
CPPTRAJ: Trajectory Processing and Analysis

Daniel R. Roe

November 2010

Introduction

A crucial part of research with computational methods involves performing var-
ious types of analysis on the signi�cant amount of data that is generated in the
form of coordinate trajectories. In the Amber molecular dynamics package, this
analysis is current performed with Ptraj. Ptraj is able to perform many types of
analyses, and can process multiple trajectories. However, one of the limitations
of Ptraj is that all coordinates in a given Ptraj run must correspond to a single
topology �le. This prevents certain types of analysis, for example calculating
the RMSD of a coordinate frame to a reference frame with a di�erent topology.

Cpptraj is a complimentary program to ptraj that can process trajectory
�les with di�erent topology �les in the same run. Although certain parts of
the Ptraj code are used in Cpptraj, it is overall a completely new code base
written primarily in C++ with an eye towards making future code development
and additions as easy as possible. In addition to reading multiple topology
�les, Cpptraj can read multiple reference structures, write multiple output �les
(for which speci�c frames to be written can be speci�ed), stripped topology
�les (currently useable for visualization only), output multiple data sets to the
same data �le (e.g. two dihedral calculations like phi and psi can be written
to one �le), and has native support for compressed �les along with many other
improvements. The code is at least as fast as ptraj, and in many cases is much
faster, particularly when processing NetCDF trajectories.

From a developers standpoint the code is free of memory leaks (checked with
valgrind at every stage of development), free of warnings (gnu compilers only,
checked with the -Wall compiler �ag), and avoids global variables and tangled
headers.

Comparison to Ptraj - Important Di�erences

The overall �ow of Cpptraj is similar to Ptraj. First the run is set up via
commands read in from an input �le; a limited interactive interface (STDIN)
similar to ptraj is also supported. Trajectories are then read in one frame at
a time. Actions are performed on the coordinates stored in the frame, after

1

which any output coordinates are written. At the end of the run, any data sets
generated are written.

Some of the most notable di�erences from Ptraj are as follows:

1. File compression is handled internally rather than external calls to gzip,
bzip2, etc, which makes reading and writing compressed �les more e�-
cient.

2. Any �le read or written by Cpptraj can be compressed (with the excep-
tion of Netcdf trajectories). So topology �les could be read in as .gz �les,
and data �les can be written as .bz2 �les. Compression is detected auto-
matically when reading, and is determined by the �lename extension on
writing.

3. If two actions specify the same �le with the 'out' keyword, data from both
actions will be written to that �le.

4. Data �les speci�ed by the 'out' keyword can be written in xmgrace format
if the �lename given has a '.agr' extension.

5. Multiple output trajectories can be speci�ed. In addition, output �les can
be directed to write only speci�c frames from the input trajectories.

6. Multiple reference structures can be speci�ed. Speci�c frames from tra-
jectories may be used as a reference structure.

7. The rmsd action allows speci�cation of a separate mask for the reference
structure. In addition, per-residue RMSD can be calculated easily.

8. When stripping coordinates with the strip action, a stripped topology �le
can be written out. Currently this topology is good for visualization only,
not simulation (although this support is planned for future releases).

Some notes on multiple topologies

Since Cpptraj supports multiple topology �les, actions are set up every time the
topology changes in order to recalculate things like what atoms are in a mask
etc. Actions that are not valid for the current topology are skipped for that
topology. So for example if the �rst topology �le processed includes a ligand
named MOL and the second one does not, the action:

distance :80 :MOL out D_80-to-MOL.dat

will be valid for the �rst topology but not for the second, so it will be skipped
as long as the second topology is active.

2

Some notes on datasets and data�les

Data�les can currently be given in two formats: data �le and grace �le. Data �le
simply has data in columns, like ptraj. Grace �les can be read in by xmgrace.
The format is speci�ed by the �le su�x, so that '�lename.agr' will output in
grace format, and anything else is a normal data �le. The xmgrace output is
particularly nice for the secstruct sumout �le.

