
An implementation of WHAM: the
Weighted Histogram Analysis Method

Alan Grossfield

Contents

1 Introduction 3

2 New in this release 3

3 Installation 4

4 Command line arguments and file formats 4
4.1 wham . 5

4.1.1 Command line arguments for WHAM 5
4.1.2 File formats . 6
4.1.3 Output . 7

4.2 wham-2d . 9
4.2.1 Command line arguments 9
4.2.2 File formats . 9
4.2.3 Output . 10

1

5 Discussion 12
5.1 Periodicity . 12
5.2 Monte Carlo Bootstrap Error Analysis 12
5.3 Using the code for replica exchange simulations 15

2

1 Introduction

These programs (wham and wham-2d) implement the Weighted Histogram
Analysis Method of Kumar, et al (“Multidimensional free-energy calculations
using the weighted histogram analysis method”, J. Comput. Chem., 16:1339-
1350, 1995). The code generally follows the notation used by Benoit Roux
(“The calculation of the potential of mean force using computer simulations”,
Comput. Phys. Comm., 91:275-282, 1995). Consult these papers for the
theoretical background and justification for the method.

This code is available for download from my web page (http://membrane.urmc.rochester.edu/wham/).
The code doesn’t change all that often, but it’s probably worth checking pe-
riodically. If you run into trouble using these programs, feel free to contact
me (alan grossfield@urmc.rochester.edu), and I’ll try to help you. This code
is available under the GPL and BSD licenses, as you prefer. The exception
to this licensing is a set of routines from Numerical Recipes, which is not
mine to give away.

If you use this code as part of an original piece of research, I’d appreciate
a reference or acknowledgement, but it’s not required (good thing too, since
it’d be almost impossible to enforce). For that matter, just letting me know
what you’re using my code for would be nice, although again I don’t insist
upon it.

Suggestions and patches are welcome.

2 New in this release

• Non-backward compatible change to the metadata file format, which
affects people using multiple simulation temperatures. Calculations
using only one temperature can use the same metadata file format as
before. See section 4.1.2 for details.

• Major changes to the Monte Carlo bootstrap analysis, including the
ability to set a correlation time for each window. In the process, fixed
an off-by-1 bug (thanks to Michael Shirts for pointing this out to me).
See sections 4.1.2 and 5.2 for details.

• Improved documentation using simulations run at multiple tempera-
tures, e.g. replica exchange.

3

• Made some error messages more comprehensible.

3 Installation

Untarring wham.tgz will create a directory wham/, which in turn contains
several directories (wham/ wham-2d/ doc/ nr/).

To build the standard 1-D wham code on a machine which has gcc, you
should

cd wham

make clean

make

(which will delete all object files and executables, and build the wham
executable). By default, the Makefile uses the gcc compiler, but I also have
flags present for the Intel compiler, plus the native compilers for Irix and
Tru64. The latter two have not been tested recently, but ought to work,
since at various times this code has been used successfully on various flavors
of linux, MacOS X, AIX, Irix, and Tru64. If you find that you need to do
anything special to make it work on your particular system, I’d appreciate it
if you could let me know so I can add to the Makefile.

To build the 2-D version, say

cd wham-2d

make clean

make

Several other directories are also created (doc/, which you presumably
found because you’re reading this, and nr/, which contains a couple of files
from Numerical Recipes). You don’t need to do anything with these direc-
tories.

4 Command line arguments and file formats

To get a listing of the command line arguments for either wham or wham-
2d, just run the command without any arguments. Optional arguments are
included in brackets. Both programs will echo their command line into the
output file, to help you figure out what you did.

