbsa -0 -i pbsasfe.in -o pbsasfe.out -p prmfile -c crdfile

21

The generated output tables are named as for the non-PB settings in section 8.5.1.
However, the content of the tables varies slightly:

10 5.85 -565.31 -61.69 92.17 -40.36 71.02
20 2.61 -52.83 -68.54 92.79 -38.97 70.16
90 -1.51 -56.83 -52.21 78.21 -40.25 69.57
100 0.35 -57.10 -41.55 67.08 -39.25 71.16

The first column is the frame number, followed by the total energy, the van der Waals
term, the Coulomb term, the Poisson-Boltzmann term, the solvent-accessible surface
("cavity”) term, and the ”dispersion term” (which is zero if the option --solv=3 was
used).

The final evaluation summary is stored in a file with the project name and the exten-
sion ”.sum”. This file is similar to that shown in section 8.5.1 except that some specific
terms vary. An example is shown here:

Summary MDPBSA Statistics for Project SOLV4

Solvation : PB+SAV+DISP (--solv=4)
Frames : 10 to 100 (every 10)
Trajectory File : traj.binpos

Complex parmtop File : com.prm
Receptor parmtop File : rec.prm
Ligand parmtop File : lig.prm

Etot = 32.16 (2.27, 0.72) Evdw = -4.64 (1.92, 0.61)
Ecoul = 106.04 (1.70, 0.54) Epb = -72.46 (1.37, 0.43)
Ecav = 53.22 (0.36, 0.11) Edisp = -49.99 (0.43, 0.14)
————— Receptor Energies---------------------- - - - - - - - - - - - - - - —-———\—"——""—"——-
Etot = -17754.52 (38.42, 12.15) Evdw = -1662.84 (8.07, 2.55)
Ecoul = -14139.19 (122.39, 38.70) Epb = -2662.75 (90.70, 28.68)
Ecav = 1848.33 (6.20, 1.96) Edisp = -1138.08 (5.39, 1.70)
————— Complex Energies-—--—-—-—-—-----"--"""""-"-""—""———————————————————————————
Etot = -17719.32 (40.29, 12.74) Evdw = -1723.10 (8.18, 2.59)
Ecoul = -14088.04 (126.86, 40.12) Epb = -2652.15 (94.66, 29.93)
Ecav = 1862.08 (6.73, 2.13) Edisp = -1118.11 (5.69, 1.80)
————— Interaction Energy Components----———--—-------------——————————————
Etot = 3.04 (4.12, 1.30) Evdw = -65.62 (1.43, 0.45)
Ecoul = -54.90 (12.81, 4.05) Epb = 83.06 (12.49, 3.95)
Ecav = -39.47 (0.88, 0.28) Edisp = 69.96 (0.84, 0.27)

22

8.6 Using pymdpbsa for Single-Point Interaction Energy

Since ptraj can read a single coordinate set (frame) as a ”trajectory”, pymdpbsa can also
be used to generate the free energy of interaction for an isolated PDB or CRD file of
a receptor-ligand complex. Just specify for the ”trajectory” (--traj) the name of the
single PDB or CRD file and leave the --start, --step and --stop options to their
default of 1. Any of the --solv options can be used.

Obviously, the PRM files for the complex, the receptor, and the ligand, must be
available also and must be specified if their names are different from the default.

In the single-point case, the output looks the same as for the multiple-frame eval-
uations. The tables have only one line (record) and the statistical data like standard
deviation or standard error in the .sum file are all zero of course.

23

A Appendix A: Preparing PDB Files

The only required or useful data in a PDB file to set up AMBER simulations are: atom
names, residue names, and maybe chain identifiers (if more than one chain is present),
and the coordinates of heavy atoms. Non-protein structures (especially low-molecular-
weight ligands) will cause problems, with the exception of water and some ions which are
automatically recognized if their names in the PDB file correspond to the internal names
in the AMBER libraries.

NOTE: Recent changes in leap are supposed to handle some of the hurdles (like gener-
ation of disulfide bonds) described below ”automatically”. I have not tested these options
intensively. I suppose that they can be relied on in most cases but I still recommend to
follow the recipes given below to be on the safe side.

A.1 Cleaning up Protein PDB Files for AMBER

This is a crucial step in the preparation and many potential problems and
subsequent errors depend on this step!

Analyze the PDB file visually in any viewer that can represent (and maybe modify)
the file. Alternatively, use a text editor. Delete all parts which are judged irrelevant for
the simulation. Be aware that anything not protein or water can be expected to cause
trouble later.

If the x-ray unit cell in the PDB file contains more than one image, choose the entity
you want to use and delete the other(s).

If there is a ligand, save it as an MDL standard data file (SDF). Many software
packages are able to do this directly. You may also save the ligand in PDB format and
then use some other tools later to convert it into a decent SDF file (including correct
bond order and all hydrogens). It is crucial to keep the coordinates of its heavy
atoms at their original location. Then delete it from the PDB file. The ligand must
treated separately later.

Delete all water molecules that are not considered relevant. Some waters might be
essential for ligand binding. If those waters are kept, they should be made part of the
receptor (as distinct "residues”), not of the ligand. leap recognizes water if the residue
name is WAT or HOH. In later simulations, they may have to be tethered (more or less
strongly) to their original positions to prevent them from ”evaporating”.

