AMBER: The How, What and Why on an Intel® Xeon Phi[™]

Perri Needham & Ross Walker (SDSC / UCSD)

What is Molecular Dynamics?

- A Method for simulating how a chemical system evolves with time.
- Common Software: AMBER, CHARMM, NAMD, LAMMPS, GROMACS.

 Used to simulate biological systems such as enzymes (Biological Factories)

What can we Learn from Molecular Dynamics Simulations?

- Key: Gives *time ordered* information.
- Allows simulation of how a biological system evolves with time.
 - Reaction Rates
 - Activation Pathways
 - Structural Stability
 - Folding / unfolding pathways

- Can 'experiment' on a computer.
 - Study mutation effects.
 - Environmental effects (temperature / pressure)
 - Study properties that cannot be measured experimentally.

•

Why have we traditionally needed Supercomputers for MD? (Complex Equations)

$$U(R) = \sum_{bonds} K_r \left(r - r_{eq}\right)^2 + \sum_{angles} K_{\theta} \left(\theta - \theta_{eq}\right)^2$$
$$+ \sum_{dihedrals} \frac{V_n}{2} \left(1 + \cos\left[n\phi - \gamma\right]\right) + \sum_{i < j}^{atoms} \frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^6}$$
$$+ \sum_{i < j}^{atoms} \frac{q_i q_j}{\varepsilon R_{ij}}$$

SAN DIEGO SUPERCOMPUTER CENTER

SDS

Why have we traditionally needed Supercomputers for MD? Lots of Atoms

SAN DIEGO SUPERCOMPUTER CENTER

SD

Why have we traditionally needed Supercomputers for MD? Lots of Time Steps

Maximum time per step is limited by fastest motion in system (vibration of bonds).

•

٠

= 2 femto seconds (0.00000000000002 seconds)(Light travels 0.006mm in 2 fs)

Biological activity occurs on the nano-second to micro-second timescale.

1 micro second = 0.000001 seconds

Relevant timescales

• 16 order of magnitude range

- Femtosecond timesteps
- Need to simulate micro to milliseconds

SO WE NEED

500 million steps to reach 1 microsecond!!!

Why accelerate AMBER with an Intel® Xeon Phi[™] coprocessor?

- Scaling to large machines does not work.
- Too much communication at high core counts.
- Coprocessors within a node reduce the communication overhead.
- Intel[®] Xeon Phi[™] coprocessors offer high computational power with a single node.
- Intel[®] Xeon Phi[™] coprocessors now supported for AMBER in offload and native mode.

How does AMBER offload work on an Intel® Xeon Phi™ coprocessor?

SAN DIEGO SUPERCOMPUTER CENTER

SDS

How does AMBER load-balance work in the offload algorithm?

SAN DIEGO SUPERCOMPUTER CENTER

SDS

How does AMBER perform on Intel® Xeon® and Xeon Phi[™] architectures?

	Cellulose	STMV
CPU/MIC	(408,609 atoms)	(1,067,095 atom
unoptimized SNB (2 x 12 cores)	0.80	
unoptimized IVB (2 x 12 cores)	1.40	
optimized IVB (2 x 12 cores)	1.53	
optimized IVB (2 x 12 cores) + Intel Xeon Phi 7120 (61 cores)	2.00	

Performance of Cellulose (408,609 atoms) and STMV (1,067,095 atoms) measured in ns day⁻¹ using 2 Intel Xeon E5 2660 v2 processor (2 x 12 cores) code name Sandy Bridge (SNB), 2 Intel Xeon 2697 v2 processor (2 x 12 cores) code name Ivy Bridge (IVB) and 2 Intel Xeon 2697 v2 processor (2 x 12 cores) code

Conclusions and Long Term Vision

Conclusions

- Partnership with Intel has been very successful and productive.
- Performance of latest offload code is currently > 2x baseline.

Long Term Visions

- Intel® Xeon® & Intel® Xeon Phi[™] performance competitive with GPUs.
- Scaling to large node counts.
- Code extensively optimized but still clean and easily maintainable.

Thank you for listening

SDSC