4

4.1 wham

4.1.1 Command line arguments for WHAM

wham [P|Ppi|Pval] hist_min hist_max num_bins tol temperature numpad \

metadatafile freefile [num_MC_trials randSeed]

The first (optional) argument specifies the periodicity of the reaction co-
ordinate. For a nonperiodic reaction coordinate (a distance, for example), it
should be left out. “P” means that the reaction coordinate has a periodicity
of 360, appropriate for angles. “Ppi” specifies a periodicity of 2*pi, appro-
priate for angles measured in radians. “Pval” specifies periodicty of some
arbitrary amount, val, which should be an integer or floating point num-
ber. For example, “P180.0” would be appropriate for an angle with twofold
symmetry.

hist min and hist max specify the boundaries of the histogram. As a rule,
all data points outside the range (hist min, hist max) are silently ignored.
The only exception is that if an entire trajectory is outside the range, the
program halts with an error message. The solution is to remove that file from
the metadata file. hist min and hist max should be floating point numbers.

num bins specifies the number of bins in the histogram, and as a result
the number of points in the final PMF. It should be an integer.

tol is the convergence tolerance for the WHAM calculations. Specifically,
the WHAM iteration is considered to be converged when no Fi value for
any simulation window changes by more than tol on consecutive iterations.
As the program runs, it prints the average change in the F values for the
most recent iteration. Obviously, this number will be smaller than tol before
the computation converges, because convergence is triggered by the largest
change as opposed to the average.

temperature is a floating point number representing the temperature in
Kelvin at which the weighted histogram calculation is performed. This does
not have to be the temperature at which the simulations were performed (see
below for discussion).

numpad specifies the number of “padding” values that should be printed
for periodic PMFs. This number should be set to 0 for aperiodic reaction
coordinates. It doesn’t actually affect the calculation in any way. Rather, it
just alters the final printout of the free energy, to make plotting of periodic
reaction coordinates simpler. This is more important for wham-2d than
wham.

5

metadatafile specifies the name of the metadata file. The format of this
file is described below.

freefile is the name used for the file containing the final PMF and proba-
bility distribution.

num MC trials and randSeed are both related to the performance of
Monte Carlo bootstrap error analysis. If these values are not supplied, error
analysis is not performed. num MC trials should be an integer specifying
the number of fake data sets which should be generated. randSeed is an
integer which controls the random number seed – the value you pick should
be irrelevant, but I let the user set it primarily for debugging purposes.

4.1.2 File formats

Each line of the metadata file should be blank, begin with a “#” (marking
a comment), or have the following format:

/path/to/timeseries/file loc_win_min spring [correl time] [temperature]

This first field is the name of one of the time series files (more on this in
a moment). The second field, loc win min, is the location of the minimum
of the biasing potential for this simulation, a floating point number. The
third field, spring, is the spring constant for the biasing potential used in
this simulation, assuming the biasing potential is of the format

V =
1

2
k(x− x0)

2. (1)

Many simulation packages, including TINKER, AMBER, and CHARMM,
do not include the 1

2
when they specify spring constants for their restraint

terms. This is a common source of error (I’d love to change my code to match
the other packages’ behavior, but then experienced users who don’t read the
manual would get messed up). Also, the units for the spring constant must
match those for the time series. So, if your time series is a distance recorded
in Ångstroms, the spring constant must be in kcal/mol-Å2. AMBER users
should take care when using angular restraints: the specification and output
of angles is in degrees, but AMBER’s spring constants use kcal/mol-rad2.

The fourth argument (“correl time”) specifies the decorrelation time for
your time series, in units of time steps. It is only used when generating
fake data sets for Monte Carlo bootstrap error analysis, where it modulates
the number of points per fake data set. This argument is optional, and is

6

ignored if you don’t do error analysis. If you’re doing multiple temperatures
but not bootstrapping, set it to any integer value as a placeholder, and it’ll be
ignored. See section 5.2 for more discussion about how to do bootstrapping.

Finally, the last (optional) field is the temperature for this simulation. If
not supplied, the temperature specified on the command line is used. In the
present version of the code, you must either leave the temperature unspecified
for all simulations or specify it for all simulations.

The time series files must follow one of two formats, depending on whether
the temperature was specified in the metadata file. If no temperature was
specified, the file should contain two columns, where the first is the time
(which isn’t actually used), and the second is the position of the system
along the reaction coordinate. Both numbers should be in floating point
format. Lines beginning with “#” are ignored as comments. Additional
columns of data are ignored.