Apply the same delete procedure to ions, co-factors, and other stuff that has no special
relevance for the planned simulation.

Get rid off all protein (or peptide) hydrogens that are explicitly expressed
in the PDB file. The AMBER leap utility adds hydrogens automatically with predefined
names. Having hydrogens in PDB files with names that leap does not recognize within
its residue libraries leads to a total mess.

Eventually, remove also all connectivity records. These are mostly referring to
ligands, or, in some cases, to disulfide links. The latter should be explicitly re-connected
(see later) without relying on connectivity records in the PDB file.

The final PDB file of the protein should only contain unique locations® for heavy
atoms of amino acids (and maybe oxygens of specific water molecules). Missing atoms

13Tn some PDB files, the same amino acid may be represented by different states (conformations). You
must decide which unique location you want to use later in the simulations.

24

in amino acids are mostly allowed since leap can rebuild them if the residue names are
correct and if the atoms already present have correct names also.

Make use of "TER” records to separate parts in the PDB file which are
not connected covalently. This is especially important in protein structures in which
parts are missing (gaps). Not separating the loose ends by a "TER” record may lead to
strange (and wrong) behavior in leap or later in the simulations. Apply the same rule to
individual water molecules which you want to keep and separate each water by a "TER”
record.

A.2 Special Residues, Name Conventions, Chain Terminations

Tautomeric and protonation states are not rendered in PDB files. If a defined state for
a residue is required, its name in the PDB file must reflect the choice. The following
subsections deal with these cases. Important: if you change a residue name in a PDB
file, make sure to change it for all atoms of that residue!

Note also that PDB files written out by leap will keep the ”special” names, which
sometimes leads to annoying effects in software packages which are not prepared for
amino acids called HIE, HIP, CYX, and alike. You might consider to change these names
back to the standard prior to using these PDB files in other software packages. You can
also use the ambpdb AMBER utility to do that (see the original AMBER documentation
for details on this tool).

A.2.1 Histidine: HID, HIE, HIP

Histidine can exist in three forms (9, €, and protonated). The PDB file must reflect
the choice of the user. In the current versions of leap command files included with
AMBER, e-histidine is the default, i.e., a "HIS” residue in a PDB file will be translated
automatically to HIE (for e-histidine). If the residue is called "HID” in the PDB file,
the resulting residue for AMBER will become §-histidine, while "HIP” will yield the
protonated form.

A.2.2 Cysteine: CYS, CYX

Cysteine can exist in free form or as part of a disulfide bridge. PDB residues named
"CYS” are automatically converted into a free cysteine with a SH side chain end. If the
cysteine is known to be in a S-S bridge, the residue name in the PDB file must be
"CYX”. In that case, no hydrogen is automatically added to the side chain which ends
in a bare sulfur. However, S-S bonds to pairing cysteines are not automatically made
but must be specified by the user. The pytleap Python script described in section 4 takes
care of this through a special command line option and a file specifying which residues
are to be connected (page 10).

A.2.3 Protonation: ASH, GLH, LYN

Sometimes the usually charged residues aspartate ” ASP”, glutamate " GLU”, and lysine
"LYS” might have to be used in their uncharged form. The residue names must then
be changed to ”ASH”, "GLH”, and "LYN”, respectively. A neutral form of arginine
is not foreseen in AMBER (as the pKa of arginine is around 12, it is always considered
protonated).

25

A.2.4 Terminals: ACE, NHE, NME

There are special N- and C-terminal cap residues which can be used to neutralize
the N- and C-terminal in peptide chains when the defaults (N H; for the N-terminal and
COO~ for the C-terminal) are not appropriate.

The " ACE” residue [-C(= O) — C'Hj] can be used to cap the N-terminal. The PDB
entry of the capping residue ACE (this name is compulsory) must be:

ATOM 1 CH3 ACE resnumber X y z
ATOM 2 C ACE resnumber X y z
ATOM 3 0 ACE resnumber X y z

Note the atom name ”CH3” for this special carbon! Another name is not allowed!
Hydrogens should be omitted. They are automatically added if the residue name and the
heavy atom names are correct.

For capping the C-terminal, two possibilities are given. The first one is a simple N Ho
termination giving [C(= O) — N Hs]. This residue must be called "NHE” in the PDB
file and consists of a single atom to be named N:

ATOM 1 N NHE resnumber X y z

The second possible C-terminal cap is NH —C Hj, resulting in [C(= O)— NH — C Hj|
at the C-terminal. Its entry in the PDB file must have the residue name "NME” and
has the following PDB entry:

ATOM 1 N NME resnumber X y z
ATOM 2 CH3 NME resnumber X y z

As above for 7ACE”, the atom name for the carbon must be "CH3”! "NHE” and
"NME” residues are automatically completed with hydrogens. Do not enter them explic-
itly.

Important: The " ACE” residue should be the first residue in a chain (strand) while
"NHE” or "NME” should be the last. If cap residues are used to terminate gaps in
incomplete protein chains, they must appear at the exact gap location, respecting N-
terminal and C-terminal order. Gaps must be separated by a "TER” record in the PDB
file. See section A.3.

