AMBER NetCDF Trajectory/Restart Convention
Version 1.0, Revision C

Original Trajectory Implementation: John Mongan (jmongan @mccammon.ucsd.edu)
REMD Trajectory, Restart Implementation: Daniel R. Roe (daniel.r.roe @gmail.com)

Last Revised: 2022-08-31

1 Introduction

The file format described in this document was developed for storing data gen-
erated by molecular dynamics simulations. It was introduced in version 9 of the
AMBER suite of programs (http://ambermd.org/).

The primary design goals of this format are:

» Efficient input and output
» Compact, high-precision representation of data
* Portability of data files across different machine architectures

* Extensibility of the format (ability to add additional data without re-writing
parsers)

* Compatibility with existing tools and formats

The file format is based on the NetCDF (Network Common Data Form) developed
by Unidata (http://www.unidata.ucar.edu/software/netcdf/). NetCDF is designed
for representation of arbitrary array-based data. Unidata provides libraries with
bindings in C, C++, Fortran (F77 and F90), Java, Python, Perl, Ruby and MATLAB
for reading and writing NetCDF files. The design goals above are largely met by
NetCDF and the libraries that implement it. It is expected that all I/O of the format
described here will occur through these libraries; this specification describes the
file format at a high level in terms of the API implemented by version 3.6 of these
libraries. In NetCDF terms, this document is a “Convention,” describing the names,
dimensions and attributes of the arrays that may be present in the file.



2 Program behavior

Programs creating trajectory or restart files (“creators”) shall adhere strictly to the
requirements of this document. Programs reading trajectory or restart files (“read-
ers”) shall be as permissive as possible in applying the requirements of this docu-
ment. Readers may emit warnings if out-of-spec files are encountered; these warn-
ings should include information about the program that originally created the file
(see Global attributes, section 4). Readers shall not fail to read a file unless the
required information cannot be located or interpreted. In particular, to ensure for-
ward compatibility with later extension of the format, readers shall not fail or emit
warnings if elements not described in this document are present in the file.

3 NetCDF file encoding

Trajectory/restart files shall be encoded in the manner employed by
NetCDF version 3.x.

Those using NetCDF versions 4 or later should take care to ensure that files are
read and written using this encoding, and not the HDF5 encoding.

Trajectory/restart files shall use 64 bit offsets

This can be accomplished by setting a flag during file creation; refer to API docs
for details.

4 Global attributes

Global attributes shall have type character string. Spelling and capitalization of at-
tribute names shall be exactly as appears below. Creators shall include all attributes
marked required and may include attributes marked optional. Creators shall not
write an attribute string having a length greater than 80 characters. Readers may
warn about missing required attributes, but shall not fail, except in the case of a
missing or unexpected Conventions or ConventionVersion attributes.

Conventions (required)

Contents of this attribute are a comma or space delimited list of tokens represent-
ing all of the conventions to which the file conforms. For trajectories, creators shall
include the string AMBER as one of the tokens in this list. In the usual case, where
the file conforms only to this convention, the value of the attribute will simply be



“AMBER”. Readers may fail if this attribute is not present or none of the tokens in
the list are AMBER. Optionally, if the reader does not expect NetCDF files other
than those conforming to the AMBER convention, it may emit a warning and at-
tempt to read the file even when the Conventions attribute is missing.

For restarts, creators shall include the string AMBERRESTART as one of the
tokens in this list. Otherwise, the same above guidelines for trajectories shall be
followed.

ConventionVersion (required)

Contents are a string representation of the version number of this convention. Fu-
ture revisions of this convention having the same version number may include defi-
nitions of additional variables, dimensions or attributes, but are guaranteed to have
no incompatible changes to variables, dimensions or attributes specified in previous
revisions. Creators shall set this attribute to “1.0”. If this attribute is present and
has a value other than “1.0”, readers may fail or may emit a warning and continue.
It is expected that the version of this convention will change rarely, if ever.

application (optional)
If the creator is part of a suite of programs or modules, this attribute shall be set to
the name of the suite.

program (required)

Creators shall set this attribute to the name of the creating program or module.

programVersion (required)

Creators shall set this attribute to the preferred textual formatting of the current
version number of the creating program or module.

title (optional)

Creators may set use this attribute to represent a user-defined title for the data
represented in the file. Absence of a title may be indicated by omitting the attribute
or by including it with an empty string value.