If the simulation temperature is specified, there must be a third column of
data, containing the system’s potential energy at that time point. It should
be a floating point value.

4.1.3 Output

The first line of the output file contains echoes command line. The next line
or two contain comments describing the periodicity used and the number of
simulation windows present. While the calculation is running, it will print
out lines that look like the following:

#Iteration 10: 0.106019

#Iteration 20: 0.062269

#Iteration 30: 0.039890

#Iteration 40: 0.027003

This specifies the current iteration number, and the average change in the
F values for the current iteration. This number is not used for deciding when
the calculation has converged; rather, the maximum change, as opposed to
the average, is used.

Every 100 iterations, the current version of the PMF is dumped into the
output file. These lines look like

-178.000000 0.014212 4909.138943

-174.000000 0.062631 4525.390035

7

-170.000000 0.227076 3432.434076

-166.000000 0.494262 2190.487110

-162.000000 0.817734 1271.708620

The first column is the value of the reaction coordinate, the second is the
value of the PMF, and the third is the unnormalized probability distribution.

Once the calculation has converged, wham will produce output resembling

Dumping simulation biases, in the metadata file order

Window F (free energy units)

0 0.000004

1 -4.166136

2 -3.241052

3 -4.475215

4 -6.324340

5 -7.128731

These are the final F values from the wham calculation, and can be used
for computing weighted averages for properties other than the free energy.

You may have noticed that all of the lines except the free energies are
preceded by “#”. This allows you to check convergence of your wham calcu-
lation by simply plotting the output file in gnuplot. If the free energy curves
have stopped changing, your tolerance is small enough.

If you specified a nonzero number of Monte Carlo bootstrap error analysis
trials, you will see lines that resemble

#MC trial 0: 990 iterations

#MC trial 1: 973 iterations

#MC trial 2: 970 iterations

#MC trial 3: 981 iterations

#MC trial 4: 984 iterations

at the end of the file.
The free energy data file is written when the calculation converges, and

resembles:

#Coor Free +/- Prob +/-

-178.000000 0.014386 0.000098 0.106389 0.000017

-174.000000 0.068560 0.000151 0.097128 0.000025

-170.000000 0.250825 0.000350 0.071496 0.000042

-166.000000 0.523786 0.000294 0.045186 0.000022

8

The first column is the value of the reaction coordinate, the second is the
free energy. The third is the statistical uncertainty of the free energy (which is
only meaningful if you performed Monte Carlo bootstrapping). The fourth
and fifth columns are the probability and it’s associated statistical uncer-
tainty. Again, the latter is only meaningful if bootstrapping is performed.
See section 5.2 for further discussion of error estimation.

4.2 wham-2d

4.2.1 Command line arguments

wham-2d Px[=0|pi|val] hist_min_x hist_max_x num_bins_x \

Py[=0|pi|val] hist_min_y hist_max_y num_bins_y \

tol temperature numpad metadatafile freefile [num_MC_trials random_seed]

The command line arguments largely have the same meaning as they do
for the one dimensional wham program.

The periodicity arguments are not optional.
“Px” by itself indicates that the first dimension of the reaction coordinate

has a period of 360. “Px=0” turns off periodicity. “Px=pi” specifies a period
of 2*pi, and “Px=val” allows you to choose an arbitrary value for the period.

hist min x, hist max x, and num bins x behave exactly like hist min,
hist max, and num bins do in the 1 dimensional program.

Py, hist min y, etc., behave the same as Px, hist min x, etc., except they
control the second coordinate of the PMF.

The remaining parameters have the same meaning as in the 1 dimensional
wham program.

4.2.2 File formats

As with regular 1 dimensional wham, each line of the metadata file should
either be blank, begin with a “#”, or have the following format

/path/to/timeseries/file loc_win_x loc_win_y spring_x spring_y [correl time] [temperature]

This first field is the name of one of the time series files. loc win x and
loc win y are the locations of the minimum of the biasing terms in the first
and second dimensions of the reaction coordinate. spring x and spring y

9

are the spring constants used for the biasing potential in this simulation,
assuming the biasing potential is of the format

V =
1

2
(kx ∗ (x− x0)

2 + ky ∗ (y − y0)
2) (2)

The sixth argument (“correl time”) specifies the decorrelation time for
your time series, in units of time steps. It is only used when generating
fake data sets for Monte Carlo bootstrap error analysis, where it modulates
the number of points per fake data set. This argument is optional, and is
ignored if you don’t do error analysis. If you’re doing multiple temperatures
but not bootstrapping, set it to any integer value as a placeholder, and it’ll be
ignored. See section 5.2 for more discussion about how to do bootstrapping.