A.3 Chains, Residue Numbering, Missing Residues

AMBER preparation modules assume that residues in a PDB file are connected and
appear sequentially in the file. If not covalently connected (i.e., linked by an amide
bond), the residues must be separated by "TER” records in the PDB file. Thus for
example, a protein consisting of two chains should have a "TER” record after the final
residue of the first chain. Similarly, if residues are missing (e.g., not detected in x-ray, or
cut by the user), the gap should also be separated by a ”TER” record. Terminal residues
will be charged by default. If the user wants to avoid this (especially for gaps), these
residues should be capped (by ACE and NHE or NME).

In general, leap and tools calling it refer to the original input residue numbers.
Thus, residues are numbered (rather "named”) according to the original PDB file for
special commands like the disulfide connections.

26

Important: In some PDB files, residue numbers are not following a simple sequential
scheme. There may be added 'numbers’ if the residue numbering should globally reflect
that of a 'mother’ protein of a whole family. In such cases, you may encounter residue
numberings like e.g. 11.. 12.. 12A.. 12B.. 13.. etc, where 12A and 12B are insertions.
This may lead to serious trouble when trying to refer to residue 'numbers’ or 'names’.
The safest way to avoid trouble is then to renumber the residues sequentially (without
insertion or deletion letters) before using them in any tool that requires a precise reference
to a residue name/number.

In output files from leap and related tools, residues will always be numbered
starting from 1, irrespective of the original numbering. Gaps are not considered either.
Thus if a protein chain runs from 21 to 80, with residues 31 to 40 (i.e., 10 residues)
missing, the final numbering of residues will run from 1 to 50.

Important: The final residue numbers are the ones that must be used in later simula-
tions to refer to individual residues via AMBER masks or NAB atom expressions.
For example, if a protein chain with residues from 30 to 110 is prepared for AMBER
simulations, the final numbering will go from 1 to 81. If the original residues 35 to 40
should be fixed or tethered, the actual residues to be specified are 6 to 11. This can lead
to serious errors. So be careful about residue numbers. The script pytleap described later
will always generate a new PDB file with exact AMBER residue numbering and atom
names. This PDB file should be used as reference throughout all subsequent AMBER
simulations. Above all, when using atom masks or atom expressions (see Appendix B),
always check that they really refer to the desired atoms before running lengthy simula-
tions. Fixing or tethering wrong atoms are a common error which may easily
go unnoticed.

27

B Appendix B: Atom and Residue Selections

There are two standards to select atoms and residues in AMBER-related routines: the
AMBER ”mask” notation, used by all original AMBER modules, and the NAB
”atom expressions”, which work only with NAB-compiled applications.

Users who only use the NAB routines presented in this document may skip to section
B.2. Those who intend to use original AMBER routines should also become familiar with
the AMBER masks notations.

B.1 Amber Masks

A 7mask” is a notation which selects atoms or residues for special treatment. A frequent
usage is fixing or tethering selected atoms or residues during minimization or molecular
dynamics.

The following lines are partially copied from the original AMBER documentation. For
more details, refer to the entire section of that documentation describing the ambmask
utility. '

The "mask” selection expression is composed of ”elementary selections”. These start
with ”7:” to select by residues, or "@” to select by atoms. Residues can be selected by
numbers (given as numbers separated by commas, or as ranges separated by a dash) or
by names (given as a list of residue names separated by commas). The same holds true
for atom selections by atom numbers or atom names. In addition, atoms can be selected
by AMBER atom type, in which case "@” must be immediately followed by ”%”. The
notation ”:*” means all residues and ”@*” means all atoms. The following examples show
the usage of this syntax.

B.1.1 Residue Number List Examples

:1-10 = "residues 1 to 10"
:1,3,5 = "residues 1, 3, and 5"
:1-3,5,7-9 = "residues 1 to 3 and residue 5 and residues 7 to 9"

B.1.2 Residue Name List Examples

:LYS
:ARG,ALA,GLY

"all lysine residues"
"all arginine and alanine and glycine residues"

B.1.3 Atom Number List Examples

Note that these masks use the actual sequential numbers of atoms in the file. This
is tricky and a serious source of error. You must know these numbers correctly. Using
the atom numbers of a PDB file written out by an AMBER tool is an appropriate way
to avoid pitfalls. Do not use the original atom numbers from the raw PDB file
you started with.

Q12,17 = "atoms 12 and 17"
@54-85 = "all atoms from 54 to 85
@12,54-85,90 = "atom 12 and all atoms from 54 to 85 and atom 90

1 The utility ambmask is not part of the free Amber Tools but is available only together with the full
AMBER package.

28

B.1.4 Atom Name List Examples

Atom names follow the standard names in PDB files for heavy atoms. For hydrogen
atom names with more than 3 characters, the choice may be critical since some AMBER
tools!® wrap hydrogen atom names in the PDB files they write out, but internally use the
“unwrapped” name version. For example, the second hydrogen atom at the first Cv (e.g.,
in isoleucine) would be called HG12, but in the official PDB notation, it would be 2HG1.
Since it very rarely (actually never) makes sense to fix individual hydrogen atoms in side
chains, we do not worry about this. Even in ligand names, hydrogens are generally not
the first choice of selection when fixing or tethering parts of the ligand.