With all action commands that print out a dataset (e.g. distance, angle,
dihedral, rmsd, etc) an additional argument can be given optionally to specify
the name of the dataset. For example, the command:

distance :1 :2 out d1.dat

will write the distance between residues 1 and 2 to d1.dat. The header of d1.dat
will be something like

#Frame dataXXXX

where XXXX is the internal number of the dataset. In contrast, the command:

distance d1 :1 :2 out d1.dat

will write the same distance to d1.dat, but the header of d1.dat will be:

#Frame d1

Most actions allow datasets to be written into the same �le. For example, the
commands:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat

dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat

will produce in phipsi.dat:

#Frame phi psi

Building Cpptraj

Cpptraj comes with a very simple con�gure script. Currently only intel (icc,
icpc) and gnu (gcc, g++) compilers are supported and tested. The gnu compilers
are recommended as they seem to produce the fastest and most compact code.
The con�gure script will perform a basic check to make sure that the compilers
and libraries speci�ed actually exist.

Note that unless speci�ed, cpptraj will by default look for netcdf libraries in
the AMBERHOME directory �rst.

3

Usage: ./configure [gnu/intel] OPTIONS

OPTIONS:

--help : Display this message.

-d, -debug : Turn on compiler debugging info (-g flag)

-debugon : Add -DDEBUG flag to activate internal debugging

-mpi : Use mpicc/mpicxx to compile [NOTE: CURRENTLY NOT FULLY SUPPORTED]

-noopt : Do not use optimized compiler flags (default if -d specified)

-nobzlib : Do not use Bzip2

-nozlib : Do not use zlib (gzip/zip)

-nonetcdf : Do not use netcdf

-nolfs : Do not enable large file support.

Static linking options:

--with-netcdf=<DIR>

--with-zlib=<DIR>

--with-bzlib=<DIR>

To make cpptraj type:

make clean

make install

This will create the 'cpptraj' binary in the ./bin directory. Alternatively, 'make'
by itself will make 'cpptraj' but leave it in the ./src directory.

Testing Cpptraj

The ./test directory contains numerous tests that check almost all of the func-
tionality of Cpptraj. Note that either the CPPTRAJHOME directory needs
to be set or cpptraj needs to be located in the directory pointed to by AM-
BERHOME ($AMBERHOME/AmberTools/src/cpptraj). By default the tests
will run on the binary in the ./bin directory. To run the tests from CPPTRA-
JHOME:

make check

or from the test directory:

cd test

make test

A summary of the test results will be written to 'Test_Results.dat' in the ./test
directory and every individual test directory. Stdout from each test is recorded
to 'test.out' in every individual test directory.

cd test

make test.vg

will test the code using 'valgrind' to check for memory errors (if valgrind is
present on the system).

4

Running Cpptraj

Command Line Syntax

The commands are very similar in format to ptraj commands. To run:

./cpptraj -i <input file> [-p <parm file1> ...]

or for compatibility with Ptraj:

./cpptraj <parm file> <input file>

For the �rst syntax case zero or more topology �les may be speci�ed with '-p'
on the command line; however if no topology �le is speci�ed on the command
line one must be speci�ed in the input �le. If run with no arguments:

./cpptraj

this brings up a (somewhat) interactive command-line style interface (STDIN),
similar to that in Ptraj.

Input Command Syntax

The following is a list of commands that are currently recognized by Cpptraj
from the input �le or STDIN. Lines beginning with '#' are ignored as comments.
Lines can also be continued through use of the '\' character.

The mask syntax is the same as for Ptraj. It is important to note that for
several commands (notably trajout and the rmsd action) some arguments are
ranges - THESE ARE NOT MASKS. They are simple number ranges using '-'
to specify a range and ',' to separate di�erent ranges. For example 1-2,4-6,9
speci�es 1 to 2, 4 to 6, and 9.

General Commands

noprogress

Do not display progress bars during trajectory processing.

debug <#>

Set the level of debug information to print. In general the higher the <#>
the more information that is printed.

File Commands

parm <�lename>

Read in parameter �le speci�ed by <�lename>. Currently can read Amber
topology and PDB �les.