Finally, the last field is the temperature this simulation was run at. If
not supplied, the temperature specified on the command line is used. In the
present version of the code, you must either leave the temperature unspecified
for all simulations or specify it for all simulations.

The time series files must follow one of two formats, depending on whether
the temperature was specified in the metadata file. If no temperature was
specified, the file should contain three columns, where the first is the time
(which isn’t actually used), and the second and third are the position of the
system along the x and y reaction coordinates, respectively. Both numbers
should be in floating point format. Lines beginning with “#” are ignored as
comments. Additional columns of data are ignored.

If the simulation temperature is specified, there must be a fourth column
of data, containing the system’s potential energy at that time point. It should
be a floating point value. See the section on replica exchange for more details.

4.2.3 Output

The output largely resembles that for wham, except with more columns.
The first line echoes the command line, followed by a specification of the
periodicity, and the number of windows. The iteration lines have the same
meaning. When the current value for the PMF is dumped, the format looks
like

-172.500000 -172.500000 1.968750 15.394489

-172.500000 -157.500000 2.574512 5.522757

-172.500000 -142.500000 3.147538 2.094142

-172.500000 -127.500000 3.505869 1.141952

10

where the first two columns are the values of the first and second dimensions
of the reaction coordinate, the third column is the PMF, and the last column
is the unnormalized probability.

Once the calculation has converged, wham will produce output resembling

Dumping simulation biases, in the metadata file order

Window F (free energy units)

#0 -0.000004

#1 -0.156869

#2 -0.534845

#3 -2.445469

These are the final F values from the wham calculation, and can be used
for computing weighted averages for properties other than the free energy.

If you specified a nonzero number of Monte Carlo bootstrap error analysis
trials, you will see lines that resemble

#MC trial 0: 990 iterations

#MC trial 1: 973 iterations

#MC trial 2: 970 iterations

#MC trial 3: 981 iterations

#MC trial 4: 984 iterations

at the end of the file.
The free energy data file is written when the calculation converges, and

resembles:

-232.500000 -232.500000 4.812986 0.003185 0.000001 0.000000
-232.500000 -217.500000 4.830312 0.003741 0.000001 0.000000
-232.500000 -202.500000 4.898622 0.001009 0.000000 0.000000

The first two columns are the locations along the first and second dimen-
sions of the reaction coordinate. The third is the free energy, while the fourth
is the statistical uncertainty in the free energy. The fifth and sixth columns
are the normalized probability and its statistical uncertainty. The two un-
certainty columns will be zero if you did not use Monte Carlo bootstrapping.

11

5 Discussion

5.1 Periodicity

Use of periodic boundary conditions only changes one thing in the code: when
calculating the biasing potential from a simulation window for a specific bin
in the histogram (the wj(Xi) values in Equation 8 of Roux’s paper, cited
above), the minimum image convention is applied. Thus, for a window with
the biasing potential centered at 175 degrees, the “distance” to the bin at
-175 is 10 degrees, not 350 degrees.

The numpad argument on the command line is useful primarily for pe-
riodic reaction coordinates. It specifies a number of additional windows to
be prepended and appended to the final output, such that the periodicity is
explicitly visible in the free energy. So, if a calculation was done using 360
degree periodicity, 36 windows, with the reaction coordinate ranging -180
to 180, and numpad=5, a total of 46 values would be output, from -225 to
+225. The numpad value has no effect at all on the values computed for the
PMF and probability.