CA
©@CA,C,0,N,H

all atoms with the name CA (i.e., all C-alpha atoms)
all atoms with names CA or C or 0 or N or H
(i.e., the entire protein backbone)

B.1.5 Atom Type List Examples

This last mask type is only used by specialists and mentioned here for completeness. It
allows the selection of AMBER atom types and requires detailed knowledge of AMBER
force fields.

@JCT = all atoms with the force field type CT
(the standard sp3 aliphatic carbon)
@JN*,N3 = all atoms with the force field type N* or N3

(N* is a special sp2 nitrogen, N3 is an sp3 nitrogen)

Note that in the above example, N* is actually an atom type. The * is not a wild card
meaning ”all N-something types”!

B.1.6 Logical Combinations

The selections above can be combined by various logical operators, including selections
like ”all atoms within a certain distance from...”. The use of such combinations goes
beyond this introductory script. Interested users should refer to the original AMBER

documentation.

I5Even that is not consistent because NAB-compiled routines use the unwrapped notation.

29

B.2 ”Atom Expressions” in NAB Applications

NAB applications do not use the AMBER mask scheme outlined in the previous sections.
They use simpler (but less powerful) selection criteria. The scheme is:

chains(or "strands") :residues:atoms

For example, A:GLU:CA would select all Car carbons of all glutamate residues in chain
A. A plain :: would select all atoms in all residues and all chains (not very useful). : :Hx*
would select all hydrogen atoms in any chain and any residue, the * being a wild card
for any sequence of characters. Similarly, : :*C*x would select all atoms which contain at
least one "C” character, i.e., the wild card can be used in any position. The ? can be
used as a wild card for a single character. Thus, ::H? would select any atom starting with
H plus one additional character (e.g., HC, H1, HN, but not HG11).

The wild card can also be used in residue names. :Ax: would select all alanines,
asparagines, and arginines.

Selections can be combined separated by a vertical bar ”|”. :1-3,ALA:C*|:2-5:N*
would select all carbon atoms in residues 1 to 3, in all alanines and all nitrogen atoms
in all residues from 2-5. If you would like to tether all Ca atoms of a protein and the
oxygen atom of explicit water molecules (with residue names "WAT’), you would use
::CA| :WAT:0*.

Output from NAB applications always tells how many atoms have been selected for
a special treatment. If you are not sure that your selection is correct, this number might
at least be a hint. If you run a simulation with a protein having 200 residues and want
to tether all Ca carbons, ::CA should result in 200 selected atoms (provided that all
residues have a well-defined CA atom, which they should).

30

C Appendix C: Examples and Test Cases

C.1 Example 1: Generating AMBER Files for Crambin with
Disulfide Bonds

In crambin (1CRN.pdb, ...amberlite/examples/CRN), there are 3 disulfide bonds con-
necting CYS3 to CYS40, CYS2 to CYS32, and CYS16 to CYS26. In the PDB file, these
residues must all be changed from CYS to CYX. Then a text file (e.g. sslinks) should
be created that looks like this:

3 40
2 32
16 26

In the CRN examples subfolder, the file 7crnz.pdb is the modified 1CRN.pdb file with
the six cysteines above changed to CYX in their residue name. Also, everything has been
removed except the ATOM records. Since we create explicitly the disulfide bonds via the
bond command in leap, the connectivity records have been discarded also.

The correct command should be (assuming defaults for most settings):

pytleap —-prot Icrnz.pdb --disul sslinks

where sslinks specifies the text file containing the numbers of the residues to be S-S
linked (one pair per line). Now the disulfide bonds are recognized and registered in the
PRM file, i.e., all bonded interactions for —C'Hy — S — S — C'Hy— are correctly computed.

The file 1eap. cmd generated by pytleap shows the bonding between the corresponding
SG atoms in the three disulfide linkages on lines 2 to 5:

set default pbradii mbondi

prot = loadpdb lcrnx.pdb

bond prot.3.5G prot.40.3G

bond prot.4.5G prot.32.5G

bond prot.16.3G prot.26.5G

saveamberparm prot lcrnx.leap.prm lcrnx.leap.crd
savepdb prot lcrnx.leap.pdb

quit

FIGURE 1: The 3 S-S links in lcern.pdb

31

C.2 Example 2: Energy Minimization of the Crambin Structure
C.2.1 Starting Energy

We can use the files Icrnz.leap.prm and Icrnz.leap.pdb which were created in section
C.1 to evaluate the AMBER energy terms in the unrefined crambin structure with the
Generalized-Born option 1 and the SASA (nonpolar) energy:

ffgbsa Icrnz.leap.pdd Icrnz.leap.prm 1 1

The result is:

Reading parm file (lcrnx.leap.prm)
title:

mm_options: cut=100
mm_options: rgbmax=100
mm_options: diel=C
mm_options: gb=1

iter Total bad vdw elect nonpolar genBorn frms
ff: 0 -813.56 611.05 -92.09 -980.60 0.00 -351.91 1.52e+01
sasa: 3079.71
Esasa = 0.0072 * sasa = 22.17