5 Dimensions

frame (required for trajectories only, length unlimited)

Coordinates along the frame dimension will generally represent data taken from
different time steps, but may represent arbitrary conformation numbers when the
trajectory file does not represent a true trajectory but rather a collection of confor-
mations (e.g. from clustering).

remd_dimension (required for Multi-dimension REMD, length set as
appropriate)

When running replica exchange in multiple dimensions this will be set to the num-
ber of replica dimensions.
spatial (required, length 3)

This dimension represents the three spatial dimensions (X,Y,Z), in that order.

atom (required, length set as appropriate)

Coordinates along this dimension are the indices of particles for which data is
stored in the file. The length of this dimension may be different (generally smaller)
than the actual number of particles in the simulation if the user chooses to store
data for only a subset of particles.

cell_spatial (optional, length 3)

This dimension represents the three lengths (a,b,c) that define the size of the unit
cell.

cell_angular (optional, length 3)

This dimension represents the three angles (alpha,beta,gamma) that define the shape
of the unit cell.

label (optional, length set as appropriate)

This dimension is used for character strings in label variables where the label is
longer than a single character. The length of this dimension is equal to the length
of the longest label string.



6 Variables

2

Variables are described below as “<type> <name>(<dimension> [,<dimension>..])”.
If dimension is not present the variable is a scalar. In the case where the type and/or
dimensions differ between the trajectory and restart formats, they are preceded with
the heading “Trajectory:” or ‘“Restart:” respectively. If they do not differ they are
preceded with the heading “Both:”.

Note that the order of dimensions corresponds to the CDL and C APIs. When
using the Fortran APIs, the order of dimensions should be reversed.

6.1 Label variables

Label variables shall be written by creators whenever their corresponding dimen-
sion is present. These variables are for self-description purposes, so readers may
generally ignore them. Labels requiring more than one character per coordinate
shall use the label dimension. Individual coordinate labels that are shorter than
the length of the label dimension shall be space padded to the length of the label
dimension.

char spatial(spatial)

Creators shall write the string “xyz” to this variable, indicating the labels for coor-
dinates along the spatial dimension.

char cell_spatial(cell_spatial)

Creators shall write the string “abc” to this variable, indicating the labels for the
three lengths defining the size of the unit cell.

char cell_angular(cell_angular, label)

Creators shall write the strings “alpha”, “beta”, “gamma” to this variable, naming
the angles defining the shape of the unit cell.

6.2 Data variables

All data variables are optional. Some data variables have dependencies on other
data variables, as described below. Creators shall define a units attribute of type
character string for each variable as described below. Creators may define a scale_factor
attribute of type float for each variable. Creators shall ensure that the units of data
values, after being multiplied by the value of scale_factor (if it exists) are equal



to that described by the units attribute. If a scale_factor attribute exists for a vari-
able, readers shall multiply data values by the value of the scale_factor attribute
before interpreting the data. This scaling burden is placed on the reader rather than
the creator, as writing data is expected to be a more time-sensitive operation than
reading it.

For trajectories, it is left as an implementation detail whether creators create
a separate file for each variable grouping (e.g. coordinates and velocities) or a
single file containing all variables. Some creators may allow the user to select the
approach. Readers should support reading both styles, that is, combining data from
multiple files or reading it all from a single file.

For restarts, any variable present should be written to one file.

time
Trajectory: float time(frame) units = “picosecond”

Restart: double time units = ’picosecond”

When coordinates on the frame dimension have a temporal sequence (e.g. they
form a molecular dynamics trajectory), creators shall define this variable and write
a float for each frame coordinate representing the number of picoseconds of simu-
lated time elapsed since the start of the trajectory. When the file stores a collection
of conformations having no temporal sequence, creators shall omit this variable.

For restarts, if the coordinates are from molecular dynamics, creators shall
define this variable and write the time (with double precision) that corresponds to
the coordinates. Otherwise (if e.g. from a minimization) creators shall omit this
variable.

coordinates

Trajectory: float coordinates(frame, atom, spatial) units = “angstrom”

Restart: double coordinates(atom, spatial) units = “angstrom”

This variable shall contain the Cartesian coordinates of the specified particle for
the specified frame.

cell_lengths

Trajectory: float cell_lengths(frame, cell_spatial) units = “angstrom”

Restart: double cell_lengths(cell_spatial) units = “angstrom”



When the coordinates variable is included and the data in the coordinates variable
come from a simulation with periodic boundaries, creators shall include this vari-
able. This variable shall represent the lengths (a,b,c) of the unit cell for each frame.
When each of the angles in cell_angles is 90, a, b and c are parallel to the x, y and
z axes, respectively. If the simulation has one or two dimensional periodicity, then
the length(s) corresponding to spatial dimensions in which there is no periodicity
shall be set to zero.

cell_angles

Trajectory: float cell_angles(frame, cell_angular) units = degree”

Restart: double cell_angles(cell_angular) units = “degree”

Creators shall include this variable if and only if they include the cell_lengths vari-
able. This variable shall represent the angles (o, 3,7) defining the unit cell for
each frame. o defines the angle between the a-b and a-c planes, 8 defines the an-
gle between the a-b and b-c planes and 7y defines the angle between the a-c and b-c
planes. Angles that are undefined due to less than three dimensional periodicity
shall be set to zero.