5.2 Monte Carlo Bootstrap Error Analysis

The premise of bootstrapping error analysis is fairly straightforward. For a
time series containing N points, choose a set of N points at random, allowing
duplication. Compute the average from this “fake” data set. Repeat this
procedure a number of times and compute the standard deviation of the
average of the “fake” data sets. This standard deviation is an estimate for
the statistical uncertainty of the average computed using the real data. What
this technique really measures is the heterogeneity of the data set, relative
to the number of points present. For a large enough number of points, the
average value computed using the faked data will be very close to the value
with the real data, with the result that the standard deviation will be low. If
you have relatively few points, the deviation will be high. The technique is
quite robust, easy to implement, and correctly accounts for time correlations
in the data. Numerical Recipes has a good discussion of the basic logic of
this technique. For a more detailed discussion, see “An introduction to the
bootstrap”, by Efron and Tibshirani (Chapman and Hall/CRC, 1994). Please
note: bootstrapping can only characterize the data you have. If your data is
missing contributions from important regions of phase space, bootstrapping

12

will not help you figure this out.
In principle, the standard bootstrap technique could be applied directly

to WHAM calculations. One could generate a fake data set for each time
series, perform WHAM iterations, and repeat the calculation many times.
However, this would be inefficient, since it would either involve a) generating
many time series in the file system, or b) storing the time series in memory.
Neither of these strategies is particularly satisfying, the former because it
involves generating a large number of files and the latter because it would
consume very large amounts of memory. My implementation of WHAM is
very memory efficient because not only does it not store the time series, it
doesn’t even store the whole histogram of that time series, but rather just
the nonzero portion.

However, there is a more efficient alternative. The principle behind boot-
strapping is that you’re trying to establish the various of averages calculated
with N points sampling the true distribution function, using your current N
points of data as an estimate of the true distribution. The histogram of each
time series is precisely that, an estimate of the probability distribution. So,
all we have to do is pick random numbers from the distribution defined by
that histogram. Once again, Numerical Recipes shows us how to do it: we
compute the normalized cumulant function, c(x), generate a random number
between 0 and 1 R, and solve c(x) = R for x. Thus, a single Monte Carlo
trial is computed in the following manner:

1. For each simulation window, use the computed cumulant of the his-
togram to generate a new histogram, with the same number of points.

2. Perform WHAM iterations on the set of generated histograms

3. Store the average normalized probability and probability squared for
each bin in the histogram

After a number of Monte Carlo trials, the standard deviation in the prob-
ability in each bin is computed using the store probabilities and squared
probabilities. This standard deviation is the statistical uncertainty in the
probability distribution. The uncertainty in the free energy is then estimated
as

σ(A(x)) = kBT
σ(P (x))

P (x)
(3)

13

where A(x) is the free energy at x, P (x) is the probability, and σ connotes
the standard deviation. This indirect computation of the uncertainty in the
free energy is convenient because the potential of mean force is only known
up to a constant, and thus the proper alignment of the PMFs computed from
the faked data sets is unknown. The probabilities, by contrast, have no such
ambiguity. This procedure assumes that the fluctuations in the probabilities
are roughly Gaussian, and in principle the best way to do it would be to store
the PMF generated by each Monte Carlo trial, optimlly align them, and then
compute the standard deviations directly. However, I’ve played with varying
the correlation times (more on this later), and it looks like the Gaussian-like
assumption usually holds, at least for test data.

The situation is slightly more complicated when one attempts to apply
the bootstrap procedure in two dimensions, because the cumulant is not
uniquely defined. My approach is to flatten the two dimensional histogram
into a 1 dimensional distribution, and take the cumulant of that. As long as I
maintain a unique mapping between the 1D cumulant and the 2D histogram,
there is no difficulty (I think...). The rest of the procedure is the same as in
the 1-D case.

There is one major caveat throughout all of this analysis: thus far, we
have assumed that the correlation time in time series is shorter than the
snapshot interval. To put it another way, we’ve assumed that all of the
data points are statistically independent. However, this is unlikely to be the
case in a typical molecular dynamics setting, which means that the sample
size used in the Monte Carlo bootstrapping procedure is too large, which
in turn causes the bootstrapping procedure to underestimate the statistical
uncertainty.