In this output, the line starting with ”££:” lists the total energy of the system and
the components (bad = bond-angle-dihedral combined energy, i.e., the sum of the bonded
terms). The line starting with "sasa:” gives the solvent-accessible surface in A2 The
final line is the result from SASA multiplied by a surface tension of 0.0072. All energies
are in kcal-mol~!.1¢

This procedure is a good (although rough) health check of the PRM/PDB (and corre-
sponding PRM/CRD) file pairs prior to using them in longer simulations. If the starting
structure file is considered of good quality (no major steric bumps) but some of the val-
ues reported by ffgbsa look weird, there might be a serious error in the PRM file. If the
coordinate file and the parameter-topology file are incompatible, e.g., different number
of atoms or different order of atoms, ffgbsa will give very strange results in most cases
(or fail completely).

C.2.2 Energy Minimization with minab

The structure refinement via conjugate gradient minimization can be carried out by the
command (all on one line):

minab Icrnz.leap.pdb Icrnz.leap.prm crambin.min.pddb 1 1000
> crambin.min.out &

We use the GB option 1 and request a maximum of 1000 steps. No restraints are
applied. The refined coordinates go to the PDB file crambin.min.pdb. The output of
minab is redirected to the text file crambin.min.out. The final ’&’ puts the process into

16Note that the "nonpolar” term in the main energy components line is 0.00 because we compute this
term separately. The "nonpolar” term in NAB applications can also include other terms (e.g., restraints)
and is sometimes misleading.

32

the background. The minimization can be followed interactively by the command tail
-f crambin.min.out
The last lines of the output are:

initial energy: -814.840 kcal/mol

final energy: -1093.158 kcal/mol

minimizer finished after 619 iterations
refined coordinates written to crambin.min.pdb

Figure 2 shows the initial (green) and refined (orange) structure of crambin. The
disulfide bonds in the refined structure are shown in CPK mode to emphasize that the
S-S links have been correctly assigned. If this were not the case, the respective sulfur
atoms would drift apart because of non-bonded interactions.

FIGURE 2: Starting (green) and refined (orange) coordinates
of 1CRN. Disulfide bonds in the refined structure are shown in
CPK mode.

33

C.3 Example 3: Preparation of a Complex between P38 MAP
Kinase and Ligand

C.3.1 Cleaning Up PDB Entry 10UK.pdb for Usage with AMBER

FIGURE 3: Left side: original structure 10UK.pdb with ligand
(red), sulfate (yellow) and water molecules (blue); right side:
final structure p38.pdb with the N- and C-terminal caps.

In the ...amberlite/examples/P38 directory, the PDB file 10UK.pdb (P38 MAP
kinase with inhibitor) is included in its original version. The structure (see Figure 3)
contains a ligand (red), a sulfate ion (yellow), and a number of water molecules (blue).
The file p38.pdb (also included in .. .amberlite/examples/P38) was created from this
PDB file by cutting off a large part of the protein and deleting everything except the
heavy atoms. The resulting "nonnatural” N- and C-terminal were then completed by
ACE and NME caps, respectively.!” The resulting PDB file is ”clean” for leap and passes
without errors. The ligand was processed separately into SDF format (file 1ig.sdf in
.. .amberlite/examples/P38) including all hydrogens and bond orders. This file is ready
to be processed via antechamber before re-complexing it with the protein (see later).

C.3.2 Generating AMBER Files for a P38/Ligand Complex

We re-use as a receptor the reduced and corrected PDB file from section C.3.1, p38.pdb.
For the ligand, we use the [ig.sdf file, containing the ligand with its heavy-atoms coor-
dinates from the original pdb file 7OUK.pdb and hydrogen atoms added via any other
software that can handle this kind of problem. Note that the ligand has a formal charge
of +1.

17This can be done by any modeling software which allows building, but make sure that the final atom
and residue names in the cap residues are those described in section A.2.4.

34

The following command line will create the PRM, CRD, and PDB files for the empty
receptor, the ligand, and the complex; partial charges on the ligand will be computed via
the AM1-BCC method;”" the complex will be named com:

pytleap —-prot p38.pdb --lig lig.sdf --chrg 1 --cplx com

The longest part in the execution time is the processing of the ligand via the sgm tool
to get the AMB1-BCC charges. During execution, various temporary files appear in the
working directory. They result from the different modules called in antechamber. Most
are removed when antechamber has finished.

The resulting AMBER files are called *.leap.prm, *.leap.crd, and *.leap.pdb,
respectively. One set of files is generated for the ligand (1ig), the receptor (p38), and
the complex (com).!®

Among the various other files left over, 1ig.leap.frcmod might be the most relevant
to inspect since it contains parameters which were used in addition to those explicitly
present in the gaff parameter set.

The file 1ig.ac.mol2 is the MOL2 for the ligand containing the gaff atom types and
the AM1-BCC partial charges. This file can be read by a variety of software packages but
the atom elements will not be recognized because atom types are not original TRIPOS
atom types, indicating the chemical element.

