Amber masthead
Filler image AmberTools24 Amber24 Manuals Tutorials Force Fields Contacts History
Filler image

Useful links:

Amber Home
Download Amber
Installation
Amber Citations
GPU Support
Updates
Mailing Lists
For Educators
File Formats
Contributors
Workshops
Jupyter Notebooks and Python

AMBER Tutorial

Real time molecular dynamics simulation and visualization

By Hai Nguyen (BSD 2-clause)

In [1]:
from __future__ import print_function
from time import gmtime, strftime
print('updated: ', strftime("%Y-%m-%d", gmtime()))

from IPython.display import Image
Image("images/real_time_md.png")
updated:  2016-06-12
Out[1]:

Targeted audience: Expert

Or any one that wants to use this notebook for teaching or demonstration

Require

How to use this notebook?

amber.jupyter notebook notebook.ipynb # notebook.ipynb is the name of this notebook
# you can make your own notebook and copy commands in this notebook

Download notebook

Prepare topology and starting file

The peptide used in this demonstration is CLN025, a variant of chignolin

This tutorial uses GBNeck2 + ff14SBonlysc

You can use any text editor but we can create/edit files in this notebook by %%file command

In [2]:
%%file leap.in
source leaprc.protein.ff14SBonlysc
x = sequence {TYR TYR ASP PRO GLU THR GLY THR TRP TYR}
set default PBradii mbondi3 
saveamberparm x peptide.top peptide.crd
savepdb x peptide.pdb 
quit
Overwriting leap.in
In [3]:
!$AMBERHOME/bin/tleap -f leap.in > leap.log
In [4]:
!ls peptide.*
peptide.crd peptide.pdb peptide.top

Create md input and run minimization

In [5]:
%%file min.in
Stage 1 - minimisation
&cntrl
  imin=1, maxcyc=1000, ncyc=500,
  cut=999.,
  igb=8,
  ntb=0,
  ntpr=100
/
Overwriting min.in
In [6]:
%%file md.in
md.in, 100 ps
&cntrl
       imin = 0, nstlim = 50000, dt = 0.002,
       ntx = 1, irest = 0, ig = -1,
       ntt=3, tempi = 300.0, temp0 = 300.0, gamma_ln = 1.0,
       ntc = 2, ntf = 2,
       ntwx = 25000, ntwe = 0, ntwr = 100, ntpr = 25000,
       cut = 999.0,
       ntb = 0,
       igb = 8, gbsa = 0,
       nscm = 25000,
       ioutfm = 1,
/
Overwriting md.in
In [7]:
!$AMBERHOME/bin/sander -O -i min.in -p peptide.top -c peptide.crd -r min.rst7
In [8]:
!ls min.rst7
min.rst7

Real time visualizing simulation

In [9]:
# use pytraj for reading coordinates from rst7 file
import pytraj as pt

# use nglview for visualizing this notebook
import nglview as nv
In [10]:
from time import time, sleep

def get_coordinates():
    # return coordinates in restart file
    # we reuse topology from reference structure to avoid reload
    traj = pt.load('md.rst', top=ref.top)
    
    # perform superpose to min.rst7 to remove translation and rotation
    # superpose is similiar to cpptraj's rms
    traj.superpose(mask='@CA', ref=ref)
    return traj.xyz[0]

def update_view(view, delay=1, timeout=300):
    # update coordinates every `delay` second, default 1 second
    
    from time import sleep
    coordinates = get_coordinates()
    view.coordinates_dict = {0: coordinates}
    sleep(delay)
    
def run_view(view, delay=1., timeout=300):
    # stop viewing after `timeout` seconds, default 300 (5 minutes)
    start = time()
    stop = start
    
    while stop - start < timeout:
        update_view(view, delay=delay)
        stop = time()
    
def run_md():
    # run md simulation via sander
    import os
    import subprocess
    
    # you can use sander.MPI, pmemd, pmemd.MPI, pmemd.cuda too
    # need to provide absolute directory for sander
    sander = os.getenv('AMBERHOME') + '/bin/sander'
    cm = "{sander} -O -i md.in -o md.out -p peptide.top -c min.rst7 -r md.rst -x md.nc".format(sander=sander)
    
    # we will run sander in background so we can keep using this notebook
    print('running {}'.format(cm))
    return subprocess.Popen(cm.split())
In [11]:
# load minimized struture and use it as reference for superposing
ref = pt.load('min.rst7', top='peptide.top')

# view starting structure (min.rst7)
view = nv.show_pytraj(ref)
view
In [12]:
view.clear_representations()

# add more representation here
view.add_ball_and_stick()
view.add_cartoon()

view.parameters = dict(camera_type='perpective',
                       background_color='black',
                       fog_near=60,
                       clip_dist=0)
In [13]:
# run MD simulation in background so we can keep using this notebook
process = run_md()
running /Users/haichit/amber16/bin/sander -O -i md.in -o md.out -p peptide.top -c min.rst7 -r md.rst -x md.nc
In [14]:
# If you want to kill sander job, please use choose Kernel --> Interupt (top page)

# If you want to run again (fresh MD), run previous step first (process = run_md()), then run this cell
# change the timeout if needed
# I am using 20 seconds, but you can make it run for few days too

run_view(view, timeout=20)

Note

  • Real time visualization does not slow down the speed of your simulation if your simulation and this notebook are running in different CPU.

  • You can also run pmemd.cuda on GPU and use this notebook, just need to update run_md method

  • It's not necessarily to run MD simulation in this notebook, pytraj/nglview only load and visualize your restart file

  • See also: pytraj and nglview tutorials