5

parminfo [<#>] [<mask>]

Print information about atoms in <mask> for parameter �le speci�ed by
<#> (numbers start from 0).

trajin <�lename> [start] [stop] [o�set] [parm <parm�le> | parmindex <#>]
[remdtraj remdtrajtemp <Temperature>]

Read in trajectory speci�ed by �lename with speci�ed start, stop, and
o�set (1, # frames, and 1 if not speci�ed). Associate with parm�le
speci�ed by �lename or parm number speci�ed by parmindex. If no
parm/parmindex argument is speci�ed the �rst parm read in is used. Ex-
ample:

parmindex 0

parm top0

parmindex 1

parm top1

parmindex 2

parm top2

trajin Test1.crd parm top1

trajin Check1.crd parmindex 1

trajin Test0.crd

Test1.crd and Check1.crd are associated with top1, which is the second
parm read in. Test0.crd is associated with top0; since no parm or par-
mindex keyword was speci�ed Cpptraj defaulted to the �rst parm read
in.

If the remdtraj keyword is speci�ed the trajectory is treated as belong-
ing to the lowest # replica of a group of REMD trajectories following
a naming convention of <REMDFILENAME>.X, where X is the replica
number. All �les matching this convention will be searched for, and dur-
ing processing only frames with a temperature matching the one speci�ed
by remdtrajtemp will be processed.

trajout <�lename> [<�leformat>] [append] [nobox] [parm <parm�le> | par-
mindex <#>] [<range>]

Write trajectory speci�ed by �lename in speci�ed �le format (Amber tra-
jectory if none speci�ed). Other currently recognized formats are �pdb�,
�netcdf�, and �restart�. The �le will be appended to if append is speci-
�ed. Box coordinates will not be written if nobox speci�ed (only matters
when input topology has box coordinates). Associate with parm�le or
parmindex (�rst parm read in if not speci�ed).

Multiple output trajectories of any format can be speci�ed. Currently
only frames that match the parameter �le will be written. So given the
input:

6

parm top0

parm top1

trajin input0.crd

trajin input1.crd parm top1

trajout output.crd parm top1

only frames read in from input1.crd (which is associated with top1) will be
written to output.crd. The trajectory input0.crd is associated with top0;
since no parameter �le was speci�ed cpptraj defaults to the �rst parm �le
read in.

If <range> is given, only input frames matching the range will be written
out. For example, given the input:

trajin input.crd 1 10

trajout output.crd 2,5-7

only frames 2, 5, 6, and 7 from input.crd will be written to output.crd.

reference <�lename> [frame#] [parm <parm�le> | parmindex <#>]

Read speci�ed trajectory frame (1 if not speci�ed) as reference coordinates.
Associate with parm�le or parmindex (�rst parm read in if not speci�ed).

Action Commands

Most actions in Cpptraj function exactly the way they do in ptraj and are
backwards-compatible. Some commands have extra functionality (such as the
per-residue rmsd function of the rmsd action, or the ability to write out stripped
topologies for visualization in the strip action), while other actions produce
slightly di�erent output (like the hbond/secstruct actions).

angle <mask1> <mask2> <mask3> [out <�lename>]

Calculate angle between atoms in mask1, mask2, and mask3.

center [<mask>] [origin] [mass]

Center all atoms to the center of the box. If origin is speci�ed, center to
the origin instead. If mass is speci�ed, move using the center of mass of
atoms instead of center of geometry. If mask is speci�ed center all atoms
using only the atoms in mask.

closest <# to keep> <mask> [noimage] [�rst | oxygen]

Similar to the 'strip' command, but modify coordinate frame and topology
by keeping only the speci�ed number of closest solvent molecules to the
region speci�ed by the given mask. Distances are calculated between every
atom in <mask> and either every atom in a solvent molecule, or only the
�rst atom if the '�rst' or 'oxygen' keyword is speci�ed. Imaging is turned
on by default; the 'noimage' keyword turns it o�.