My code deals with this by allowing you to set the correlation time for
each time series used in the analysis, in effect reducing the number of points
used in generating the fake data sets (see section refss:format). For instance,
if a time series had 1000 points, and you determined by other means that the
correlation time was 10x the time interval for the time series, then you would
set “correl time” to 10, and each fake data set would have 100 points instead
of 1000. If the value is unset or is greater than the number of data points,
then the full number of data points is used. Please note that the actual time
values in the time series are not used in any way in this analysis; for purposes
of specifying the correlation time, the interval between consecutive points is
always considered to be 1.

The question of how to determine the correlation time is in some sense

14

beyond the scope of this document. In principle, one could simply compute
the autocorrelation function for each time series; if the autocorrelation is
well approximated by a single exponential, then 2x the decay time (the time
it takes the autocorrelation to drop to 1/e) would be a good choice. If
it’s multiexponential, then you’d use the longest time constant. However,
be careful: you really want to use the longest correlation time sampled in
the trajectory, and the fluctuations of the reaction coordinate may fluctuate
rapidly but still be coupled to slower modes.

It is important to note that the present version of the code uses the
correlation times only for the error analysis and not for the actual PMF
calculation. This isn’t like to be an issue, as the raw PMFs aren’t that
sensitive to the correlation times unless they vary by factors of 10 or more.

5.3 Using the code for replica exchange simulations

One major application for the ability to combine simulations run at differ-
ent temperatures is the analysis of replica exchange simulations, and if the
email I’ve gotten over the last couple of years is any indication, it’s a pretty
common one. My code can be used for replica exchange, but I should start
by admitting that it wasn’t designed with it in mind, and may seem a bit
clumsy.

First, the metadata file format has changed as of the November, 2007
release of the code. If you want to specify temperatures in the metadata file,
you also have to specify the number of Monte Carlo points to use (if you’re
not using bootstrapping, you can safely set this to any integer). See section
4.1.2 for details.

In order to use wham with time series collected at different temperatures,
the first thing to do is to follow the instructions given in section 4.1.2 regard-
ing the format of the metadata and time series files, while setting the spring
constants to 0. Indeed, for simple circumstances involving small systems this
may be enough for you to make a successful calculation.

However, for large systems this simple approach will almost certainly
get you nothing but a bunch of NaNs in your output. If this happens, the
most likely candidate is either a overflow or underflow in the probability
histograms. The reason is that the temperature-sensitive version of the code
increments the histogram by exp(−E/kBT) for each point (as opposed to
counting each point as 1). Since the potential energies for condensed-phase
molecular dynamics systems using standard force fields are typically of order

15

-50,000 kcal/mol, the means we’d be taking the exponential of a very large
number, which is a Bad Thing numerically.

However, in many circumstances one can work around this easily, by
shifting the location of zero energy. The simplest procedure is to locate this
lowest energy in any of the trajectories, and shift all of the energies in all of
the trajectories such that the lowest (most negative) value is now zero. This
will eliminate the overflows, since the largest contribution from an individual
data point will now be 1.

However, shifting the energies upward can lead to a different set of prob-
lems, where a given simulation appears to have no probability associated
with it, e.g. the sum of exp(−E/kBT) for the trajectory underflows and is
effectively zero. This can occur if the energies in the simulation are signifi-
cantly higher than those in the lowest energy trajectories, which is expected
for condensed phase systems at high temperatures. Underflow in itself isn’t
a problem, but if that simulation is the only one which contributes to a bin
in the histogram (or more generally if all of the simulations which sample
a given bin have zero overall weight), the result will be a division by zero
causing the probability to be NaN or Inf.

Solving this problem is sometimes quite simple: reshift the energies by a
few kcal/mol, such that the lowest energy is moderately small instead of zero
(say -5 kcal/mol). If the problem is just numerical underflow, a small shift
may be sufficient to make the problem numerically well-behaved. However,
if the relevant portion of the histogram really is unaccessible except at high
temperature, then there may be no way to fix the problem, short of running
an additional umbrella-sampled trajectory.

16