In the resulting complex, the ligand has the residue name LIG and the residue number
217. The N- and C-terminal caps ACE and NME get residue numbers 1 and 216.

‘NME 2186

FIGURE 4: The final complex structure com.leap.pdb: The
ACE cap becomes residue 1, the NME cap is residue 216, and
the ligand is residue LIG 217

8Note that we use the *.leap.* name giving to underline that these files have been generated via
leap. This is useful to avoid confusion, especially for the PDB or CRD files which must correspond to
the respective PRM files.

35

C.4 Example 4: Interaction Energy between P38 and Ligand
in the Unrefined (Original) Complex

We use the files generated in example 3 (section C.3.2). In order to make use of the default
settings in the command line options, we copy the respective files to the default names
proposed by pymdpbsa: Make copies (or symbolic links) of com.leap.prm, p38.leap.prm,
and lig.leap.prm to com.prm, rec.prm, and lig.prm. Also, make a copy (or symbolic link)
of com.leap.pdb to com.pdb.

Now the command

pymdpbsa --proj RAWPDB --traj com.pdb

computes the interaction energy. As "trajectory” (--traj) we specify the single
complex PDB file com.pdb. We call the project "RAWPDB” and leave all other input
options at their default, i.e., we also use the default GB option 1.

A subdirectory RAWPDB_xxxxxx.tmpdir is generated, where xxxxxx is a random se-
quence of characters. This temporary directory can be removed since the relevant output
files are copied to the directory in which pymdpbsa was started. We could also have
used the additional command line option --clean to remove the temporary directory
automatically.

The output of interest is the summary file RAWPDB. sum (see also 8.5.1 and 8.5.2):

Summary Statistics for Project RAWPDB

Frames : 1 to 1 (every 1)
Solvation : GB (--solv=1)
Trajectory File : com.pdb

Complex parmtop File : com.prm
Receptor parmtop File : rec.prm
Ligand parmtop File : lig.prm

Etot = -127.64 (0.00, 0.00) Ebat = 117.53 (0.00, 0.00)
Evdw = 3.79 (0.00, 0.00) Ecoul = -183.01 (0.00, 0.00)
EGB = -71.71 (0.00, 0.00) Esasa = 5.76 (0.00, 0.00)
————— Receptor Energies------------------------------ - - - - -———————————-
Etot = -4072.40 (0.00, 0.00) Ebat = 2653.90 (0.00, 0.00)
Evdw = 657.95 (0.00, 0.00) Ecoul = -4409.58 (0.00, 0.00)
EGB = -3068.98 (0.00, 0.00) Esasa = 94.31 (0.00, 0.00)
————— Complex Energies-———---------------———————————————————————————————
Etot = -4250.68 (0.00, 0.00) Ebat = 2771.43 (0.00, 0.00)
Evdw = 608.82 (0.00, 0.00) Ecoul = -4636.90 (0.00, 0.00)
EGB = -3086.27 (0.00, 0.00) Esasa = 92.24 (0.00, 0.00)
————— Interaction Energy Components-----—-—----------—"----————————————————
Etot = -50.64 (0.00, 0.00) Ebat = 0.00 C 0.00, 0.00)
Evdw = -52.92 (0.00, 0.00) Ecoul = -44.31 (0.00, 0.00)
EGB = 54.42 (0.00, 0.00) Esasa = -7.83 (0.00, 0.00)

36

C.5 Example 5: Minimization of P38 Complex with minab and
Resulting Interaction Energy

We minimize the P38/ligand complex prepared in section C.3. We use the (renamed)

PDB file com.pdb, the corresponding PRM file com.prm, gb = 1 and a maximum of 500

iterations. We tether Car atoms with a force constant of 1.0 kcal-mol~'-A~2. The refined

coordinates are written to com.min.pdb. We redirect the output to a file minab.out.
For the command line

minab com.pdb com.prm com.min.pdb 1 500 ’::CA’ 1.0 > minab.out &

the output file minab.out would be:

Reading parm file (com.prm)
title:

mm_options: cut=100.000000
mm_options: nsnb=501
mm_options: diel=C
mm_options: gb=1
mm_options: rgbmax=15.000000
mm_options: wcons=1.000000
mm_options: ntpr=10
constrained 214 atoms using expression ::CA
constrained 214 atoms from input array

iter Total bad vdw elect nonpolar genBorn
ff: 0 -4378.52 2771.43 608.82 -4636.90 0.00 -3121.87 3.31e+01
ff: 10 -5630.74 2669.08 -446.65 -4721.49 0.11 -3131.79 4.86e+00

...more like this cut from this demo output...

ff: 490 -6861.80 2521.23 -1205.14 -5170.41 16.59 -3024.07 1.67e-01
ff: 500 -6862.46 2521.87 -1205.86 -5170.56 16.23 -3024.15 1.41e-01

initial energy: -4378.522 kcal/mol

final energy: -6862.463 kcal/mol

minimizer stopped because number of iterations was exceeded
refined coordinates written to com.min.pdb

The minimization did not reach the requested default rms of the components of the
gradient of 0.1, but stopped after the required 500 iterations.