7

dihedral <mask1> <mask2> <mask3> <mask4> [out <�lename>]

Calculate dihedral angle between atoms in mask1-4.

distance <mask1> <mask2> [out <�lename>] [geom] [noimage]

Calculate distance between the center of mass of atoms in mask1 to atoms
in mask2. If geom is speci�ed use the geometric center instead. For
periodic systems imaging is turned on by default; the noimage keyword
disables imaging.

hbond [out <�lename>] <mask> [angle <cut>] [dist <cut>] [avgout <avg-
�lename>]

Search for hydrogen bond donor and acceptor atoms in the region speci-
�ed by <mask> (currently following the simplistic criterion that �hydro-
gen bonds are FON�, i.e. hydrogens bonded to F, O, and N atoms are
considered) and calculate the number of hydrogen bonds formed for each
frame, writing the results to the �le speci�ed by �out�. Hydrogen bonds
are considered to have the form:

Acceptor ... Hydrogen-Donor

are determined via the distance between the heavy atoms using a cuto� of
3.0 Å (or the value speci�ed by dist) and the angle between the acceptor,
hydrogen, and donor atoms using a cuto� of 135° (or the value speci�ed
by angle).

If avgout is speci�ed the average of each hydrogen bond (sorted by popula-
tion) formed over the course of the trajectory is printed to <avg�lename>.
The output �le has the format:

Acceptor DonorH Donor Frames Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are the residue and atom name of
the atoms involved in the hydrogen bond, Frames is the number of frames
the bond is present, Frac is the fraction of frames the bond is present,
AvgDist is the average distance of the bond, and AvgAng is the average
angle of the bond.

image [origin] [center] [triclinic | familiar [com <commask>]] [<mask>]

For periodic systems only, image any atoms in <mask> (or all atoms
if no mask speci�ed) outside of the box back into the box. Currently
both orthorhombic (ifbox=1, rectangular/cubic) and non-orthorhombic
(ifbox=2, truncated octahedron) boxes are supported. Right now only
imaging by molecule is supported.

If origin is speci�ed center at the origin, otherwise use the box center.
If center is speci�ed the center of mass of atoms will be used to image,
otherwise the position of the �rst atom will be used. If triclinic is speci�ed

8

force imaging with triclinic code (this is the default for non-orthorhombic
boxes). If familiar is speci�ed image with the triclinic code and put the
box into the more familiar truncated octahedral shape. If com is speci�ed
with familiar, center based on the center of mass of atoms in <commask>
(otherwise center to origin or box center).

mask <mask> [out <�lename>]

For each frame print out all atoms that correspond to <mask>. This is
most useful when using distance-based masks, e.g. �(:195<:3.0)&:WAT�
selects all atoms within 3.0 Angstroms of residue 195 that are part of
residues named WAT.

nastruct [resrange <range>] [out <�lename su�x>]

Calculate basic nucleic acid structure parameters for all residues in the
range speci�ed (or all NA residues if no range specifed). If the 'out'
keyword is speci�ed, output will be directed to two �les: BP.�lename
and BPstep.�lename containing base pair (shear, stretch, stagger, buckle,
propeller twist, and opening) and base pair step (shift, slide, rise, tilt, roll,
and twist) parameters respectively.

radgyr [<mask>] [out <�lename>] [mass]

Calculate the radius of gyration of atoms in <mask> (all atoms if no
mask speci�ed). Output radius of gyration and max radius of gyration to
<�lename>. Use center of mass if 'mass' is speci�ed, otherwise use center
of geometry.

rmsd <mask> [�rst | reference | ref <re�lename> | re�ndex <#>] [<ref-
mask>] [out <�lename>] [no�t] [mass]
[perres perresout <perres�le> [range <resRange>] [refrange <refRange>]
[perresmask <pmask>] [perrescenter] [perresinvert]]

Calculate the RMSD between atoms in Frame de�ned by <mask> to
atoms in Reference de�ned by <refmask>. Both <mask> and <refmask>
must specify the same number of atoms. If no <refmask> is speci�ed,
<mask> is used for Reference. The Reference structure is de�ned by one
of the following keywords:

� �rst: Use the �rst trajectory frame processed as reference.