velocities

Trajectory: float velocities(frame, atom, spatial) units = “angstrom/picosecond”

Restart: double velocities(atom, spatial) units = “angstrom/picosecond”

When the velocities variable is present, it shall represent the Cartesian components
of the velocity for the specified particle and frame. It is recognized that due to the
nature of commonly used integrators in molecular dynamics, it may not be possible
for the creator to write a set of velocities corresponding to exactly the same point
in time as defined by the time variable and represented in the coordinates variable.
In such cases, the creator shall write a set of velocities from the nearest point in
time to that represented by the specified frame.
The velocities variable will have the following attribute:

scale_factor: Will be set to the factor needed to convert time in AKMA units to
picoseconds: double scale_factor = 20.455



forces

Trajectory: float forces(frame, atom, spatial) units = “kilocalorie/mole/angstrom”

Restart: double forces(atom, spatial) units = “kilocalorie/mole/angstrom”

When the forces variable is present, it shall represent the components of the force
for the specified particle and frame.

6.3 Replica Exchange Variables

temp0

Trajectory: double tempO(frame) units = “kelvin”

Restart: double tempO units = “kelvin”

For use with replica exchange simulations, the femp0 variable will define the cur-
rent temperature that the thermostat is set to maintain, NOT the actual temperature
of the coordinates.

Note: For replica exchange self-guided Langevin (RXSGLD) simula-
tions the stage ID is stored in temp0 instead of thermostat temperature.
This allows existing analysis framework to properly sort these trajec-
tories.

remd_dimtype
Both: integer remd_dimtype(remd_dimension)
For use with multi-dimensional replica exchange simulations, the remd_dimtype

variable will define the type of each dimension using an integer value correspond-
ing to the following table:

’ Value ‘ Description

1 Temperature
2 Partial

3 Hamiltonian
4 pH

5 RedOx




remd_indices
Trajectory: integer remd_indices(frame, remd_dimension)

Restart: integer remd_indices(remd_dimension)

For use with multi-dimensional replica exchange simulations, the remd_indices
variable indicates the position in all dimensions that each frame is in.

remd_repidx
Trajectory: integer remd_repidx(frame)

Restart: integer remd_repidx

Overall index of the frame in replica space.

remd_crdidx

Trajectory: integer remd_crdidx(frame)

Restart: integer remd_crdidx
Overall index of the frame in coordinate space.
remd_values

Trajectory: double remd_values(frame, remd_dimension)

Restart: double remd_values(remd_dimension)

The remd_values variable indicates what replica value the specified replica dimen-
sion has for that given frame (e.g. temperature, pH, RedOx potential, etc.).

7 Example

The following is an example of the CDL for a trajectory file conforming to the
preceding specification and containing most of the elements described in this doc-
ument. This CDL was generated using ncdump -h <trajectory file>.



netcdf mdtrj {
dimensions:
frame = UNLIMITED ; // (10 currently)
spatial = 3 ;
atom = 28 ;
cell_spatial = 3 ;
cell_angular
label = 5 ;
variables:

Il
w
~

char spatial (spatial) ;
char cell_spatial (cell_spatial) ;
char cell_angular(cell_angular, label) ;
float time (frame) ;
time:units = "picosecond"
float coordinates (frame, atom, spatial) ;
coordinates:units = "angstrom" ;
float cell_lengths (frame, cell_spatial) ;
cell_lengths:units = "angstrom" ;
float cell_angles(frame, cell_angular) ;
cell_angles:units = "degree" ;
float velocities (frame, atom, spatial) ;
velocities:units = "angstrom/picosecond"
velocities:scale_factor = 20.455f ;
// global attributes:
:title = "netCDF output test" ;
rapplication = "AMBER" ;
:program = "sander"
:programVersion = "9.0" ;
:Conventions = "AMBER" ;
:ConventionVersion = "1.0" ;

8 Extensions and modifications

Standards and formats are most useful when they are supported widely, and be-
come less useful and more burdensome if they fragment into multiple dialects. If
you plan to support additional variables, dimensions or attributes beyond those
described here in a publicly released creator or reader program, please contact
one of the Amber developers (daniel.r.roe @gmail.com, jason.swails @ gmail.com,

10



case @biomaps.rutgers.edu, or jmongan@mccammon.ucsd.edu) for inclusion of
these elements into a future revision of this document.

9 Revision history

Revision A, February 9, 2006: Initial document.

Revision B, February 15, 2006: Better self-description for unit cells in peri-
odic simulations; standards for indicating one and two dimensional period-
icity.

Revision C, November 11, 2013: Add dimensions/variables for REMD; add
NetCDF restart description.

Revision D, December 8, 2014: Add brief note regarding storage of stage ID
in temp0 variable for RXSGLD.

11