The final line reminds that the refined structure has been saved into the PDB file
com.min.pdb. Note that the energy term listed here under "nonpolar” is actually the
energy stemming from the restraints, in this example tethering all Ca atoms.

We can now repeat the interaction energy computation on the refined complex, using
the same settings as for the raw PDB file in section C.4:

pymdpbsa --proj REFINEDPDB --traj com.min.pdb
with —-traj now specifying the refined PDB file com.min.pdb. The resulting sum-
mary REFINEDPDB. sum is:

37

Summary Statistics for Project MINPDB

Frames : 1 to 1 (every 1)

Solvation : GB (--solv=1)

Trajectory File : com.min.pdb

Complex parmtop File : com.prm

Receptor parmtop File : rec.prm

Ligand parmtop File : lig.prm

————— Ligand Energies—————-----""-"""-—"——"——————————————————————————————————
Etot = -210.13 (0.00, 0.00) Ebat 34.74 .00, 0.00)
Evdw = 15.06 (0.00, 0.00) Ecoul -195.36 .00, 0.00)
EGB = -70.16 (0.00, 0.00) Esasa 5.61 .00, 0.00)
————— Receptor Energies---————\—-
Etot = -6470.57 (0.00, 0.00) Ebat 2487 .56 .00, 0.00)
Evdw = -1160.97 (0.00, 0.00) Ecoul -4904.64 .00, 0.00)
EGB = -2988.22 (0.00, 0.00) Esasa 95.70 .00, 0.00)
————— Complex Energies-———-—----------------—————————————————————————————
Etot = -6750.93 (0.00, 0.00) Ebat 2522.30 .00, 0.00)
Evdw = -1205.93 (0.00, 0.00) Ecoul -5170.51 .00, 0.00)
EGB = -2990.31 (0.00, 0.00) Esasa 93.52 .00, 0.00)
————— Interaction Energy Components----——---------------———————————————
Etot = -70.25 (0.00, 0.00) Ebat 0.00 .00, 0.00)
Evdw = -60.02 (0.00, 0.00) Ecoul -70.51 .00, 0.00)
EGB = 68.07 (0.00, 0.00) Esasa =7.79 .00, 0.00)

C.6 Example 6: Generate MD Trajectory for the

Complex with mdnab

P38-Ligand

We use mdnab to run a 100 picoseconds MD trajectory of P38 complex, using as starting

geometry the refined complex com.min.pdb from the previous section:

mdnab com.min.pdb com.prm com 1 100 ’::CA’ 1.0 > md.out &

The trajectory will go to the file com.binpos, specified as the third command line
argument (the extension ” .binpos” is appended automatically). We tether the Ca atoms
with the same force as for the minimization in C.5 through the last two arguments ’: :C4~
and 1.0. The GB option 'l is used (fourth argument for the mdnab command).

The file md . out will start with:

Reading parm file (com.prm)

title:

mm_options:
mm_options:
mm_options:
mm_options:
mm_options:

nsnb=25
diel=C
gb=1

cut=12.000000

rgbmax=12.000000

38

mm_options: rattle=1
mm_options: dt=0.002000
mm_options: ntpr=101
mm_options: ntpr_md=10
mm_options: ntwx=0

mm_options: zerov=0
mm_options: tempi=50.000000
mm_options: temp0=100.000000
mm_options: gamma_ln=20.000000
mm_options: wcons=1.000000
constrained 214 atoms using expression ::CA

The last two lines shown above indicate that all Ca atoms (214 in this case) have
indeed been tethered with a force constant wcons=1.000000. It is important to verify
this line to make sure that the atom selection on the command line (in this case >: :CA”)
had the desired effect, especially if more complex expressions are used.

The output file md.out then continues through the heat-up and equilibration stages.
Then the time is reset to zero and the production phase begins. The final lines in the
example above are:

md: 49500 99.000 2137.72 -4563.14 -2425.42 302.35
md: 50000 100.000 2084.67 -4519.03 -2434.36 204.84

trajectory with 100 picoseconds was written to com.binpos...

confirming that 50000 steps (i.e. 100 picoseconds with a stepsize of 2 femtoseconds)
have been recorded and written to the trajectory file com.binpos.

39

C.7 Example 7: Running pymdpbsa on the P38/Ligand Com-
plex Trajectory

If we have previously renamed all PRM files to the expected defaults, since the ligand
is called "LIG” by default in pytleap, and since we want the default GB 1 option, we
only enter the project name P38. We use every tenth frame from the total 100-frames
production phase of the trajectory, so that ——start 10, -—stop 100, and --step 10 are
used.

The command line is:

pymdpbsa --proj P38 --traj com.binpos --start 10 --stop 100 --step 10&

The summary of the results goes into the file P38.sum and is shown below.