� reference: Use the �rst previously read in reference structure (re-
�ndex 0).

� ref: Use previously read in reference structure speci�ed by <re�le-
name>.

� re�ndex: Use previously read in reference structure speci�ed by <#>
(based on order read in).

If no�t is speci�ed the Frame coordinates will not be best-�t to reference
coords prior to RMSD calculation. If mass keyword is speci�ed the center

9

of mass of atoms in <mask> will be used, otherwise geometric center will
be used. Example:

reference StructX.crd

reference Struct-begin.rst7

rmsd :1-20@C,CA,N reference :3-23@C,CA,N out rmsd1.dat

This will calculate the RMSD of the C, CA, and N atoms of residues 1
to 20 in each Frame to the C, CA, and N atoms of residues 3 to 23 in
StructX.crd (the �rst reference structure read in) and write the results
to rmsd1.dat. If instead of the reference keyword 're�ndex 1' was used,
Struct-begin.rst7 would be the reference structure instead. Note that if
the number of atoms in <mask> does not equal the number of atoms in
<refmask> an error will be generated.

If the perres keyword is speci�ed, after the initial RMSD calculation the
no-�t RMSD of each residue in each Frame speci�ed by <resRange> (or all
solute residues if refrange not speci�ed) will be calculated to each residue
in Reference speci�ed by <refRange> (or each residue in <resRange>
if refrange not speci�ed), the results of which will be written to the �le
speic�ed by perresout. By default all atoms of each residue are used - an
additional mask can be speci�ed by perresmask - this mask is appended
to the default mask of each residue (:X, where X is residue number). If
perrescenter is speci�ed residues will be centered to a common point of
reference before no-�t RMSD is calculated (this will emphasize changes in
the local structure of the residue). So for example:

rmsd :10-260 refindex 0 perres perresout PRMS.dat range 190-211 perresmask &!(@H=)

will �rst perform an rms-�t calculation on residues 10-260, then
calculate the per-residue no-�t rmsd of residues 190 to 211
(excluding any hydrogen atoms).
If perresinvert is speci�ed, data for each residue in <perres�le>
will be written in rows instead of columns, i.e.:

RES1 RmsdFrame1 RmsdFrame2 RmsdFrame3 ...

RES2 RmsdFrame1 RmsdFrame2 RmsdFrame3 ...

secstruct [out <�lename>] [<mask>] [sumout <sum�lename>]

Calculate secondary structural propensities for residues in mask (or all
solute residues if no mask given) using the DSSP method of Kabsch and
Sander [REF]. Results will be written to �lename speci�ed by out in for-
mat:

#Frame STRING

where #Frame is the frame number and STRING is a string of characters
(one for each residue) where each character represents a di�erent structural
type:

10

Character SS type

0 None
b Parallel Beta-sheet
B Anti-parallel Beta-sheet
G 3-10 helix
H Alpha helix
I Pi (3-14) helix
T Turn

Average structural propensities over all residues for each frame will be
written to the �le speci�ed by sumout (or �.sum� will be appended to
<�lename> if sumout is not speci�ed).

strip <mask1> [outpre�x <name>]

Strip all atoms speci�ed by mask from the frame and modify the topology
to match. If outpre�x is speci�ed, for every topology modi�ed in this
way a �le <name>.<parmFilename> will be written that matches the
stripped system. Currently these stripped topologies are for visualization
purposes only.

surf [<mask>] [out <�lename>]

Calculate the surface area in Å2 of atoms in <mask> (all solute atoms if
no mask speci�ed) using the LCPO algorithm [ref].

Caveat Emptor

Currently this code is still in the Alpha stage and so is not guaranteed to work
�awlessly.

One important thing to keep in mind is that although for the purposes of
specifying frames in the trajin, trajout, and reference command frames start
from 1 (for backwards-compatibility with Ptraj), internally frames start from
zero and when data�les are output they still start from 0.

11