Summary Statistics for Project P38

Frames : 10 to 100 (every 10)
Solvation : GB (--solv=1)
Trajectory File : com.binpos

Complex parmtop File : com.prm
Receptor parmtop File : rec.prm
Ligand parmtop File : lig.prm

Etot = -171.86 (3.80, 1.20) Ebat = 65.11 (3.96, 1.25)
Evdw = 19.74 (2.06, 0.65) Ecoul = -191.30 (2.13, 0.67)
EGB = -71.04 (0.68, 0.22) Esasa = 5.62 (0.05, 0.01)
————— Receptor Energies------------------------------- - -------—-————-
Etot = -4246.59 (39.66, 12.54) Ebat = 4156.11 (34.62, 10.95)
Evdw = -772.67 (20.92, 6.61) Ecoul = -4921.45 (38.73, 12.25)
EGB = -2804.11 (27.70, 8.76) Esasa = 95.53 (0.57, 0.18)
————— Complex Energies-———-------------—-———————————————————————————————
Etot = -4478.81 (40.64, 12.85) Ebat = 4221.22 (36.59, 11.57)
Evdw = -806.44 (22.34, 7.07) Ecoul = -5161.88 (42.37, 13.40)
EGB = -2825.07 (30.74, 9.72) Esasa = 93.36 (0.60, 0.19)
————— Interaction Energy Components----------------"""--—-———————————————
Etot = -60.36 (3.30, 1.04) Ebat = -0.00 (0.01, 0.00)
Evdw = -563.51 (3.65, 1.15) Ecoul = -49.14 (12.02, 3.80)
EGB = 50.08 (10.21, 3.23) Esasa = -7.80 (0.12, 0.04)

The numbers in parentheses after the actual energy values are the standard deviation
and the standard error of the mean (SEM). Note that the energy term Ebat (the sum
of the bond, angle, and torsion terms) for the interaction energy is zero (or almost so,
because of rounding errors). This is the obvious consequence of the single-trajectory
approach because we neglect any strain in the ligand or the receptor. The strain would
have to be evaluated by running three distinct trajectories (i.e., also for the free ligand
and the empty receptor).

A directory P38_xxxxxx.tmpdir has been created which contains all files used for the
computation, including the individual structures of each frame. You can savely remove

40

this directory if you are only interested in the actual results, i.e., the summary file *.sum
and the x.X.nrg tables, where X can be C (for complex), R (for receptor), L (for ligand),
and D (for the actual AE and AG values).

References

1]

2]

Wang, J.; Wang, W.; Kollman, P.; Case, D. J. Mol. Graphics Modell. 2006, 25,
247-260.

Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput.
Chem. 2004, 25, 1157-1174.

Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21,
132-146.

Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23, 1623-1641.

Chong, L. T.; Duan, Y.; Wang, L.; Massova, I.; Kollman, P. A. PNAS 1999, 96,
14330-14335.

Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.;
Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.;
Cheatham, T. E. Acc. Chem. Res. 2000, 33, 889-897.

Massova, [.; Kollman, P. Perspectives in Drug Discovery and Design 2000, 18, 113—
135.

Huo, S.; Massova, 1.; Kollman, P. A. J. Comput. Chem. 2002, 23, 15-27.
Tan, C.; Tan, Y.-H.; Luo, R. J. Phys. Chem. B 2007, 111, 12263-12274.

41

	License and Feedback
	Introduction
	Installation
	Python Scripts
	NAB Applications

	Coordinates and Parameter-Topology Files
	pytleap: Creating Coordinates and Parameter-Topology Files
	Running pytleap
	Output from pytleap
	Error Checking

	Energy Checking Tool: ffgbsa
	Energy Minimizer: minab
	Molecular Dynamics "Lite": mdnab
	MM(GB)(PB)/SA Analysis Tool: pymdpbsa
	Brief Overview on MM(GB)(PB)/SA Concepts
	Pitfalls and Error Sources
	Some Technical Remarks on pymdpbsa
	Running pymdpbsa
	Details on Internal Workings and Output of pymdpbsa
	Distance-Dependent Dielectrics or Generalized Born
	Poisson-Boltzmann

	Using pymdpbsa for Single-Point Interaction Energy

	Appendix A: Preparing PDB Files
	Cleaning up Protein PDB Files for AMBER
	Special Residues, Name Conventions, Chain Terminations
	Histidine: HID, HIE, HIP
	Cysteine: CYS, CYX
	Protonation: ASH, GLH, LYN
	Terminals: ACE, NHE, NME

	Chains, Residue Numbering, Missing Residues

	Appendix B: Atom and Residue Selections
	Amber Masks
	Residue Number List Examples
	Residue Name List Examples
	Atom Number List Examples
	Atom Name List Examples
	Atom Type List Examples
	Logical Combinations

	"Atom Expressions" in NAB Applications

	Appendix C: Examples and Test Cases
	Example 1: Generating AMBER Files for Crambin with Disulfide Bonds
	Example 2: Energy Minimization of the Crambin Structure
	Starting Energy
	Energy Minimization with minab

	Example 3: Preparation of a Complex between P38 MAP Kinase and Ligand
	Cleaning Up PDB Entry 1OUK.pdb for Usage with AMBER
	Generating AMBER Files for a P38/Ligand Complex

	Example 4: Interaction Energy between P38 and Ligand in the Unrefined (Original) Complex
	Example 5: Minimization of P38 Complex with minab and Resulting Interaction Energy
	Example 6: Generate MD Trajectory for the P38-Ligand Complex with mdnab
	Example 7: Running pymdpbsa on the P38/Ligand Complex Trajectory

